• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# Codification类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中Codification的典型用法代码示例。如果您正苦于以下问题:C# Codification类的具体用法?C# Codification怎么用?C# Codification使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



Codification类属于命名空间,在下文中一共展示了Codification类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: ApplyTest1

        public void ApplyTest1()
        {
            DataTable table = ProjectionFilterTest.CreateTable();

            // Show the start data
            //Accord.Controls.DataGridBox.Show(table);

            // Create a new data projection (column) filter
            var filter = new Codification(table, "Category");

            // Apply the filter and get the result
            DataTable result = filter.Apply(table);

            // Show it
            //Accord.Controls.DataGridBox.Show(result);

            Assert.AreEqual(5, result.Columns.Count);
            Assert.AreEqual(5, result.Rows.Count);

            Assert.AreEqual(0, result.Rows[0]["Category"]);
            Assert.AreEqual(1, result.Rows[1]["Category"]);
            Assert.AreEqual(1, result.Rows[2]["Category"]);
            Assert.AreEqual(0, result.Rows[3]["Category"]);
            Assert.AreEqual(2, result.Rows[4]["Category"]);
        }
开发者ID:CanerPatir,项目名称:framework,代码行数:25,代码来源:CodificationFilterTest.cs


示例2: superTabControlMain_SelectedTabChanged

        private void superTabControlMain_SelectedTabChanged(object sender, SuperTabStripSelectedTabChangedEventArgs e)
        {            
            switch ((sender as SuperTabControl).SelectedTabIndex)
            { 
                case 1:
                    int totalAttributeFormDatabase = (int)discreteIntervalTableAdapter.TotalAttributes();
                    int totalAttributeFromSetting = TableMetaData.AllAttributes.Length;

                    if (totalAttributeFormDatabase + 1== totalAttributeFromSetting)
                    {
                        refreshTabCreateModel();
                        if (this.codification == null)
                        {
                            this.codification = new Codification(getDataTableForCodification());
                        }
                    }
                    else {
                        (sender as SuperTabControl).SelectedTabIndex = 0;
                        MessageBox.Show("Chưa có dữ liệu rời rạc!", "Lỗi", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return;
                    }
                    break;
                default:
                    break;
            }
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:26,代码来源:FormMain.cs


示例3: Initialize

        private void Initialize(DataTable dataTable, Codification codification)
        {
            this.codificationData = codification;
            
            DataTable discreteValueDatatable = this.codificationData.Apply(dataTable);

            List<string> columnNames = new List<string>();

            // Get column's name of training data
            for (int columnIndex = 0; columnIndex < discreteValueDatatable.Columns.Count - 1; columnIndex++)
            {
                columnNames.Add(discreteValueDatatable.Columns[columnIndex].ColumnName);
            }  

            // Create trainning data
            this.trainningAttributes = discreteValueDatatable.ToArray(columnNames.ToArray());
            
            // Create classifier data for trainning            
            this.classificationAttribute = discreteValueDatatable.ToIntArray(TableMetaData.ClassAttribute).GetColumn(0);
            //this.classificationAttribute = discreteValueDatatable.ToArray<int>(ClassColumnName);

            string classificationColumnName = TableMetaData.ClassAttribute;

            // Set positive, negative value to test model            
            if (this.codificationData.Columns[classificationColumnName].Mapping.ContainsKey(TableMetaData.PositiveString))
            {
                this.positiveValue = this.codificationData.Columns[classificationColumnName].Mapping[TableMetaData.PositiveString];
            }

            if (this.codificationData.Columns[classificationColumnName].Mapping.ContainsKey(TableMetaData.NegativeString))
            {
                this.negativeValue = this.codificationData.Columns[classificationColumnName].Mapping[TableMetaData.NegativeString];
            }            
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:34,代码来源:TrainningData.cs


示例4: HMMGenerator

        public HMMGenerator(PatchNames instrument)
        {
            this.book = new Codebook<Note>();
            this.instrument = instrument;

            DotNetLearn.Data.SampleSet asdasd;

            Accord.Math.Tools.SetupGenerator(10);

            // Consider some phrases:
            //
            string[][] phrases =
            {
            "The Big Brown Fox Jumps Over the Ugly Dog".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "This is too hot to handle".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "I am flying away like a gold eagle".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "Onamae wa nan desu ka".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "And then she asked, why is it so small?".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "Great stuff John! Now you will surely be promoted".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            "Jayne was taken aback when she found out her son was gay".Split(new char[]{' '},  StringSplitOptions.RemoveEmptyEntries),
            };

            // Let's begin by transforming them to sequence of
            // integer labels using a codification codebook:
            var codebook = new Codification("Words", phrases);

            // Now we can create the training data for the models:
            int[][] sequence = codebook.Translate("Words", phrases);

            // To create the models, we will specify a forward topology,
            // as the sequences have definite start and ending points.
            //
            var topology = new Forward(states: codebook["Words"].Symbols);
            int symbols = codebook["Words"].Symbols; // We have 7 different words

            // Create the hidden Markov model
            HiddenMarkovModel hmm = new HiddenMarkovModel(topology, symbols);

            // Create the learning algorithm
            var teacher = new ViterbiLearning(hmm);

            // Teach the model about the phrases
            double error = teacher.Run(sequence);

            // Now, we can ask the model to generate new samples
            // from the word distributions it has just learned:
            //
            List<int> sample = new List<int>();
            int count = 10;
            sample.Add(hmm.Generate(1)[0]);
            while(sample.Count < count)
            {
                var k = hmm.Predict(sample.ToArray(), 1);
                sample.AddRange(k);
            }

            // And the result will be: "those", "are", "words".
            string[] result = codebook.Translate("Words", sample.ToArray());
        }
开发者ID:stefan-j,项目名称:GeneticMIDI,代码行数:59,代码来源:HMMGenerator.cs


示例5: FormTreeRule

        public FormTreeRule(DecisionTree tree, Codification codification, string rule)
            : this()
        {
            this.codification = codification;

            // Show the learned tree in the view            
            decisionTreeView.SetTree(tree, codification);
            decisionTreeView.viewRule(rule);
            
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:10,代码来源:FormTreeRule.cs


示例6: ApplyTest

        public void ApplyTest()
        {
            Codification target = new Codification();


            DataTable input = new DataTable("Sample data");

            input.Columns.Add("Age", typeof(int));
            input.Columns.Add("Classification", typeof(string));

            input.Rows.Add(10, "child");
            input.Rows.Add(7, "child");
            input.Rows.Add(4, "child");
            input.Rows.Add(21, "adult");
            input.Rows.Add(27, "adult");
            input.Rows.Add(12, "child");
            input.Rows.Add(79, "elder");
            input.Rows.Add(40, "adult");
            input.Rows.Add(30, "adult");



            DataTable expected = new DataTable("Sample data");

            expected.Columns.Add("Age", typeof(int));
            expected.Columns.Add("Classification", typeof(int));

            expected.Rows.Add(10, 0);
            expected.Rows.Add(7, 0);
            expected.Rows.Add(4, 0);
            expected.Rows.Add(21, 1);
            expected.Rows.Add(27, 1);
            expected.Rows.Add(12, 0);
            expected.Rows.Add(79, 2);
            expected.Rows.Add(40, 1);
            expected.Rows.Add(30, 1);



            // Detect the mappings
            target.Detect(input);

            // Apply the categorization
            DataTable actual = target.Apply(input);


            for (int i = 0; i < actual.Rows.Count; i++)
            {
                for (int j = 0; j < actual.Columns.Count; j++)
                {
                    Assert.AreEqual(expected.Rows[i][j], actual.Rows[i][j]);
                }
            }

        }
开发者ID:natepan,项目名称:framework,代码行数:55,代码来源:CodificationFilterTest.cs


示例7: SetTree

        // Create tree
        public void SetTree(DecisionTree tree, Codification codification)
        {
            this.treeSource = tree;            
            this.codification = codification;

            treeView1.Nodes.Clear();

            if (treeSource != null && treeSource.Root != null)
                treeView1.Nodes.Add(convert(TreeSource.Root));
            
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:12,代码来源:DecisionTreeViewDiabetes.cs


示例8: FormTreeView

        public FormTreeView(DecisionTree tree, Codification codification)
            : this()
        {
            this.codification = codification;

            // Show the learned tree in the view            
            decisionTreeView.SetTree(tree, codification);
            
            if (tree != null && tree.Root != null)
                CreateRuleList(tree.Root, "");
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:11,代码来源:FormTreeView.cs


示例9: CreateDecisionTree

        // Create decision tree
        protected DecisionTree CreateDecisionTree(Codification codification)
        {
            int lastIndex = codification.Columns.Count - 1;

            List<DecisionVariable> attributes = new List<DecisionVariable>();

            for (int indexColumn = 0; indexColumn < lastIndex; indexColumn++)
            {
                attributes.Add(new DecisionVariable(codification.Columns[indexColumn].ColumnName,
                    codification[indexColumn].Symbols));
            }

            return new DecisionTree(attributes.ToArray(), 2);
        }
开发者ID:hpbaotho,项目名称:benhvien,代码行数:15,代码来源:C45Model.cs


示例10: CreateMitchellExample

        public static void CreateMitchellExample(out DecisionTree tree, out double[][] inputs, out int[] outputs)
        {
            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day", typeof(string));
            data.Columns.Add("Outlook", typeof(string));
            data.Columns.Add("Temperature", typeof(double));
            data.Columns.Add("Humidity", typeof(double));
            data.Columns.Add("Wind", typeof(string));
            data.Columns.Add("PlayTennis", typeof(string));

            data.Rows.Add("D1", "Sunny", 85, 85, "Weak", "No");
            data.Rows.Add("D2", "Sunny", 80, 90, "Strong", "No");
            data.Rows.Add("D3", "Overcast", 83, 78, "Weak", "Yes");
            data.Rows.Add("D4", "Rain", 70, 96, "Weak", "Yes");
            data.Rows.Add("D5", "Rain", 68, 80, "Weak", "Yes");
            data.Rows.Add("D6", "Rain", 65, 70, "Strong", "No");
            data.Rows.Add("D7", "Overcast", 64, 65, "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", 72, 95, "Weak", "No");
            data.Rows.Add("D9", "Sunny", 69, 70, "Weak", "Yes");
            data.Rows.Add("D10", "Rain", 75, 80, "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", 75, 70, "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", 72, 90, "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", 81, 75, "Weak", "Yes");
            data.Rows.Add("D14", "Rain", 71, 80, "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
               new DecisionVariable("Outlook",     codebook["Outlook"].Symbols),      // 3 possible values (Sunny, overcast, rain)
               new DecisionVariable("Temperature", DecisionVariableKind.Continuous), // continuous values
               new DecisionVariable("Humidity",    DecisionVariableKind.Continuous), // continuous values
               new DecisionVariable("Wind",        codebook["Wind"].Symbols)          // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            C45Learning c45 = new C45Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);
            inputs = symbols.ToArray("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray<int>("PlayTennis");

            double error = c45.Run(inputs, outputs);
        }
开发者ID:accord-net,项目名称:framework,代码行数:50,代码来源:C45LearningTest.cs


示例11: ApplyTest3

        public void ApplyTest3()
        {
            string[] names = { "child", "adult", "elder" };

            Codification codebook = new Codification("Label", names);


            // After that, we can use the codebook to "translate"
            // the text labels into discrete symbols, such as:

            int a = codebook.Translate("Label", "child"); // returns 0
            int b = codebook.Translate("Label", "adult"); // returns 1
            int c = codebook.Translate("Label", "elder"); // returns 2

            // We can also do the reverse:
            string labela = codebook.Translate("Label", 0); // returns "child"
            string labelb = codebook.Translate("Label", 1); // returns "adult"
            string labelc = codebook.Translate("Label", 2); // returns "elder"

            Assert.AreEqual(0, a);
            Assert.AreEqual(1, b);
            Assert.AreEqual(2, c);
            Assert.AreEqual("child", labela);
            Assert.AreEqual("adult", labelb);
            Assert.AreEqual("elder", labelc);
        }
开发者ID:CanerPatir,项目名称:framework,代码行数:26,代码来源:CodificationFilterTest.cs


示例12: ApplyTest2

        public void ApplyTest2()
        {
            // Suppose we have a data table relating the age of
            // a person and its categorical classification, as 
            // in "child", "adult" or "elder".

            // The Codification filter is able to extract those
            // string labels and transform them into discrete
            // symbols, assigning integer labels to each of them
            // such as "child" = 0, "adult" = 1, and "elder" = 3.

            // Create the aforementioned sample table
            DataTable table = new DataTable("Sample data");
            table.Columns.Add("Age", typeof(int));
            table.Columns.Add("Label", typeof(string));

            //            age   label
            table.Rows.Add(10, "child");
            table.Rows.Add(07, "child");
            table.Rows.Add(04, "child");
            table.Rows.Add(21, "adult");
            table.Rows.Add(27, "adult");
            table.Rows.Add(12, "child");
            table.Rows.Add(79, "elder");
            table.Rows.Add(40, "adult");
            table.Rows.Add(30, "adult");


            // Now, let's say we need to translate those text labels
            // into integer symbols. Let's use a Codification filter:

            Codification codebook = new Codification(table);


            // After that, we can use the codebook to "translate"
            // the text labels into discrete symbols, such as:

            int a = codebook.Translate("Label", "child"); // returns 0
            int b = codebook.Translate("Label", "adult"); // returns 1
            int c = codebook.Translate("Label", "elder"); // returns 2

            // We can also do the reverse:
            string labela = codebook.Translate("Label", 0); // returns "child"
            string labelb = codebook.Translate("Label", 1); // returns "adult"
            string labelc = codebook.Translate("Label", 2); // returns "elder"


            // We can also process an entire data table at once:
            DataTable result = codebook.Apply(table);

            // The resulting table can be transformed to jagged array:
            double[][] matrix = Matrix.ToArray(result);

            // and the resulting matrix will be given by
            string str = matrix.ToString(CSharpJaggedMatrixFormatProvider.InvariantCulture);

            // str == new double[][] 
            // {
            //     new double[] { 10, 0 },
            //     new double[] {  7, 0 },
            //     new double[] {  4, 0 },
            //     new double[] { 21, 1 },
            //     new double[] { 27, 1 },
            //     new double[] { 12, 0 },
            //     new double[] { 79, 2 },
            //     new double[] { 40, 1 },
            //     new double[] { 30, 1 } 
            // };



            // Now we will be able to feed this matrix to any machine learning
            // algorithm without having to worry about text labels in our data:

            int classes = codebook["Label"].Symbols; // 3 classes (child, adult, elder)

            // Use the first column as input variables,
            // and the second column as outputs classes
            //
            double[][] inputs = matrix.GetColumns(0);
            int[] outputs = matrix.GetColumn(1).ToInt32();


            // Create a multi-class SVM for 1 input (Age) and 3 classes (Label)
            var machine = new MulticlassSupportVectorMachine(inputs: 1, classes: classes);

            // Create a Multi-class learning algorithm for the machine
            var teacher = new MulticlassSupportVectorLearning(machine, inputs, outputs);

            // Configure the learning algorithm to use SMO to train the
            //  underlying SVMs in each of the binary class subproblems.
            teacher.Algorithm = (svm, classInputs, classOutputs, i, j) =>
            {
                return new SequentialMinimalOptimization(svm, classInputs, classOutputs)
                {
                    Complexity = 1
                };
            };

            // Run the learning algorithm
//.........这里部分代码省略.........
开发者ID:CanerPatir,项目名称:framework,代码行数:101,代码来源:CodificationFilterSvmTest.cs


示例13: CreateMitchellExample

        // 
        //You can use the following additional attributes as you write your tests:
        //
        //Use ClassInitialize to run code before running the first test in the class
        //[ClassInitialize()]
        //public static void MyClassInitialize(TestContext testContext)
        //{
        //}
        //
        //Use ClassCleanup to run code after all tests in a class have run
        //[ClassCleanup()]
        //public static void MyClassCleanup()
        //{
        //}
        //
        //Use TestInitialize to run code before running each test
        //[TestInitialize()]
        //public void MyTestInitialize()
        //{
        //}
        //
        //Use TestCleanup to run code after each test has run
        //[TestCleanup()]
        //public void MyTestCleanup()
        //{
        //}
        //
        #endregion


        public static void CreateMitchellExample(out DecisionTree tree, out int[][] inputs, out int[] outputs)
        {
            DataTable data = new DataTable("Mitchell's Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
               new DecisionVariable("Outlook",     codebook["Outlook"].Symbols),     // 3 possible values (Sunny, overcast, rain)
               new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 3 possible values (Hot, mild, cool)
               new DecisionVariable("Humidity",    codebook["Humidity"].Symbols),    // 2 possible values (High, normal)
               new DecisionVariable("Wind",        codebook["Wind"].Symbols)         // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);
            inputs = symbols.ToArray<int>("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray<int>("PlayTennis");

            double error = id3.Run(inputs, outputs);
            Assert.AreEqual(0, error);


            foreach (DataRow row in data.Rows)
            {
                var x = codebook.Translate(row, "Outlook", "Temperature", "Humidity", "Wind");

                int y = tree.Compute(x);

                string actual = codebook.Translate("PlayTennis", y);
                string expected = row["PlayTennis"] as string;

                Assert.AreEqual(expected, actual);
            }

            {
                string answer = codebook.Translate("PlayTennis",
                    tree.Compute(codebook.Translate("Sunny", "Hot", "High", "Strong")));

                Assert.AreEqual("No", answer);
            }
        }
开发者ID:natepan,项目名称:framework,代码行数:96,代码来源:ID3LearningTest.cs


示例14: IncompleteDiscreteVariableTest

        public void IncompleteDiscreteVariableTest()
        {
            DecisionTree tree;
            int[][] inputs;
            int[] outputs;

            DataTable data = new DataTable("Degenerated Tennis Example");

            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");

            data.Rows.Add("D1", "Sunny", "Hot", "High", "Weak", "No");
            data.Rows.Add("D2", "Sunny", "Hot", "High", "Strong", "No");
            data.Rows.Add("D3", "Overcast", "Hot", "High", "Weak", "Yes");
            data.Rows.Add("D4", "Rain", "Mild", "High", "Weak", "Yes");
            data.Rows.Add("D5", "Rain", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D6", "Rain", "Cool", "Normal", "Strong", "No");
            data.Rows.Add("D7", "Overcast", "Cool", "Normal", "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", "Mild", "High", "Weak", "No");
            data.Rows.Add("D9", "Sunny", "Cool", "Normal", "Weak", "Yes");
            data.Rows.Add("D10", "Rain", "Mild", "Normal", "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", "Mild", "Normal", "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", "Mild", "High", "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", "Hot", "Normal", "Weak", "Yes");
            data.Rows.Add("D14", "Rain", "Mild", "High", "Strong", "No");

            // Create a new codification codebook to
            // convert strings into integer symbols
            Codification codebook = new Codification(data);

            DecisionVariable[] attributes =
            {
               new DecisionVariable("Outlook",     codebook["Outlook"].Symbols+200), // 203 possible values, 200 undefined
               new DecisionVariable("Temperature", codebook["Temperature"].Symbols), // 3 possible values (Hot, mild, cool)
               new DecisionVariable("Humidity",    codebook["Humidity"].Symbols),    // 2 possible values (High, normal)
               new DecisionVariable("Wind",        codebook["Wind"].Symbols)         // 2 possible values (Weak, strong)
            };

            int classCount = codebook["PlayTennis"].Symbols; // 2 possible values (yes, no)

            tree = new DecisionTree(attributes, classCount);
            ID3Learning id3 = new ID3Learning(tree);

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);
            inputs = symbols.ToArray<int>("Outlook", "Temperature", "Humidity", "Wind");
            outputs = symbols.ToArray<int>("PlayTennis");

            double error = id3.Run(inputs, outputs);

            Assert.AreEqual(203, tree.Root.Branches.Count);
            Assert.IsTrue(tree.Root.Branches[100].IsLeaf);
            Assert.IsNull(tree.Root.Branches[100].Output);

            for (int i = 0; i < inputs.Length; i++)
            {
                int y = tree.Compute(inputs[i]);
                Assert.AreEqual(outputs[i], y);
            }
        }
开发者ID:natepan,项目名称:framework,代码行数:59,代码来源:ID3LearningTest.cs


示例15: AttributeReuseTest1

        public void AttributeReuseTest1()
        {
            string[][] text = Resources.iris_data.Split(
                new[] { '\n' }, StringSplitOptions.RemoveEmptyEntries)
                .Apply(x => x.Split(','));

            double[][] inputs = new double[text.Length][];
            for (int i = 0; i < inputs.Length; i++)
                inputs[i] = text[i].First(4).Convert(s => Double.Parse(s, System.Globalization.CultureInfo.InvariantCulture));

            string[] labels = text.GetColumn(4);

            Codification codebook = new Codification("Label", labels);

            int[] outputs = codebook.Translate("Label", labels);


            DecisionVariable[] features =
            {
                new DecisionVariable("sepal length", DecisionVariableKind.Continuous), 
                new DecisionVariable("sepal width", DecisionVariableKind.Continuous), 
                new DecisionVariable("petal length", DecisionVariableKind.Continuous), 
                new DecisionVariable("petal width", DecisionVariableKind.Continuous), 
            };


            DecisionTree tree = new DecisionTree(features, codebook.Columns[0].Symbols);

            C45Learning teacher = new C45Learning(tree);

            teacher.Join = 3;

            double error = teacher.Run(inputs, outputs);
            Assert.AreEqual(0.02, error, 1e-10);

            DecisionSet rules = tree.ToRules();

            double newError = ComputeError(rules, inputs, outputs);
            Assert.AreEqual(0.02, newError, 1e-10);

            string ruleText = rules.ToString(codebook,
                System.Globalization.CultureInfo.InvariantCulture);

            // TODO: implement this assertion properly, actually checking
            // the text contents once the feature is completely finished.
            Assert.AreEqual(600, ruleText.Length);
        }
开发者ID:accord-net,项目名称:framework,代码行数:47,代码来源:C45LearningTest.cs


示例16: GenerateTest2

        public void GenerateTest2()
        {
            Accord.Math.Tools.SetupGenerator(42);

            // Consider some phrases:
            //
            string[][] phrases =
            {
                new[] { "those", "are", "sample", "words", "from", "a", "dictionary" },
                new[] { "those", "are", "sample", "words" },
                new[] { "sample", "words", "are", "words" },
                new[] { "those", "words" },
                new[] { "those", "are", "words" },
                new[] { "words", "from", "a", "dictionary" },
                new[] { "those", "are", "words", "from", "a", "dictionary" }
            };

            // Let's begin by transforming them to sequence of
            // integer labels using a codification codebook:
            var codebook = new Codification("Words", phrases);

            // Now we can create the training data for the models:
            int[][] sequence = codebook.Translate("Words", phrases);

            // To create the models, we will specify a forward topology,
            // as the sequences have definite start and ending points.
            //
            var topology = new Forward(states: 4);
            int symbols = codebook["Words"].Symbols; // We have 7 different words

            // Create the hidden Markov model
            HiddenMarkovModel hmm = new HiddenMarkovModel(topology, symbols);

            // Create the learning algorithm
            BaumWelchLearning teacher = new BaumWelchLearning(hmm);

            // Teach the model about the phrases
            double error = teacher.Run(sequence);

            // Now, we can ask the model to generate new samples
            // from the word distributions it has just learned:
            //
            int[] sample = hmm.Generate(3);

            // And the result will be: "those", "are", "words".
            string[] result = codebook.Translate("Words", sample);

            Assert.AreEqual("those", result[0]);
            Assert.AreEqual("are", result[1]);
            Assert.AreEqual("words", result[2]);
        }
开发者ID:huanzl0503,项目名称:framework,代码行数:51,代码来源:HiddenMarkovModelTest.cs


示例17: TranslateTest3

        public void TranslateTest3()
        {
            string[] colNames = { "col1", "col2", "col3" };
            DataTable table = new DataTable("TranslateTest1 Table");
            table.Columns.Add(colNames);

            table.Rows.Add(1, 2, 3);
            table.Rows.Add(1, 3, 5);
            table.Rows.Add(1, 4, 7);
            table.Rows.Add(2, 4, 6);
            table.Rows.Add(2, 5, 8);
            table.Rows.Add(2, 6, 10);
            table.Rows.Add(3, 4, 5);
            table.Rows.Add(3, 5, 7);
            table.Rows.Add(3, 6, 9);

            // ok, so values 1,2,3 are in column 1
            // values 2,3,4,5,6 in column 2
            // values 3,5,6,7,8,9,10 in column 3
            var codeBook = new Codification(table);
            Matrix.IsEqual(new int[] { 0, 0, 0 }, codeBook.Translate(new[] { "1", "2", "3" }));
            Matrix.IsEqual(new int[] { 0, 1, 1 }, codeBook.Translate(new[] { "1", "3", "5" }));
            Matrix.IsEqual(new int[] { 0, 2, 2 }, codeBook.Translate(new[] { "1", "4", "7" }));
            Matrix.IsEqual(new int[] { 1, 2, 3 }, codeBook.Translate(new[] { "2", "4", "6" }));
            Matrix.IsEqual(new int[] { 1, 3, 4 }, codeBook.Translate(new[] { "2", "5", "8" }));
            Matrix.IsEqual(new int[] { 1, 4, 5 }, codeBook.Translate(new[] { "2", "6", "10" }));
            Matrix.IsEqual(new int[] { 2, 2, 1 }, codeBook.Translate(new[] { "3", "4", "5" }));
            Matrix.IsEqual(new int[] { 2, 3, 2 }, codeBook.Translate(new[] { "3", "5", "7" }));
            Matrix.IsEqual(new int[] { 2, 4, 6 }, codeBook.Translate(new[] { "3", "6", "9" }));

            Matrix.IsEqual(new int[] { 2 }, codeBook.Translate(new[] { "3" }));
            Matrix.IsEqual(new int[] { 2, 4 }, codeBook.Translate(new[] { "3", "6" }));
            Matrix.IsEqual(new int[] { 2, 4, 6 }, codeBook.Translate(new[] { "3", "6", "9" }));

            bool thrown = false;

            try { codeBook.Translate(new[] { "3", "6", "9", "10" }); }
            catch (Exception) { thrown = true; }

            Assert.IsTrue(thrown);
        }
开发者ID:CanerPatir,项目名称:framework,代码行数:41,代码来源:CodificationFilterTest.cs


示例18: IrisDatasetTest

        public void IrisDatasetTest()
        {
            #region doc_iris
            // In this example, we will process the famous Fisher's Iris dataset in 
            // which the task is to classify weather the features of an Iris flower 
            // belongs to an Iris setosa, an Iris versicolor, or an Iris virginica:
            //
            //  - https://en.wikipedia.org/wiki/Iris_flower_data_set
            //

            // First, let's load the dataset into an array of text that we can process
            string[][] text = Resources.iris_data.Split(new[] { '\n' }, StringSplitOptions.RemoveEmptyEntries).Apply(x => x.Split(','));

            // The first four columns contain the flower features
            double[][] inputs = text.GetColumns(0, 1, 2, 3).To<double[][]>();

            // The last column contains the expected flower type
            string[] labels = text.GetColumn(4);

            // Since the labels are represented as text, the first step is to convert
            // those text labels into integer class labels, so we can process them
            // more easily. For this, we will create a codebook to encode class labels:
            //
            var codebook = new Codification("Output", labels);

            // With the codebook, we can convert the labels:
            int[] outputs = codebook.Translate("Output", labels);

            // Let's declare the names of our input variables:
            DecisionVariable[] features =
            {
                new DecisionVariable("sepal length", DecisionVariableKind.Continuous), 
                new DecisionVariable("sepal width", DecisionVariableKind.Continuous), 
                new DecisionVariable("petal length", DecisionVariableKind.Continuous), 
                new DecisionVariable("petal width", DecisionVariableKind.Continuous), 
            };

            // Now, we can finally create our tree for the 3 classes:
            var tree = new DecisionTree(inputs: features, classes: 3);

            // And we can use the C4.5 for learning:
            var teacher = new C45Learning(tree);

            // And finally induce the tree:
            teacher.Learn(inputs, outputs);

            // To get the estimated class labels, we can use
            int[] predicted = tree.Decide(inputs);
            
            // And the classification error can be computed as 
            double error = new ZeroOneLoss(outputs) // 0.0266
            {
                Mean = true
            }.Loss(tree.Decide(inputs));

            // Moreover, we may decide to convert our tree to a set of rules:
            DecisionSet rules = tree.ToRules();

            // And using the codebook, we can inspect the tree reasoning:
            string ruleText = rules.ToString(codebook, "Output",
                System.Globalization.CultureInfo.InvariantCulture);

            // The output is:
            string expected = @"Iris-setosa =: (petal length <= 2.45)
Iris-versicolor =: (petal length > 2.45) && (petal width <= 1.75) && (sepal length <= 7.05) && (sepal width <= 2.85)
Iris-versicolor =: (petal length > 2.45) && (petal width <= 1.75) && (sepal length <= 7.05) && (sepal width > 2.85)
Iris-versicolor =: (petal length > 2.45) && (petal width > 1.75) && (sepal length < 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# Codon类代码示例发布时间:2022-05-24
下一篇:
C# CodeWriter类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap