• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# BiCgStab类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中BiCgStab的典型用法代码示例。如果您正苦于以下问题:C# BiCgStab类的具体用法?C# BiCgStab怎么用?C# BiCgStab使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



BiCgStab类属于命名空间,在下文中一共展示了BiCgStab类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

            var monitor = new Iterator(new IIterationStopCriterium[]
                                       {
                                           new IterationCountStopCriterium(1000),
                                           new ResidualStopCriterium(1e-10)
                                       });
            var solver = new BiCgStab(monitor);
            var matrixX = solver.Solve(matrixA, matrixB);

            // The solution X row dimension is equal to the column dimension of A
            Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

            // The solution X has the same number of columns as B
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA * matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7);
                }
            }
        }
开发者ID:nrolland,项目名称:mathnet-numerics,代码行数:30,代码来源:BiCgStabTest.cs


示例2: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            var matrixA = Matrix<double>.Build.Random(order, order, 1);
            var matrixB = Matrix<double>.Build.Random(order, order, 1);

            var monitor = new Iterator<double>(
                new IterationCountStopCriterium<double>(1000),
                new ResidualStopCriterium<double>(1e-10));

            var solver = new BiCgStab();
            var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);

            // The solution X row dimension is equal to the column dimension of A
            Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

            // The solution X has the same number of columns as B
            Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

            var matrixBReconstruct = matrixA*matrixX;

            // Check the reconstruction.
            for (var i = 0; i < matrixB.RowCount; i++)
            {
                for (var j = 0; j < matrixB.ColumnCount; j++)
                {
                    Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7);
                }
            }
        }
开发者ID:kityandhero,项目名称:mathnet-numerics,代码行数:29,代码来源:BiCgStabTest.cs


示例3: SolveLongMatrixThrowsArgumentException

        public void SolveLongMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(3, 2);
            Vector input = new DenseVector(3);

            var solver = new BiCgStab();
            Assert.Throws<ArgumentException>(() => solver.Solve(matrix, input));
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:8,代码来源:BiCgStabTest.cs


示例4: SolveLongMatrixThrowsArgumentException

        public void SolveLongMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(3, 2);
            var input = new DenseVector(3);

            var solver = new BiCgStab();
            Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
        }
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs


示例5: SolveWideMatrixThrowsArgumentException

        public void SolveWideMatrixThrowsArgumentException()
        {
            var matrix = new SparseMatrix(2, 3);
            var input = new DenseVector(2);

            var solver = new BiCgStab();
            Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
        }
开发者ID:jafffy,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs


示例6: UseSolver

        /// <summary>
        /// The main method that runs the BiCGStab iterative solver.
        /// </summary>
        public void UseSolver()
        {
            // Create a sparse matrix. For now the size will be 10 x 10 elements
            Matrix matrix = CreateMatrix(10);

            // Create the right hand side vector. The size is the same as the matrix
            // and all values will be 2.0.
            Vector rightHandSideVector = new DenseVector(10, 2.0);

            // Create a preconditioner. The possibilities are:
            // 1) No preconditioner - Simply do not provide the solver with a preconditioner.
            // 2) A simple diagonal preconditioner - Create an instance of the Diagonal class.
            // 3) A ILU preconditioner - Create an instance of the IncompleteLu class.
            // 4) A ILU preconditioner with pivoting and drop tolerances - Create an instance of the Ilutp class.

            // Here we'll use the simple diagonal preconditioner.
            // We need a link to the matrix so the pre-conditioner can do it's work.
            IPreConditioner preconditioner = new Diagonal();

            // Create a new iterator. This checks for convergence of the results of the
            // iterative matrix solver.
            // In this case we'll create the default iterator
            IIterator iterator = Iterator.CreateDefault();

            // Create the solver
            BiCgStab solver = new BiCgStab(preconditioner, iterator);

            // Now that all is set we can solve the matrix equation.
            Vector solutionVector = solver.Solve(matrix, rightHandSideVector);

            // Another way to get the values is by using the overloaded solve method
            // In this case the solution vector needs to be of the correct size.
            solver.Solve(matrix, rightHandSideVector, solutionVector);

