• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# DenseMatrix类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中DenseMatrix的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix类的具体用法?C# DenseMatrix怎么用?C# DenseMatrix使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



DenseMatrix类属于命名空间,在下文中一共展示了DenseMatrix类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: Main

 public static void Main(string[] args)
 {
   Matrix recipe = new DenseMatrix(recipe_data);
   using (Model M = new Model("Recipe"))
   {
     // "production" defines the amount of each product to bake.
     Variable production = M.Variable("production", 
                                      new StringSet(productnames), 
                                      Domain.GreaterThan(0.0));
     // The objective is to maximize the total revenue.
     M.Objective("revenue",
                 ObjectiveSense.Maximize, 
                 Expr.Dot(revenue, production));
     
     // The prodoction is constrained by stock:
     M.Constraint(Expr.Mul(recipe, production), Domain.LessThan(stock));
     M.SetLogHandler(Console.Out);
   
     // We solve and fetch the solution:
     M.Solve();
     double[] res = production.Level();
     Console.WriteLine("Solution:");
     for (int i = 0; i < res.Length; ++i)
     {
       Console.WriteLine(" Number of {0} : {1}", productnames[i], res[i]);
     }
     Console.WriteLine(" Revenue : ${0}", 
                       res[0] * revenue[0] + res[1] * revenue[1]);
   }
 }
开发者ID:edljk,项目名称:Mosek.jl,代码行数:30,代码来源:baker.cs


示例2: Simulate

        public DenseMatrix Simulate(DenseMatrix inputs) //rows: t, cols: inputcount
        {
            states = new Vector(states.Elements.Length);

            DenseMatrix temp = inputs.MatrixMultiply(inputWeights);

            DenseMatrix ret = new DenseMatrix(inputs.Rows, states.Elements.Length);

            for (int t = 0; t < temp.Rows; ++t)
            {
                Vector v = temp.GetRow(t);                
                Vector states2 = innerConnections.MatrixMultiplyRight(states);
                states2.Add(v);
                states2.Add(biasWeights);
                for (int i = 0; i < states2.Elements.Length; ++i)
                {
                    states2.Elements[i] = (double)Math.Tanh(states2.Elements[i]);
                }

                states = states2;
                for (int i = 0; i < states.Elements.Length; ++i)
                {
                    ret[t, i] = states.Elements[i];
                }
            }

            return ret;
        }
开发者ID:hunsteve,项目名称:RLResearch,代码行数:28,代码来源:ESN.cs


示例3: Main

 public static void Main(string[] args)
 {
   using (Model M  = new Model("sdo1"))
   {
     // Setting up the variables
     Variable X  = M.Variable("X", Domain.InPSDCone(3));
     Variable x  = M.Variable("x", Domain.InQCone(3));
     
     DenseMatrix C  = new DenseMatrix ( new double[][] { new double[] {2,1,0}, new double[] {1,2,1}, new double[] {0,1,2}} );
     DenseMatrix A1 = new DenseMatrix ( new double[][] { new double[] {1,0,0}, new double[] {0,1,0}, new double[] {0,0,1}} );
     DenseMatrix A2 = new DenseMatrix ( new double[][] { new double[] {1,1,1}, new double[] {1,1,1}, new double[] {1,1,1}} );
     
     // Objective
     M.Objective(ObjectiveSense.Minimize, Expr.Add(Expr.Dot(C, X), x.Index(0)));
     
     // Constraints
     M.Constraint("c1", Expr.Add(Expr.Dot(A1, X), x.Index(0)), Domain.EqualsTo(1.0));
     M.Constraint("c2", Expr.Add(Expr.Dot(A2, X), Expr.Sum(x.Slice(1,3))), Domain.EqualsTo(0.5));
     
     M.Solve();
     
     Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(X.Level()).ToString());
     Console.WriteLine("[{0}]", (new Utils.StringBuffer()).A(x.Level()).ToString());
   }
 }
开发者ID:edljk,项目名称:Mosek.jl,代码行数:25,代码来源:sdo1.cs


示例4: EstimatePolynomial

        // Computes coefficients of real polynomial (or estimates if values are noised) using Svd
        // Each row of matrix should contain [x, P(x)], at least rank+1 rows
        // Supplied x-es best have magintude in range [1-2], so resulting coefficient matrix is well conditioned
        public static Polynomial EstimatePolynomial(Matrix<float> values, int rank)
        {
            // 1) Create equation Xa = b
            // | x1^n x1^n-1 ... x1 1 | | a0 |   | P(x1) |
            // |                      | | ...| = |       |
            // | xk^n xk^n-1 ... xk 1 | | an |   | P(xk) |
            Matrix<float> X = new DenseMatrix(values.RowCount, rank + 1);
            Vector<float> P = new DenseVector(values.RowCount);

            for(int i = 0; i < values.RowCount; ++i)
            {
                X[i, rank] = 1.0f;
                for(int c = rank - 1; c >= 0; --c)
                {
                    X[i, c] = X[i, c + 1] * values.At(i, 0);
                }
                P[i] = values[i, 1];
            }

            return new Polynomial()
            {
                Coefficents = SvdSolver.Solve(X, P),
                Rank = rank
            };
        }
开发者ID:KFlaga,项目名称:Cam3D,代码行数:28,代码来源:Polynomial.cs


示例5: Main

        public static void Main()
        {
            Matrix matrix = new DenseMatrix(5, 6);
            for (int i = 0; i < matrix.Rows; i++)
            {
                for (int j = 0; j < matrix.Columns; j++)
                {
                    matrix[i, j] = j;
                }
            }

            //the enumerator returns a KeyValuePair, where the key is the column number
            //and the value is the column as a Vector.
            foreach (KeyValuePair<int, Vector> column in matrix.GetColumnEnumerator())
            {
                Console.WriteLine("Column: {0}", column.Key);

                //the Vector enumerator also returns a KeyValuePair with the key
                //being the element's position in the Vector (the row in this case)
                //and the value being the element's value.
                foreach (double element in column.Value)
                {
                    Console.WriteLine(element);
                }
            }
        }
开发者ID:alexflorea,项目名称:CN,代码行数:26,代码来源:MatrixColumnEnumerator.cs


示例6: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseQR"/> class. This object will compute the
        /// QR factorization when the constructor is called and cache it's factorization.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <param name="method">The QR factorization method to use.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
        public static DenseQR Create(DenseMatrix matrix, QRMethod method = QRMethod.Full)
        {
            if (matrix.RowCount < matrix.ColumnCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
            }

            var tau = new float[Math.Min(matrix.RowCount, matrix.ColumnCount)];
            Matrix<float> q;
            Matrix<float> r;

            if (method == QRMethod.Full)
            {
                r = matrix.Clone();
                q = new DenseMatrix(matrix.RowCount);
                Control.LinearAlgebraProvider.QRFactor(((DenseMatrix) r).Values, matrix.RowCount, matrix.ColumnCount, ((DenseMatrix) q).Values, tau);
            }
            else
            {
                q = matrix.Clone();
                r = new DenseMatrix(matrix.ColumnCount);
                Control.LinearAlgebraProvider.ThinQRFactor(((DenseMatrix) q).Values, matrix.RowCount, matrix.ColumnCount, ((DenseMatrix) r).Values, tau);
            }

            return new DenseQR(q, r, method, tau);
        }
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:34,代码来源:DenseQR.cs


示例7: ValidateMatrixFactoryParse

        public void ValidateMatrixFactoryParse()
        {
            denseMatObj = GetDenseMatrix();

            MatrixFactory<String, String, Double> mfObj =
                MatrixFactory<String, String, Double>.GetInstance();

            ParallelOptions poObj = new ParallelOptions();

            TryParseMatrixDelegate<string, string, double> a =
                new TryParseMatrixDelegate<string, string, double>(this.TryParseMatrix);
            mfObj.RegisterMatrixParser(a);
            // Writes the text file
            denseMatObj.WritePaddedDouble(Constants.FastQTempTxtFileName, poObj);

            Matrix<string, string, double> newMatObj =
                mfObj.Parse(Constants.FastQTempTxtFileName, double.NaN, poObj);

            Assert.AreEqual(denseMatObj.RowCount, newMatObj.RowCount);
            Assert.AreEqual(denseMatObj.RowKeys.Count, newMatObj.RowKeys.Count);
            Assert.AreEqual(denseMatObj.ColCount, newMatObj.ColCount);
            Assert.AreEqual(denseMatObj.ColKeys.Count, newMatObj.ColKeys.Count);
            Assert.AreEqual(denseMatObj.Values.Count(), newMatObj.Values.Count());

            ApplicationLog.WriteLine(
                "MatrixFactory BVT : Successfully validated Parse() method");
        }
开发者ID:cpatmoore,项目名称:bio,代码行数:27,代码来源:MatrixFactoryBvtTestCases.cs


示例8: MatrixFrom1DArrayIsReference

 public void MatrixFrom1DArrayIsReference()
 {
     var data = new double[] { 1, 1, 1, 1, 1, 1, 2, 2, 2 };
     var matrix = new DenseMatrix(3, 3, data);
     matrix[0, 0] = 10.0;
     Assert.AreEqual(10.0, data[0]);
 }
开发者ID:DvptUml,项目名称:mathnet-numerics,代码行数:7,代码来源:DenseMatrixTests.cs


示例9: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public static DenseEvd Create(DenseMatrix matrix, Symmetricity symmetricity)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matrices for eigenvalues and eigenvectors
            var eigenVectors = new DenseMatrix(order);
            var blockDiagonal = new DenseMatrix(order);
            var eigenValues = new LinearAlgebra.Complex.DenseVector(order);

            bool isSymmetric;
            switch (symmetricity)
            {
                case Symmetricity.Symmetric:
                case Symmetricity.Hermitian:
                    isSymmetric = true;
                    break;
                case Symmetricity.Asymmetric:
                    isSymmetric = false;
                    break;
                default:
                    isSymmetric = matrix.IsSymmetric();
                    break;
            }

            Control.LinearAlgebraProvider.EigenDecomp(isSymmetric, order, matrix.Values, eigenVectors.Values, eigenValues.Values, blockDiagonal.Values);

            return new DenseEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
        }
开发者ID:Jungwon,项目名称:mathnet-numerics,代码行数:41,代码来源:DenseEvd.cs


示例10: DenseQR

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseQR"/> class. This object will compute the
        /// QR factorization when the constructor is called and cache it's factorization.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <param name="method">The QR factorization method to use.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
        public DenseQR(DenseMatrix matrix, QRMethod method = QRMethod.Full)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount < matrix.ColumnCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
            }

            Tau = new Complex32[Math.Min(matrix.RowCount, matrix.ColumnCount)];

            if (method == QRMethod.Full)
            {
                MatrixR = matrix.Clone();
                MatrixQ = new DenseMatrix(matrix.RowCount);
                Control.LinearAlgebraProvider.QRFactor(((DenseMatrix)MatrixR).Values, matrix.RowCount, matrix.ColumnCount,
                                                       ((DenseMatrix)MatrixQ).Values, Tau);
            }
            else
            {
                MatrixQ = matrix.Clone();
                MatrixR = new DenseMatrix(matrix.ColumnCount);
                Control.LinearAlgebraProvider.ThinQRFactor(((DenseMatrix)MatrixQ).Values, matrix.RowCount, matrix.ColumnCount,
                                                       ((DenseMatrix)MatrixR).Values, Tau);
            }
        }
开发者ID:the-vk,项目名称:mathnet-numerics,代码行数:37,代码来源:DenseQR.cs


示例11: DenseEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public DenseEvd(DenseMatrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matrices for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new Complex.DenseVector(order);

            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            Control.LinearAlgebraProvider.EigenDecomp(IsSymmetric, order, matrix.Values, ((DenseMatrix) MatrixEv).Values,
                ((Complex.DenseVector) VectorEv).Values, ((DenseMatrix) MatrixD).Values);
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:39,代码来源:DenseEvd.cs


示例12: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public static DenseEvd Create(DenseMatrix matrix)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matrices for eigenvalues and eigenvectors
            var eigenVectors = DenseMatrix.Identity(order);
            var blockDiagonal = new DenseMatrix(order);
            var eigenValues = new DenseVector(order);

            var isSymmetric = true;

            for (var i = 0; isSymmetric && i < order; i++)
            {
                for (var j = 0; isSymmetric && j < order; j++)
                {
                    isSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            Control.LinearAlgebraProvider.EigenDecomp(isSymmetric, order, matrix.Values, eigenVectors.Values, eigenValues.Values, blockDiagonal.Values);

            return new DenseEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
        }
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:35,代码来源:DenseEvd.cs


示例13: ReadFile

        public bool ReadFile(string fileName)
        {
            TextReader tr = null;
            try {
                tr = new StreamReader(fileName);
            } catch (Exception e) {
                return false;
            }

            string buffer = tr.ReadLine();
            string[] numbers = buffer.Split(' ');

            N = int.Parse(numbers[0]);
            P = int.Parse(numbers[1]);

            A = new DenseMatrix(P, N);
            for (int i = 0; i < P; i++) {
                buffer = tr.ReadLine();
                numbers = buffer.Split(' ');
                for (int j = 0; j < N; j++) {
                    A[i,j] = int.Parse(numbers[j]);
                }
            }
            B = new DenseVector(P);
            for (int i = 0; i < P; i++) {
                buffer = tr.ReadLine();
                B[i] = int.Parse(buffer);
            }

            return true;
        }
开发者ID:alexflorea,项目名称:CN,代码行数:31,代码来源:Matrix.cs


示例14: FilterRowsBy

 public static DenseMatrix FilterRowsBy(this Matrix m, int[] filter)
 {
     var result = new DenseMatrix(filter.Length, m.Columns);
     for (int i = 0; i < filter.Length; ++i) {
         result.SetRow(i, m.GetRow(filter[i]));
     }
     return result;
 }
开发者ID:pakerliu,项目名称:sharp-context,代码行数:8,代码来源:MatrixUtils.cs


示例15: FilterColumnsBy

 public static DenseMatrix FilterColumnsBy(this Matrix m, int[] filter)
 {
     var result = new DenseMatrix(m.Rows, filter.Length);
     for (int j = 0; j < filter.Length; ++j) {
         result.SetColumn(j, m.GetColumn(j));
     }
     return result;
 }
开发者ID:pakerliu,项目名称:sharp-context,代码行数:8,代码来源:MatrixUtils.cs


示例16: Transformation

 public Transformation()
 {
     iMatrix = new DenseMatrix(3);
     for (int i = 0; i < 3; i++)
     {
         iMatrix[i, i] = 1.0;
     }
 }
开发者ID:JoostZ,项目名称:vixencontrol,代码行数:8,代码来源:Transformation.cs


示例17: WriteNullMatricesThrowsArgumentNullException

 public void WriteNullMatricesThrowsArgumentNullException()
 {
     var writer = new MatlabMatrixWriter("somefile4");
     Assert.Throws<ArgumentNullException>(() => writer.WriteMatrices(new Matrix[] { null }, new[] { "matrix" }));
     Matrix matrix = new DenseMatrix(1, 1);
     Assert.Throws<ArgumentNullException>(() => writer.WriteMatrices(new[] { matrix }, null));
     writer.Dispose();
 }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:8,代码来源:MatlabWriterTests.cs


示例18: Train

        public void Train(DenseMatrix states, DenseMatrix targets)
        {
            //hogy lehetne ugy tanitani, LS modszerrel, hogy ne vesszen el a mar beletanitott cucc
            //hogy lehetne megjegyezni, hogy mi az amit mar megtanitottunk neki
            //valoszinusegi jelentest hogy lehetne adni ennek a dolognak... 
            //valami matrixot karbantartva, ami megmondja, hogy mekkora a szorasa/informaciotartalma az adott helyen

        }
开发者ID:hunsteve,项目名称:RLResearch,代码行数:8,代码来源:ESN.cs


示例19: MarkowitzData

 public MarkowitzData(string name)
 {      
   n      = Int32.Parse(File.ReadAllText(name+"-n.txt"));
   gammas = readfile(name + "-gammas.csv");
   mu     = readfile(name + "-mu.csv");
   GT     = new DenseMatrix(readlines(name + "-GT.csv"));
   x0     = readfile(name + "-x0.csv");
   w      = Double.Parse(File.ReadAllText(name+"-w.csv"));
 }
开发者ID:edljk,项目名称:Mosek.jl,代码行数:9,代码来源:portfolio.cs


示例20: DenseEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public DenseEvd(DenseMatrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);

            IsSymmetric = true;

            for (var i = 0; i < order & IsSymmetric; i++)
            {
                for (var j = 0; j < order & IsSymmetric; j++)
                {
                    IsSymmetric &= matrix[i, j] == matrix[j, i].Conjugate();
                }
            }

            if (IsSymmetric)
            {
                var matrixCopy = matrix.ToArray();
                var tau = new Complex32[order];
                var d = new float[order];
                var e = new float[order];

                SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
                SymmetricDiagonalize(((DenseMatrix)MatrixEv).Data, d, e, order);
                SymmetricUntridiagonalize(((DenseMatrix)MatrixEv).Data, matrixCopy, tau, order);

                for (var i = 0; i < order; i++)
                {
                    VectorEv[i] = new Complex(d[i], e[i]);
                }
            }
            else
            {
                var matrixH = matrix.ToArray();
                NonsymmetricReduceToHessenberg(((DenseMatrix)MatrixEv).Data, matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(((LinearAlgebra.Complex.DenseVector)VectorEv).Data, ((DenseMatrix)MatrixEv).Data, matrixH, order);
            }

            for (var i = 0; i < VectorEv.Count; i++)
            {
                MatrixD.At(i, i, (Complex32)VectorEv[i]);
            }
        }
开发者ID:jvangael,项目名称:mathnet-numerics,代码行数:64,代码来源:DenseEvd.cs



注:本文中的DenseMatrix类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# DenseVector类代码示例发布时间:2022-05-24
下一篇:
C# DensAsiNonResponseType类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap