本文整理汇总了C#中BiCgStab类的典型用法代码示例。如果您正苦于以下问题:C# BiCgStab类的具体用法?C# BiCgStab怎么用?C# BiCgStab使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
BiCgStab类属于命名空间,在下文中一共展示了BiCgStab类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。
示例1: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator(new IIterationStopCriterium[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium(1e-10)
});
var solver = new BiCgStab(monitor);
var matrixX = solver.Solve(matrixA, matrixB);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA * matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7);
}
}
}
开发者ID:nrolland,项目名称:mathnet-numerics,代码行数:30,代码来源:BiCgStabTest.cs
示例2: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
var matrixA = Matrix<double>.Build.Random(order, order, 1);
var matrixB = Matrix<double>.Build.Random(order, order, 1);
var monitor = new Iterator<double>(
new IterationCountStopCriterium<double>(1000),
new ResidualStopCriterium<double>(1e-10));
var solver = new BiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], 1.0e-7);
}
}
}
开发者ID:kityandhero,项目名称:mathnet-numerics,代码行数:29,代码来源:BiCgStabTest.cs
示例3: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
Vector input = new DenseVector(3);
var solver = new BiCgStab();
Assert.Throws<ArgumentException>(() => solver.Solve(matrix, input));
}
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:8,代码来源:BiCgStabTest.cs
示例4: SolveLongMatrixThrowsArgumentException
public void SolveLongMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(3, 2);
var input = new DenseVector(3);
var solver = new BiCgStab();
Assert.Throws<ArgumentException>(() => matrix.SolveIterative(input, solver));
}
开发者ID:EricGT,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs
示例5: SolveWideMatrixThrowsArgumentException
public void SolveWideMatrixThrowsArgumentException()
{
var matrix = new SparseMatrix(2, 3);
var input = new DenseVector(2);
var solver = new BiCgStab();
Assert.That(() => matrix.SolveIterative(input, solver), Throws.ArgumentException);
}
开发者ID:jafffy,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs
示例6: UseSolver
/// <summary>
/// The main method that runs the BiCGStab iterative solver.
/// </summary>
public void UseSolver()
{
// Create a sparse matrix. For now the size will be 10 x 10 elements
Matrix matrix = CreateMatrix(10);
// Create the right hand side vector. The size is the same as the matrix
// and all values will be 2.0.
Vector rightHandSideVector = new DenseVector(10, 2.0);
// Create a preconditioner. The possibilities are:
// 1) No preconditioner - Simply do not provide the solver with a preconditioner.
// 2) A simple diagonal preconditioner - Create an instance of the Diagonal class.
// 3) A ILU preconditioner - Create an instance of the IncompleteLu class.
// 4) A ILU preconditioner with pivoting and drop tolerances - Create an instance of the Ilutp class.
// Here we'll use the simple diagonal preconditioner.
// We need a link to the matrix so the pre-conditioner can do it's work.
IPreConditioner preconditioner = new Diagonal();
// Create a new iterator. This checks for convergence of the results of the
// iterative matrix solver.
// In this case we'll create the default iterator
IIterator iterator = Iterator.CreateDefault();
// Create the solver
BiCgStab solver = new BiCgStab(preconditioner, iterator);
// Now that all is set we can solve the matrix equation.
Vector solutionVector = solver.Solve(matrix, rightHandSideVector);
// Another way to get the values is by using the overloaded solve method
// In this case the solution vector needs to be of the correct size.
solver.Solve(matrix, rightHandSideVector, solutionVector);
// Finally you can check the reason the solver finished the iterative process
// by calling the SolutionStatus property on the iterator
ICalculationStatus status = iterator.Status;
if (status is CalculationCancelled)
Console.WriteLine("The user cancelled the calculation.");
if (status is CalculationIndetermined)
Console.WriteLine("Oh oh, something went wrong. The iterative process was never started.");
if (status is CalculationConverged)
Console.WriteLine("Yippee, the iterative process converged.");
if (status is CalculationDiverged)
Console.WriteLine("I'm sorry the iterative process diverged.");
if (status is CalculationFailure)
Console.WriteLine("Oh dear, the iterative process failed.");
if (status is CalculationStoppedWithoutConvergence)
Console.WriteLine("Oh dear, the iterative process did not converge.");
}
开发者ID:alexflorea,项目名称:CN,代码行数:58,代码来源:BicgStab.cs
示例7: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 3 tries and downgrade stop criterium each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator(new IIterationStopCriterium<float>[]
{
new IterationCountStopCriterium(MaximumIterations),
new ResidualStopCriterium((float)Math.Pow(1.0/10.0, iteration))
});
var solver = new BiCgStab(monitor);
var matrixX = solver.Solve(matrixA, matrixB);
if (!(monitor.Status is CalculationConverged))
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA * matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreApproximatelyEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0 / 10.0, iteration - 3));
}
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:44,代码来源:BiCgStabTest.cs
示例8: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix([Values(4)] int order)
{
for (var iteration = 5; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var matrixB = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var monitor = new Iterator(new IIterationStopCriterium[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration))
});
var solver = new BiCgStab(monitor);
var matrixX = solver.Solve(matrixA, matrixB);
if (!(monitor.Status is CalculationConverged))
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA * matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3));
Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3));
}
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
开发者ID:jvangael,项目名称:mathnet-numerics,代码行数:44,代码来源:BiCgStabTest.cs
示例9: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
for (var iteration = 5; iteration > 3; iteration--)
{
var matrixA = Matrix<Complex32>.Build.Random(order, order, 1);
var matrixB = Matrix<Complex32>.Build.Random(order, order, 1);
var monitor = new Iterator<Complex32>(
new IterationCountStopCriterion<Complex32>(1000),
new ResidualStopCriterion<Complex32>(Math.Pow(1.0/10.0, iteration)));
var solver = new BiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j].Real, matrixBReconstruct[i, j].Real, (float)Math.Pow(1.0/10.0, iteration - 3));
Assert.AreEqual(matrixB[i, j].Imaginary, matrixBReconstruct[i, j].Imaginary, (float)Math.Pow(1.0/10.0, iteration - 3));
}
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:43,代码来源:BiCgStabTest.cs
示例10: CanSolveForRandomMatrix
public void CanSolveForRandomMatrix(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 3 tries and downgrade stop criterion each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = Matrix<float>.Build.Random(order, order, 1);
var matrixB = Matrix<float>.Build.Random(order, order, 1);
var monitor = new Iterator<float>(
new IterationCountStopCriterion<float>(MaximumIterations),
new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration)));
var solver = new BiCgStab();
var matrixX = matrixA.SolveIterative(matrixB, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(matrixA.ColumnCount, matrixX.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(matrixB.ColumnCount, matrixX.ColumnCount);
var matrixBReconstruct = matrixA*matrixX;
// Check the reconstruction.
for (var i = 0; i < matrixB.RowCount; i++)
{
for (var j = 0; j < matrixB.ColumnCount; j++)
{
Assert.AreEqual(matrixB[i, j], matrixBReconstruct[i, j], (float)Math.Pow(1.0/10.0, iteration - 3));
}
}
return;
}
}
开发者ID:skair39,项目名称:mathnet-numerics,代码行数:42,代码来源:BiCgStabTest.cs
示例11: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator(new IIterationStopCriterium<double>[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium(1e-10),
});
var solver = new BiCgStab(monitor);
var resultx = solver.Solve(matrixA, vectorb);
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var bReconstruct = matrixA * resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreApproximatelyEqual(vectorb[i], bReconstruct[i], 1e-7);
}
}
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:23,代码来源:BiCgStabTest.cs
示例12: SolvePoissonMatrixAndBackMultiply
public void SolvePoissonMatrixAndBackMultiply()
{
// Create the matrix
var matrix = new SparseMatrix(25);
// Assemble the matrix. We assume we're solving the Poisson equation
// on a rectangular 5 x 5 grid
const int GridSize = 5;
// The pattern is:
// 0 .... 0 -1 0 0 0 0 0 0 0 0 -1 4 -1 0 0 0 0 0 0 0 0 -1 0 0 ... 0
for (var i = 0; i < matrix.RowCount; i++)
{
// Insert the first set of -1's
if (i > (GridSize - 1))
{
matrix[i, i - GridSize] = -1;
}
// Insert the second set of -1's
if (i > 0)
{
matrix[i, i - 1] = -1;
}
// Insert the centerline values
matrix[i, i] = 4;
// Insert the first trailing set of -1's
if (i < matrix.RowCount - 1)
{
matrix[i, i + 1] = -1;
}
// Insert the second trailing set of -1's
if (i < matrix.RowCount - GridSize)
{
matrix[i, i + GridSize] = -1;
}
}
// Create the y vector
var y = DenseVector.Create(matrix.RowCount, i => Complex32.One);
// Create an iteration monitor which will keep track of iterative convergence
var monitor = new Iterator<Complex32>(
new IterationCountStopCriterium<Complex32>(MaximumIterations),
new ResidualStopCriterium<Complex32>(ConvergenceBoundary),
new DivergenceStopCriterium<Complex32>(),
new FailureStopCriterium<Complex32>());
var solver = new BiCgStab();
// Solve equation Ax = y
var x = matrix.SolveIterative(y, solver, monitor);
// Now compare the results
Assert.IsNotNull(x, "#02");
Assert.AreEqual(y.Count, x.Count, "#03");
// Back multiply the vector
var z = matrix.Multiply(x);
// Check that the solution converged
Assert.IsTrue(monitor.Status == IterationStatus.Converged, "#04");
// Now compare the vectors
for (var i = 0; i < y.Count; i++)
{
Assert.GreaterOrEqual(ConvergenceBoundary, (y[i] - z[i]).Magnitude, "#05-" + i);
}
}
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:72,代码来源:BiCgStabTest.cs
示例13: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator<Complex>(
new IterationCountStopCriterium<Complex>(1000),
new ResidualStopCriterium(1e-10));
var solver = new BiCgStab();
var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA*resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, 1e-5);
Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, 1e-5);
}
}
开发者ID:nakamoton,项目名称:mathnet-numerics,代码行数:23,代码来源:BiCgStabTest.cs
示例14: SolveWideMatrix
public void SolveWideMatrix()
{
var matrix = new SparseMatrix(2, 3);
Vector<Complex32> input = new DenseVector(2);
var solver = new BiCgStab();
solver.Solve(matrix, input);
}
开发者ID:xmap2008,项目名称:mathnet-numerics,代码行数:8,代码来源:BiCgStabTest.cs
示例15: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 3 tries and downgrade stop criterion each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = Matrix<float>.Build.Random(order, order, 1);
var vectorb = Vector<float>.Build.Random(order, 1);
var monitor = new Iterator<float>(
new IterationCountStopCriterion<float>(MaximumIterations),
new ResidualStopCriterion<float>(Math.Pow(1.0/10.0, iteration)));
var solver = new BiCgStab();
var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA*resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float)Math.Pow(1.0/10.0, iteration - 3));
}
return;
}
}
开发者ID:larzw,项目名称:mathnet-numerics,代码行数:34,代码来源:BiCgStabTest.cs
示例16: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
// Due to datatype "float" it can happen that solution will not converge for specific random matrix
// That's why we will do 3 tries and downgrade stop criterium each time
for (var iteration = 6; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator(new IIterationStopCriterium[]
{
new IterationCountStopCriterium(MaximumIterations),
new ResidualStopCriterium((float) Math.Pow(1.0/10.0, iteration)),
});
var solver = new BiCgStab(monitor);
var resultx = solver.Solve(matrixA, vectorb);
if (!(monitor.Status is CalculationConverged))
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA*resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i], matrixBReconstruct[i], (float) Math.Pow(1.0/10.0, iteration - 3));
}
return;
}
}
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:35,代码来源:BiCgStabTest.cs
示例17: Run
/// <summary>
/// Run example
/// </summary>
/// <seealso cref="http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method">Biconjugate gradient stabilized method</seealso>
public void Run()
{
// Format matrix output to console
var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
formatProvider.TextInfo.ListSeparator = " ";
// Solve next system of linear equations (Ax=b):
// 5*x + 2*y - 4*z = -7
// 3*x - 7*y + 6*z = 38
// 4*x + 1*y + 5*z = 43
// Create matrix "A" with coefficients
var matrixA = DenseMatrix.OfArray(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } });
Console.WriteLine(@"Matrix 'A' with coefficients");
Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Create vector "b" with the constant terms.
var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
Console.WriteLine(@"Vector 'b' with the constant terms");
Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// Create stop criteriums to monitor an iterative calculation. There are next available stop criteriums:
// - DivergenceStopCriterium: monitors an iterative calculation for signs of divergence;
// - FailureStopCriterium: monitors residuals for NaN's;
// - IterationCountStopCriterium: monitors the numbers of iteration steps;
// - ResidualStopCriterium: monitors residuals if calculation is considered converged;
// Stop calculation if 1000 iterations reached during calculation
var iterationCountStopCriterium = new IterationCountStopCriterium<double>(1000);
// Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
var residualStopCriterium = new ResidualStopCriterium<double>(1e-10);
// Create monitor with defined stop criteriums
var monitor = new Iterator<double>(iterationCountStopCriterium, residualStopCriterium);
// Create Bi-Conjugate Gradient Stabilized solver
var solver = new BiCgStab();
// 1. Solve the matrix equation
var resultX = matrixA.SolveIterative(vectorB, solver, monitor);
Console.WriteLine(@"1. Solve the matrix equation");
Console.WriteLine();
// 2. Check solver status of the iterations.
// Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
// Possible values are:
// - CalculationCancelled: calculation was cancelled by the user;
// - CalculationConverged: calculation has converged to the desired convergence levels;
// - CalculationDiverged: calculation diverged;
// - CalculationFailure: calculation has failed for some reason;
// - CalculationIndetermined: calculation is indetermined, not started or stopped;
// - CalculationRunning: calculation is running and no results are yet known;
// - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
Console.WriteLine(@"2. Solver status of the iterations");
Console.WriteLine(monitor.Status);
Console.WriteLine();
// 3. Solution result vector of the matrix equation
Console.WriteLine(@"3. Solution result vector of the matrix equation");
Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
Console.WriteLine();
// 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
var reconstructVecorB = matrixA * resultX;
Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
Console.WriteLine();
}
开发者ID:kapilash,项目名称:mathnet-numerics,代码行数:75,代码来源:BiCgStabSolver.cs
示例18: buttonImageFusion_Click
//.........这里部分代码省略.........
// Point P's neighbours.
List<Point> Np = new List<Point>();
// Generate matrix A & B
for (var id = 0; id < contentNum; ++id)
{
// For each point, use equation No.7 & No.8 in the paper
// Which means one row in the matrix
// Matrix A
Np.Clear();
// Old Point P: position in the zoomSrcImg. New Point P: position in the tarImg
Point oldP = contentList[id];
Point newP = new Point(oldP.X + tarTopLeftX, oldP.Y + tarTopLeftY);
for (var i = 0; i < 4; ++i)
{
// New Point Q: P's neighbour in the WHOLE target image
Point newQ = new Point(newP.X + dx[i], newP.Y + dy[i]);
if (newQ.X >= 0 && newQ.X < resultImg.Height && newQ.Y >= 0 && newQ.Y < resultImg.Width)
{
// Point Q is inside the area Omiga
Np.Add(newQ);
}
}
matA.At(id, id, Np.Count);
foreach (Point newQ in Np)
{
// Check Point Id of Old Q
int qID = pointId[newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY];
// Old Q is inside Omiga
if (qID >= 0)
{
matA.At(id, qID, -1);
}
}
// Matrix B
double Bi = 0;
foreach (Point newQ in Np)
{
// Check Point Id of Old Q
int qID = pointId[newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY];
// Q is on the boundry
if (qID == -1)
{
Bi += resultImg.Data[newQ.X, newQ.Y, k];
}
Point oldQ = new Point(newQ.X - tarTopLeftX, newQ.Y - tarTopLeftY);
Bi += zoomSrcImg.Data[oldP.X, oldP.Y, k] - zoomSrcImg.Data[oldQ.X, oldQ.Y, k];
}
matB.At(id, Bi);
}//);
Console.WriteLine("Generate Matrix Done. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);
// Solve the sparse linear equation using BiCgStab (Bi-Conjugate Gradient Stabilized)
var fp = LA.Double.Vector.Build.Dense(contentNum);
BiCgStab solver = new BiCgStab();
// Choose stop criterias
// Learn about stop criteria from: wo80, http://mathnetnumerics.codeplex.com/discussions/404689
var stopCriterias = new List<IIterationStopCriterion<double>>()
{
new ResidualStopCriterion<double>(1e-5),
new IterationCountStopCriterion<double>(1000),
new DivergenceStopCriterion<double>(),
new FailureStopCriterion<double>()
};
solver.Solve(matA, matB, fp, new Iterator<double>(stopCriterias), new DiagonalPreconditioner());
Console.WriteLine("Equation Solved. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);
// Console.WriteLine(fp);
// Set the color
for (var id = 0; id < contentNum; ++id)
{
int color = (int)fp.At(id);
if (color < 0)
color = 0;
if (color > 255)
color = 255;
//contentColor[k, id] = color;
resultImg.Data[contentList[id].X + tarTopLeftX, contentList[id].Y + tarTopLeftY, k] = (Byte)color;
}
});
//Paint
//for (var id = 0; id < contentNum; ++id)
//{
// resultImg[contentList[id].X + tarTopLeftX, contentList[id].Y + tarTopLeftY] = new Bgr(
// contentColor[0, id], contentColor[1, id], contentColor[2, id]);
//}
imgModifiedList[currImgIdFusion] = resultImg.Copy();
pictureBoxImgFusion.Image = resultImg.ToBitmap();
Console.WriteLine("Painting Finished. Time:" + DateTime.Now.Subtract(startTime).TotalSeconds);
}
}
开发者ID:CommanderLee,项目名称:DIPCourse,代码行数:101,代码来源:Form1.cs
示例19: CanSolveForRandomVector
public void CanSolveForRandomVector([Values(4)] int order)
{
for (var iteration = 5; iteration > 3; iteration--)
{
var matrixA = MatrixLoader.GenerateRandomDenseMatrix(order, order);
var vectorb = MatrixLoader.GenerateRandomDenseVector(order);
var monitor = new Iterator(new IIterationStopCriterium[]
{
new IterationCountStopCriterium(1000),
new ResidualStopCriterium((float)Math.Pow(1.0 / 10.0, iteration)),
});
var solver = new BiCgStab(monitor);
var resultx = solver.Solve(matrixA, vectorb);
if (!(monitor.Status is CalculationConverged))
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA * resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float)Math.Pow(1.0 / 10.0, iteration - 3));
Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float)Math.Pow(1.0 / 10.0, iteration - 3));
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
开发者ID:XiBeichuan,项目名称:hydronumerics,代码行数:37,代码来源:BiCgStabTest.cs
示例20: CanSolveForRandomVector
public void CanSolveForRandomVector(int order)
{
for (var iteration = 5; iteration > 3; iteration--)
{
var matrixA = Matrix<Complex32>.Build.Random(order, order, 1);
var vectorb = Vector<Complex32>.Build.Random(order, 1);
var monitor = new Iterator<Complex32>(
new IterationCountStopCriterium<Complex32>(1000),
new ResidualStopCriterium<Complex32>(Math.Pow(1.0 / 10.0, iteration)));
var solver = new BiCgStab();
var resultx = matrixA.SolveIterative(vectorb, solver, monitor);
if (monitor.Status != IterationStatus.Converged)
{
// Solution was not found, try again downgrading convergence boundary
continue;
}
Assert.AreEqual(matrixA.ColumnCount, resultx.Count);
var matrixBReconstruct = matrixA*resultx;
// Check the reconstruction.
for (var i = 0; i < order; i++)
{
Assert.AreEqual(vectorb[i].Real, matrixBReconstruct[i].Real, (float) Math.Pow(1.0/10.0, iteration - 3));
Assert.AreEqual(vectorb[i].Imaginary, matrixBReconstruct[i].Imaginary, (float) Math.Pow(1.0/10.0, iteration - 3));
}
return;
}
Assert.Fail("Solution was not found in 3 tries");
}
开发者ID:rmundy,项目名称:mathnet-numerics,代码行数:36,代码来源:BiCgStabTest.cs
注:本文中的BiCgStab类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论