            // Finally you can check the reason the solver finished the iterative process
            // by calling the SolutionStatus property on the iterator
            ICalculationStatus status = iterator.Status;
            if (status is CalculationCancelled)
                Console.WriteLine("The user cancelled the calculation.");

            if (status is CalculationIndetermined)
                Console.WriteLine("Oh oh, something went wrong. The iterative process was never started.");

            if (status is CalculationConverged)
                Console.WriteLine("Yippee, the iterative process converged.");

            if (status is CalculationDiverged)
                Console.WriteLine("I'm sorry the iterative process diverged.");

            if (status is CalculationFailure)
                Console.WriteLine("Oh dear, the iterative process failed.");

            if (status is CalculationStoppedWithoutConvergence)
                Console.WriteLine("Oh dear, the iterative process did not converge.");
        }
开发者ID:alexflorea,项目名称:CN,代码行数:58,代码来源:BicgStab.cs


示例7: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            // Due to datatype "float" it can happen that solution will not converge for specific random matrix
            // That's why we will do 3 tries and downgrade stop criterium each time
            for (var iteration = 6; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

                var monitor = new Iterator(new IIterationStopCriterium<float>[]
                                           {
                                               new IterationCountStopCriterium(MaximumIterations),
                                               new ResidualStopCriterium((float)Math.Pow(1.0/10.0, iteration))
                                           });
                var solver = new BiCgStab(monitor);
                var matrixX = solver.Solve(matrixA, matrixB);

                if (!(monitor.Status is CalculationConverged))
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                // The solution X row dimension is equal to the column dimension of A
                Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
                // The solution X has the same number of columns as B
                Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

                var matrixBReconstruct = matrixA * matrixX;

                // Check the reconstruction.
                for (var i = 0; i < matrixB.RowCount; i++)
                {
                    for (var j = 0; j < matrixB.ColumnCount; j++)
                    {
                        Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3));
                    }
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:44,代码来源:BiCgStabTest.cs


示例8: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix([Values(4)] int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);

                var monitor = new Iterator(new IIterationStopCriterium[]
                                           {
                                               new IterationCountStopCriterium(1000),
                                               new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration))
                                           });
                var solver = new BiCgStab(monitor);
                var matrixX = solver.Solve(matrixA, matrixB);

                if (!(monitor.Status is CalculationConverged))
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                // The solution X row dimension is equal to the column dimension of A
                Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

                // The solution X has the same number of columns as B
                Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

                var matrixBReconstruct = matrixA * matrixX;

                // Check the reconstruction.
                for (var i = 0; i < matrixB.RowCount; i++)
                {
                    for (var j = 0; j < matrixB.ColumnCount; j++)
                    {
                        Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3));
                        Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3));
                    }
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
开发者ID:jvangael,项目名称:mathnet-numerics,代码行数:44,代码来源:BiCgStabTest.cs


示例9: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = Matrix<Complex32>.Build.Random(order, order, 1);
                var matrixB = Matrix<Complex32>.Build.Random(order, order, 1);

                var monitor = new Iterator<Complex32>(
                    new IterationCountStopCriterion<Complex32>(1000),
                    new ResidualStopCriterion<Complex32>(Math.Pow(1.0/10.0, iteration)));

                var solver = new BiCgStab();
                var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);

                if (monitor.Status != IterationStatus.Converged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                // The solution X row dimension is equal to the column dimension of A
                Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

                // The solution X has the same number of columns as B
                Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

                var matrixBReconstruct = matrixA*matrixX;

                // Check the reconstruction.
                for (var i = 0; i < matrixB.RowCount; i++)
                {
                    for (var j = 0; j < matrixB.ColumnCount; j++)
                    {
                        Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0/10.0, iteration - 3));
                        Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0/10.0, iteration - 3));
                    }
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:43,代码来源:BiCgStabTest.cs


示例10: CanSolveForRandomMatrix

        public void CanSolveForRandomMatrix(int order)
        {
            // Due to datatype "float" it can happen that solution will not converge for specific random matrix
            // That's why we will do 3 tries and downgrade stop criterion each time
            for (var iteration = 6; iteration > 3; iteration--)
            {
                var matrixA = Matrix<float>.Build.Random(order, order, 1);
                var matrixB = Matrix<float>.Build.Random(order, order, 1);

                var monitor = new Iterator<float>(
                    new IterationCountStopCriterion<float>(MaximumIterations),
                    new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration)));

                var solver = new BiCgStab();
                var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);

                if (monitor.Status != IterationStatus.Converged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                // The solution X row dimension is equal to the column dimension of A
                Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);

                // The solution X has the same number of columns as B
                Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);

                var matrixBReconstruct = matrixA*matrixX;

                // Check the reconstruction.
                for (var i = 0; i < matrixB.RowCount; i++)
                {
                    for (var j = 0; j < matrixB.ColumnCount; j++)
                    {
                        Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0/10.0, iteration - 3));
                    }
                }

                return;
            }
        }
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:42,代码来源:BiCgStabTest.cs


示例11: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

            var monitor = new Iterator(new IIterationStopCriterium<double>[]
                                       {
                                           new IterationCountStopCriterium(1000),
                                           new ResidualStopCriterium(1e-10),
                                       });
            var solver = new BiCgStab(monitor);

            var resultx = solver.Solve(matrixA, vectorb);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var bReconstruct = matrixA * resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreApproximatelyEqual(vectorb[i], bReconstruct[i], 1e-7);
            }
        }
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:23,代码来源:BiCgStabTest.cs


示例12: SolvePoissonMatrixAndBackMultiply

        public void SolvePoissonMatrixAndBackMultiply()
        {
            // Create the matrix
            var matrix = new SparseMatrix(25);

            // Assemble the matrix. We assume we're solving the Poisson equation
            // on a rectangular 5 x 5 grid
            const int GridSize = 5;

            // The pattern is:
            // 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
            for (var i = 0; i < matrix.RowCount; i++)
            {
                // Insert the first set of -1's
                if (i > (GridSize - 1))
                {
                    matrix[i, i - GridSize] = -1;
                }

                // Insert the second set of -1's
                if (i > 0)
                {
                    matrix[i, i - 1] = -1;
                }

                // Insert the centerline values
                matrix[i, i] = 4;

                // Insert the first trailing set of -1's
                if (i < matrix.RowCount - 1)
                {
                    matrix[i, i + 1] = -1;
                }

                // Insert the second trailing set of -1's
                if (i < matrix.RowCount - GridSize)
                {
                    matrix[i, i + GridSize] = -1;
                }
            }

            // Create the y vector
            var y = DenseVector.Create(matrix.RowCount, i => Complex32.One);

            // Create an iteration monitor which will keep track of iterative convergence
            var monitor = new Iterator<Complex32>(
                new IterationCountStopCriterium<Complex32>(MaximumIterations),
                new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
                new DivergenceStopCriterium<Complex32>(),
                new FailureStopCriterium<Complex32>());

            var solver = new BiCgStab();

            // Solve equation Ax = y
            var x = matrix.SolveIterative(y, solver, monitor);

            // Now compare the results
            Assert.IsNotNull(x, "#02");
            Assert.AreEqual(y.Count, x.Count, "#03");

            // Back multiply the vector
            var z = matrix.Multiply(x);

            // Check that the solution converged
            Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");

            // Now compare the vectors
            for (var i = 0; i < y.Count; i++)
            {
                Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i);
            }
        }
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:72,代码来源:BiCgStabTest.cs


示例13: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
            var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

            var monitor = new Iterator<Complex>(
                new IterationCountStopCriterium<Complex>(1000),
                new ResidualStopCriterium(1e-10));

            var solver = new BiCgStab();

            var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
            Assert.AreEqual(matrixA.ColumnCount, resultx.Count);

            var matrixBReconstruct = matrixA*resultx;

            // Check the reconstruction.
            for (var i = 0; i < order; i++)
            {
                Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
                Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
            }
        }
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:23,代码来源:BiCgStabTest.cs


示例14: SolveWideMatrix

        public void SolveWideMatrix()
        {
            var matrix = new SparseMatrix(2, 3);
            Vector<Complex32> input = new DenseVector(2);

            var solver = new BiCgStab();
            solver.Solve(matrix, input);
        }
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs


示例15: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            // Due to datatype "float" it can happen that solution will not converge for specific random matrix
            // That's why we will do 3 tries and downgrade stop criterion each time
            for (var iteration = 6; iteration > 3; iteration--)
            {
                var matrixA = Matrix<float>.Build.Random(order, order, 1);
                var vectorb = Vector<float>.Build.Random(order, 1);

                var monitor = new Iterator<float>(
                    new IterationCountStopCriterion<float>(MaximumIterations),
                    new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration)));

                var solver = new BiCgStab();
                var resultx = matrixA.SolveIterative(vectorb, solver, monitor);

                if (monitor.Status != IterationStatus.Converged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA*resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float)Math.Pow(1.0/10.0, iteration - 3));
                }

                return;
            }
        }
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:34,代码来源:BiCgStabTest.cs


示例16: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            // Due to datatype "float" it can happen that solution will not converge for specific random matrix
            // That's why we will do 3 tries and downgrade stop criterium each time
            for (var iteration = 6; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

                var monitor = new Iterator(new IIterationStopCriterium[]
                    {
                        new IterationCountStopCriterium(MaximumIterations),
                        new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration)),
                    });
                var solver = new BiCgStab(monitor);
                var resultx = solver.Solve(matrixA, vectorb);

                if (!(monitor.Status is CalculationConverged))
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA*resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float) Math.Pow(1.0/10.0, iteration - 3));
                }

                return;
            }
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:35,代码来源:BiCgStabTest.cs


示例17: Run

        /// <summary>
        /// Run example
        /// </summary>
        /// <seealso cref="http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method">Biconjugate gradient stabilized method</seealso>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            var matrixA = DenseMatrix.OfArray(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } });
            Console.WriteLine(@"Matrix 'A' with coefficients");
            Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "b" with the constant terms.
            var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            Console.WriteLine(@"Vector 'b' with the constant terms");
            Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create stop criteriums to monitor an iterative calculation. There are next available stop criteriums:
            // - DivergenceStopCriterium: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterium: monitors residuals for NaN's;
            // - IterationCountStopCriterium: monitors the numbers of iteration steps;
            // - ResidualStopCriterium: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            var iterationCountStopCriterium = new IterationCountStopCriterium<double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            var residualStopCriterium = new ResidualStopCriterium<double>(1e-10);

            // Create monitor with defined stop criteriums
            var monitor = new Iterator<double>(iterationCountStopCriterium, residualStopCriterium);

            // Create Bi-Conjugate Gradient Stabilized solver
            var solver = new BiCgStab();

            // 1. Solve the matrix equation
            var resultX = matrixA.SolveIterative(vectorB, solver, monitor);
            Console.WriteLine(@"1. Solve the matrix equation");
            Console.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            Console.WriteLine(@"2. Solver status of the iterations");
            Console.WriteLine(monitor.Status);
            Console.WriteLine();

            // 3. Solution result vector of the matrix equation
            Console.WriteLine(@"3. Solution result vector of the matrix equation");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            var reconstructVecorB = matrixA * resultX;
            Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
开发者ID:kapilash,项目名称:mathnet-numerics,代码行数:75,代码来源:BiCgStabSolver.cs


示例18: buttonImageFusion_Click


//.........这里部分代码省略.........
                    // Point P's neighbours.
                    List<Point> Np = new List<Point>();

                    // Generate matrix A & B
                    for (var id = 0; id < contentNum; ++id)
                    {
                        // For each point, use equation No.7 & No.8 in the paper
                        // Which means one row in the matrix

                        // Matrix A

                        Np.Clear();
                        // Old Point P: position in the zoomSrcImg. New Point P: position in the tarImg
                        Point oldP = contentList[id];
                        Point newP = new Point(oldP.X + tarTopLeftX, oldP.Y + tarTopLeftY);
                        for (var i = 0; i < 4; ++i)
                        {
                            // New Point Q: P's neighbour in the WHOLE target image
                            Point newQ = new Point(newP.X + dx[i], newP.Y + dy[i]);
                            if (newQ.X >= 0 && newQ.X < resultImg.Height && newQ.Y >= 0 && newQ.Y < resultImg.Width)
                            {
                                // Point Q is inside the area Omiga
                                Np.Add(newQ);
                            }
                        }
                        matA.At(id, id, Np.Count);

                        foreach (Point newQ in Np)
                        {
                            // Check Point Id of Old Q
                            int qID = pointId[newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY];
                            // Old Q is inside Omiga
                            if (qID >= 0)
                            {
                                matA.At(id, qID, -1);
                            }
                        }

                        // Matrix B

                        double Bi = 0;
                        foreach (Point newQ in Np)
                        {
                            // Check Point Id of Old Q
                            int qID = pointId[newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY];
                            // Q is on the boundry
                            if (qID == -1)
                            {
                                Bi += resultImg.Data[newQ.X, newQ.Y, k];
                            }

                            Point oldQ = new Point(newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY);
                            Bi += zoomSrcImg.Data[oldP.X, oldP.Y, k] - zoomSrcImg.Data[oldQ.X, oldQ.Y, k];
                        }
                        matB.At(id, Bi);
                    }//);
                    Console.WriteLine("Generate Matrix Done. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);

                    // Solve the sparse linear equation using BiCgStab (Bi-Conjugate Gradient Stabilized)
                    var fp = LA.Double.Vector.Build.Dense(contentNum);
                    BiCgStab solver = new BiCgStab();

                    // Choose stop criterias
                    // Learn about stop criteria from: wo80, http://mathnetnumerics.codeplex.com/discussions/404689
                    var stopCriterias = new List<IIterationStopCriterion<double>>()
                    {
                        new ResidualStopCriterion<double>(1e-5),
                        new IterationCountStopCriterion<double>(1000),
                        new DivergenceStopCriterion<double>(),
                        new FailureStopCriterion<double>()
                    };

                    solver.Solve(matA, matB, fp, new Iterator<double>(stopCriterias), new DiagonalPreconditioner());
                    Console.WriteLine("Equation Solved. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);
                    // Console.WriteLine(fp);

                    // Set the color
                    for (var id = 0; id < contentNum; ++id)
                    {
                        int color = (int)fp.At(id);
                        if (color < 0)
                            color = 0;
                        if (color > 255)
                            color = 255;
                        //contentColor[k, id] = color;
                        resultImg.Data[contentList[id].X + tarTopLeftX, contentList[id].Y + tarTopLeftY, k] = (Byte)color;
                    }
                });

                //Paint
                //for (var id = 0; id < contentNum; ++id)
                //{
                //    resultImg[contentList[id].X + tarTopLeftX, contentList[id].Y + tarTopLeftY] = new Bgr(
                //        contentColor[0, id], contentColor[1, id], contentColor[2, id]);
                //}
                imgModifiedList[currImgIdFusion] = resultImg.Copy();
                pictureBoxImgFusion.Image = resultImg.ToBitmap();
                Console.WriteLine("Painting Finished. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);
            }
        }
开发者ID:CommanderLee,项目名称:DIPCourse,代码行数:101,代码来源:Form1.cs


示例19: CanSolveForRandomVector

        public void CanSolveForRandomVector([Values(4)] int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
                var vectorb = MatrixLoader.GenerateRandomDenseVector(order);

                var monitor = new Iterator(new IIterationStopCriterium[]
                                           {
                                               new IterationCountStopCriterium(1000), 
                                               new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)), 
                                           });
                var solver = new BiCgStab(monitor);

                var resultx = solver.Solve(matrixA, vectorb);

                if (!(monitor.Status is CalculationConverged))
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA * resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3));
                    Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3));
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
开发者ID:XiBeichuan,项目名称:hydronumerics,代码行数:37,代码来源:BiCgStabTest.cs


示例20: CanSolveForRandomVector

        public void CanSolveForRandomVector(int order)
        {
            for (var iteration = 5; iteration > 3; iteration--)
            {
                var matrixA = Matrix<Complex32>.Build.Random(order, order, 1);
                var vectorb = Vector<Complex32>.Build.Random(order, 1);

                var monitor = new Iterator<Complex32>(
                    new IterationCountStopCriterium<Complex32>(1000),
                    new ResidualStopCriterium<Complex32>(Math.Pow(1.0 / 10.0, iteration)));

                var solver = new BiCgStab();

                var resultx = matrixA.SolveIterative(vectorb, solver, monitor);

                if (monitor.Status != IterationStatus.Converged)
                {
                    // Solution was not found, try again downgrading convergence boundary
                    continue;
                }

                Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
                var matrixBReconstruct = matrixA*resultx;

                // Check the reconstruction.
                for (var i = 0; i < order; i++)
                {
                    Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
                    Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
                }

                return;
            }

            Assert.Fail("Solution was not found in 3 tries");
        }
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:36,代码来源:BiCgStabTest.cs



注:本文中的BiCgStab类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# BigDecimal类代码示例发布时间:2022-05-24
下一篇:
C# Bgr类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap