本文整理汇总了C#中IDataset类的典型用法代码示例。如果您正苦于以下问题:C# IDataset类的具体用法?C# IDataset怎么用?C# IDataset使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
IDataset类属于命名空间,在下文中一共展示了IDataset类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。
示例1: GetEstimatedClassValues
public IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
int n = inputData.GetLength(0);
int columns = inputData.GetLength(1);
double[] x = new double[columns];
double[] y = new double[classValues.Length];
for (int row = 0; row < n; row++) {
for (int column = 0; column < columns; column++) {
x[column] = inputData[row, column];
}
alglib.mnlprocess(logitModel, x, ref y);
// find class for with the largest probability value
int maxProbClassIndex = 0;
double maxProb = y[0];
for (int i = 1; i < y.Length; i++) {
if (maxProb < y[i]) {
maxProb = y[i];
maxProbClassIndex = i;
}
}
yield return classValues[maxProbClassIndex];
}
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:25,代码来源:MultinomialLogitModel.cs
示例2: NetworkDataset
public NetworkDataset(string configXML, IDataset osmDataset, string ndsName, IGPMessages messages, ITrackCancel trackCancel)
{
_xml = new NetworkDatasetXML(configXML, RESMGR);
_osmDataset = osmDataset;
_ndsName = ndsName;
_messages = messages;
_trackCancel = trackCancel;
IDataElement deOSM = GPUtil.MakeDataElementFromNameObject(_osmDataset.FullName);
_dsPath = deOSM.CatalogPath;
_osmLineName = _osmDataset.Name + "_osm_ln";
_osmLinePath = _dsPath + "\\" + _osmLineName;
_osmPointName = _osmDataset.Name + "_osm_pt";
_osmPointPath = _dsPath + "\\" + _osmPointName;
// Get the extent from the point feature class
// NOTE: the feature dataset is not used for this because exceptions occur (SDE only)
// if a feature class was recently deleted from the feature dataset.
IFeatureClass fcPoint = ((IFeatureWorkspace)_osmDataset.Workspace).OpenFeatureClass(_osmPointName);
IGeoDataset gds = (IGeoDataset)fcPoint;
_extent = gds.Extent;
_spatialReference = gds.SpatialReference;
}
开发者ID:joshuacroff,项目名称:arcgis-osm-editor,代码行数:25,代码来源:NetworkDataset.cs
示例3: FindClosestCenters
public static IEnumerable<int> FindClosestCenters(IEnumerable<double[]> centers, IDataset dataset, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows) {
int nRows = rows.Count();
int nCols = allowedInputVariables.Count();
int[] closestCenter = new int[nRows];
double[] bestCenterDistance = Enumerable.Repeat(double.MaxValue, nRows).ToArray();
int centerIndex = 1;
foreach (double[] center in centers) {
if (nCols != center.Length) throw new ArgumentException();
int rowIndex = 0;
foreach (var row in rows) {
// calc euclidian distance of point to center
double centerDistance = 0;
int col = 0;
foreach (var inputVariable in allowedInputVariables) {
double d = center[col++] - dataset.GetDoubleValue(inputVariable, row);
d = d * d; // square;
centerDistance += d;
if (centerDistance > bestCenterDistance[rowIndex]) break;
}
if (centerDistance < bestCenterDistance[rowIndex]) {
bestCenterDistance[rowIndex] = centerDistance;
closestCenter[rowIndex] = centerIndex;
}
rowIndex++;
}
centerIndex++;
}
return closestCenter;
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:30,代码来源:KMeansClusteringUtil.cs
示例4: DeleteFeatureClass
public static void DeleteFeatureClass(IDataset data)
{
if (data.CanDelete())
{
data.Delete();
}
}
开发者ID:truonghinh,项目名称:TnX,代码行数:7,代码来源:FeatureClassManagement.cs
示例5: GetPrognosedValues
public IEnumerable<IEnumerable<double>> GetPrognosedValues(IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
var rowsEnumerator = rows.GetEnumerator();
var horizonsEnumerator = horizons.GetEnumerator();
var targetValues = dataset.GetReadOnlyDoubleValues(TargetVariable);
// produce a n-step forecast for all rows
while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
int row = rowsEnumerator.Current;
int horizon = horizonsEnumerator.Current;
if (row - TimeOffset < 0) {
yield return Enumerable.Repeat(double.NaN, horizon);
continue;
}
double[] prognosis = new double[horizon];
for (int h = 0; h < horizon; h++) {
double estimatedValue = 0.0;
for (int i = 1; i <= TimeOffset; i++) {
int offset = h - i;
if (offset >= 0) estimatedValue += prognosis[offset] * Phi[i - 1];
else estimatedValue += targetValues[row + offset] * Phi[i - 1];
}
estimatedValue += Constant;
prognosis[h] = estimatedValue;
}
yield return prognosis;
}
if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:32,代码来源:TimeSeriesPrognosisAutoRegressiveModel.cs
示例6: GetClassShortName
public static string GetClassShortName(IDataset paramDS)
{
if (paramDS == null)
{
return "";
}
return GetClassShortName(paramDS.Name.ToUpper());
}
开发者ID:ismethr,项目名称:gas-geological-map,代码行数:8,代码来源:LayerHelper.cs
示例7: Scaling
public Scaling(IDataset ds, IEnumerable<string> variables, IEnumerable<int> rows) {
foreach (var variable in variables) {
var values = ds.GetDoubleValues(variable, rows);
var min = values.Where(x => !double.IsNaN(x)).Min();
var max = values.Where(x => !double.IsNaN(x)).Max();
scalingParameters[variable] = Tuple.Create(min, max);
}
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:8,代码来源:Scaling.cs
示例8: Dataset
public Dataset(IDataset pIDataset,IWorkspace pWorkspace,bool bCut,IGeometry pCutGeomtry)
{
m_pIDataset = pIDataset;
m_pIWorkspace = pWorkspace;
m_cutGeometry = pCutGeomtry;
m_bCut = bCut;
InitialProjection();
InitialFeatureList();
}
开发者ID:hy1314200,项目名称:HyDM,代码行数:9,代码来源:Dataset.cs
示例9: Map
//---------------------------------------------------------------------
/// <summary>
/// Initializes a new instance.
/// </summary>
/// <param name="path">
/// Path to the raster file that represents the map.
/// </param>
/// <param name="ecoregions">Dataset of ecoregions</param>
public Map(string path,
IDataset ecoregions)
{
this.path = path;
this.ecoregions = ecoregions;
IInputRaster<Pixel> map = Util.Raster.Open<Pixel>(path);
using (map) {
this.metadata = map.Metadata;
}
}
开发者ID:LANDIS-II-Foundation,项目名称:Libraries,代码行数:19,代码来源:Map.cs
示例10: GetEstimatedClassValueVectors
public IEnumerable<IEnumerable<double>> GetEstimatedClassValueVectors(IDataset dataset, IEnumerable<int> rows) {
var estimatedValuesEnumerators = (from model in models
select model.GetEstimatedClassValues(dataset, rows).GetEnumerator())
.ToList();
while (estimatedValuesEnumerators.All(en => en.MoveNext())) {
yield return from enumerator in estimatedValuesEnumerators
select enumerator.Current;
}
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:10,代码来源:ClassificationEnsembleModel.cs
示例11: NetworkTurns
public NetworkTurns(string turnClassName, IDataset osmDataset, INetworkDataset nds)
{
_turnClassName = turnClassName;
_osmDataset = osmDataset;
_networkDataset = nds;
IGPUtilities gpUtil = new GPUtilitiesClass();
IDataElement de = gpUtil.MakeDataElementFromNameObject(osmDataset.FullName);
_dsPath = de.CatalogPath;
}
开发者ID:hallahan,项目名称:arcgis-osm-editor,代码行数:10,代码来源:NetworkTurns.cs
示例12: GetEstimatedClassValues
public IEnumerable<double> GetEstimatedClassValues(IDataset dataset, IEnumerable<int> rows) {
foreach (var estimatedValuesVector in GetEstimatedClassValueVectors(dataset, rows)) {
// return the class which is most often occuring
yield return
estimatedValuesVector
.GroupBy(x => x)
.OrderBy(g => -g.Count())
.Select(g => g.Key)
.First();
}
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:11,代码来源:ClassificationEnsembleModel.cs
示例13: NcaModel
public NcaModel(int k, double[,] transformationMatrix, IDataset dataset, IEnumerable<int> rows, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues) {
Name = ItemName;
Description = ItemDescription;
this.transformationMatrix = (double[,])transformationMatrix.Clone();
this.allowedInputVariables = allowedInputVariables.ToArray();
this.targetVariable = targetVariable;
this.classValues = (double[])classValues.Clone();
var ds = ReduceDataset(dataset, rows);
nnModel = new NearestNeighbourModel(ds, Enumerable.Range(0, ds.Rows), k, ds.VariableNames.Last(), ds.VariableNames.Take(transformationMatrix.GetLength(1)), classValues);
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:11,代码来源:NcaModel.cs
示例14: ZPath
//
// CONSTRUCTOR
//
public ZPath(IDataset dataset)
{
IWorkspace workspace = dataset.Workspace;
ISQLSyntax sqlSyntax = (ISQLSyntax)workspace;
string database;
string owner;
string table;
sqlSyntax.ParseTableName(dataset.Name, out database, out owner, out table);
this.Database = database;
this.Owner = owner;
this.Table = table;
}
开发者ID:qjw2bqn,项目名称:Esri-Geometry-Network-Configuration-Manager,代码行数:15,代码来源:ZPath.cs
示例15: Map
//---------------------------------------------------------------------
/// <summary>
/// Initializes a new instance.
/// </summary>
/// <param name="path">
/// Path to the raster file that represents the map.
/// </param>
/// <param name="ecoregions">
/// The dataset of ecoregions that are in the map.
/// </param>
/// <param name="rasterFactory">
/// The raster factory to use to read the map.
/// </param>
public Map(string path,
IDataset ecoregions,
IRasterFactory rasterFactory)
{
this.path = path;
this.ecoregions = ecoregions;
this.rasterFactory = rasterFactory;
IInputRaster<Pixel> map = rasterFactory.OpenRaster<Pixel>(path);
using (map) {
this.metadata = map.Metadata;
}
}
开发者ID:LANDIS-II-Foundation,项目名称:Libraries,代码行数:26,代码来源:Map.cs
示例16: Format
public string Format(ISymbolicExpressionTree symbolicExpressionTree, IDataset dataset) {
var stringBuilder = new StringBuilder();
if (dataset != null) CalculateVariableMapping(symbolicExpressionTree, dataset);
stringBuilder.Append("=");
stringBuilder.Append(FormatRecursively(symbolicExpressionTree.Root));
foreach (var variable in variableNameMapping) {
stringBuilder.AppendLine();
stringBuilder.Append(variable.Key + " = " + variable.Value);
}
return stringBuilder.ToString();
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:13,代码来源:SymbolicDataAnalysisExpressionExcelFormatter.cs
示例17: CalculateIntraClusterSumOfSquares
public static double CalculateIntraClusterSumOfSquares(KMeansClusteringModel model, IDataset dataset, IEnumerable<int> rows) {
List<int> clusterValues = model.GetClusterValues(dataset, rows).ToList();
List<string> allowedInputVariables = model.AllowedInputVariables.ToList();
int nCols = allowedInputVariables.Count;
Dictionary<int, List<double[]>> clusterPoints = new Dictionary<int, List<double[]>>();
Dictionary<int, double[]> clusterMeans = new Dictionary<int, double[]>();
foreach (var clusterValue in clusterValues.Distinct()) {
clusterPoints.Add(clusterValue, new List<double[]>());
}
// collect points of clusters
int clusterValueIndex = 0;
foreach (var row in rows) {
double[] p = new double[allowedInputVariables.Count];
for (int i = 0; i < nCols; i++) {
p[i] = dataset.GetDoubleValue(allowedInputVariables[i], row);
}
clusterPoints[clusterValues[clusterValueIndex++]].Add(p);
}
// calculate cluster means
foreach (var pair in clusterPoints) {
double[] mean = new double[nCols];
foreach (var p in pair.Value) {
for (int i = 0; i < nCols; i++) {
mean[i] += p[i];
}
}
for (int i = 0; i < nCols; i++) {
mean[i] /= pair.Value.Count;
}
clusterMeans[pair.Key] = mean;
}
// calculate distances
double allCenterDistances = 0;
foreach (var pair in clusterMeans) {
double[] mean = pair.Value;
double centerDistances = 0;
foreach (var clusterPoint in clusterPoints[pair.Key]) {
double centerDistance = 0;
for (int i = 0; i < nCols; i++) {
double d = mean[i] - clusterPoint[i];
d = d * d;
centerDistance += d;
}
centerDistances += centerDistance;
}
allCenterDistances += centerDistances;
}
return allCenterDistances;
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:50,代码来源:KMeansClusteringUtil.cs
示例18: FeatureSelectionRegressionProblemData
public FeatureSelectionRegressionProblemData(IDataset ds, IEnumerable<string> allowedInputVariables, string targetVariable, string[] selectedFeatures, double[] weights, double optimalRSquared)
: base(ds, allowedInputVariables, targetVariable) {
if (selectedFeatures.Length != weights.Length) throw new ArgumentException("Length of selected features vector does not match the length of the weights vector");
if (optimalRSquared < 0 || optimalRSquared > 1) throw new ArgumentException("Optimal R² is not in range [0..1]");
Parameters.Add(new FixedValueParameter<StringArray>(
SelectedFeaturesParameterName,
"Array of features used to generate the target values.",
new StringArray(selectedFeatures).AsReadOnly()));
Parameters.Add(new FixedValueParameter<DoubleArray>(
WeightsParameterName,
"Array of weights used to generate the target values.",
(DoubleArray)(new DoubleArray(weights).AsReadOnly())));
Parameters.Add(new FixedValueParameter<DoubleValue>(
OptimalRSquaredParameterName,
"R² of the optimal solution.",
(DoubleValue)(new DoubleValue(optimalRSquared).AsReadOnly())));
}
开发者ID:thunder176,项目名称:HeuristicLab,代码行数:17,代码来源:FeatureSelectionRegressionProblemData.cs
示例19: CalculateReplacementValue
protected static double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
IDataset dataset, IEnumerable<int> rows) {
//optimization: constant nodes return always the same value
ConstantTreeNode constantNode = node as ConstantTreeNode;
if (constantNode != null) return constantNode.Value;
var rootSymbol = new ProgramRootSymbol().CreateTreeNode();
var startSymbol = new StartSymbol().CreateTreeNode();
rootSymbol.AddSubtree(startSymbol);
startSymbol.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
var tempTree = new SymbolicExpressionTree(rootSymbol);
// clone ADFs of source tree
for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
}
return interpreter.GetSymbolicExpressionTreeValues(tempTree, dataset, rows).Median();
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:18,代码来源:SymbolicDataAnalysisSolutionImpactValuesCalculator.cs
示例20: PrepareAndScaleInputMatrix
public static double[,] PrepareAndScaleInputMatrix(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, Scaling scaling) {
List<string> variablesList = variables.ToList();
List<int> rowsList = rows.ToList();
double[,] matrix = new double[rowsList.Count, variablesList.Count];
int col = 0;
foreach (string column in variables) {
var values = scaling.GetScaledValues(dataset, column, rows);
int row = 0;
foreach (var value in values) {
matrix[row, col] = value;
row++;
}
col++;
}
return matrix;
}
开发者ID:t-h-e,项目名称:HeuristicLab,代码行数:19,代码来源:AlglibUtil.cs
注:本文中的IDataset类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论