• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

C# SafeHandle类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了C#中System.Runtime.InteropServices.SafeHandle的典型用法代码示例。如果您正苦于以下问题:C# SafeHandle类的具体用法?C# SafeHandle怎么用?C# SafeHandle使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



SafeHandle类属于System.Runtime.InteropServices命名空间,在下文中一共展示了SafeHandle类的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的C#代码示例。

示例1: MySafeFileHandle

//引入命名空间
using System;
using System.Runtime.InteropServices;
using System.IO;
using System.ComponentModel;
using System.Security.Permissions;
using System.Security;
using System.Threading;
using Microsoft.Win32.SafeHandles;
using System.Runtime.ConstrainedExecution;

namespace SafeHandleDemo
{
    [SecurityPermission(SecurityAction.InheritanceDemand, UnmanagedCode = true)]
    [SecurityPermission(SecurityAction.Demand, UnmanagedCode = true)]
    internal class MySafeFileHandle : SafeHandleZeroOrMinusOneIsInvalid
    {
        // Create a SafeHandle, informing the base class
        // that this SafeHandle instance "owns" the handle,
        // and therefore SafeHandle should call
        // our ReleaseHandle method when the SafeHandle
        // is no longer in use.
        private MySafeFileHandle()
            : base(true)
        {
        }
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        override protected bool ReleaseHandle()
        {
            // Here, we must obey all rules for constrained execution regions.
            return NativeMethods.CloseHandle(handle);
            // If ReleaseHandle failed, it can be reported via the
            // "releaseHandleFailed" managed debugging assistant (MDA).  This
            // MDA is disabled by default, but can be enabled in a debugger
            // or during testing to diagnose handle corruption problems.
            // We do not throw an exception because most code could not recover
            // from the problem.
        }
    }

    [SuppressUnmanagedCodeSecurity()]
    internal static class NativeMethods
    {
        // Win32 constants for accessing files.
        internal const int GENERIC_READ = unchecked((int)0x80000000);

        // Allocate a file object in the kernel, then return a handle to it.
        [DllImport("kernel32", SetLastError = true, CharSet = CharSet.Unicode)]
        internal extern static MySafeFileHandle CreateFile(String fileName,
           int dwDesiredAccess, System.IO.FileShare dwShareMode,
           IntPtr securityAttrs_MustBeZero, System.IO.FileMode dwCreationDisposition,
           int dwFlagsAndAttributes, IntPtr hTemplateFile_MustBeZero);

        // Use the file handle.
        [DllImport("kernel32", SetLastError = true)]
        internal extern static int ReadFile(MySafeFileHandle handle, byte[] bytes,
           int numBytesToRead, out int numBytesRead, IntPtr overlapped_MustBeZero);

        // Free the kernel's file object (close the file).
        [DllImport("kernel32", SetLastError = true)]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
        internal extern static bool CloseHandle(IntPtr handle);
    }

    // The MyFileReader class is a sample class that accesses an operating system
    // resource and implements IDisposable. This is useful to show the types of
    // transformation required to make your resource wrapping classes
    // more resilient. Note the Dispose and Finalize implementations.
    // Consider this a simulation of System.IO.FileStream.
    public class MyFileReader : IDisposable
    {
        // _handle is set to null to indicate disposal of this instance.
        private MySafeFileHandle _handle;

        public MyFileReader(String fileName)
        {
            // Security permission check.
            String fullPath = Path.GetFullPath(fileName);
            new FileIOPermission(FileIOPermissionAccess.Read, fullPath).Demand();

            // Open a file, and save its handle in _handle.
            // Note that the most optimized code turns into two processor
            // instructions: 1) a call, and 2) moving the return value into
            // the _handle field.  With SafeHandle, the CLR's platform invoke
            // marshaling layer will store the handle into the SafeHandle
            // object in an atomic fashion. There is still the problem
            // that the SafeHandle object may not be stored in _handle, but
            // the real operating system handle value has been safely stored
            // in a critical finalizable object, ensuring against leaking
            // the handle even if there is an asynchronous exception.

            MySafeFileHandle tmpHandle;
            tmpHandle = NativeMethods.CreateFile(fileName, NativeMethods.GENERIC_READ,
                FileShare.Read, IntPtr.Zero, FileMode.Open, 0, IntPtr.Zero);

            // An async exception here will cause us to run our finalizer with
            // a null _handle, but MySafeFileHandle's ReleaseHandle code will
            // be invoked to free the handle.

            // This call to Sleep, run from the fault injection code in Main,
            // will help trigger a race. But it will not cause a handle leak
            // because the handle is already stored in a SafeHandle instance.
            // Critical finalization then guarantees that freeing the handle,
            // even during an unexpected AppDomain unload.
            Thread.Sleep(500);
            _handle = tmpHandle;  // Makes _handle point to a critical finalizable object.

            // Determine if file is opened successfully.
            if (_handle.IsInvalid)
                throw new Win32Exception(Marshal.GetLastWin32Error(), fileName);
        }

        public void Dispose()  // Follow the Dispose pattern - public nonvirtual.
        {
            Dispose(true);
            GC.SuppressFinalize(this);
        }

        // No finalizer is needed. The finalizer on SafeHandle
        // will clean up the MySafeFileHandle instance,
        // if it hasn't already been disposed.
        // Howerver, there may be a need for a subclass to
        // introduce a finalizer, so Dispose is properly implemented here.
        [SecurityPermission(SecurityAction.Demand, UnmanagedCode = true)]
        protected virtual void Dispose(bool disposing)
        {
            // Note there are three interesting states here:
            // 1) CreateFile failed, _handle contains an invalid handle
            // 2) We called Dispose already, _handle is closed.
            // 3) _handle is null, due to an async exception before
            //    calling CreateFile. Note that the finalizer runs
            //    if the constructor fails.
            if (_handle != null && !_handle.IsInvalid)
            {
                // Free the handle
                _handle.Dispose();
            }
            // SafeHandle records the fact that we've called Dispose.
        }

        [SecurityPermission(SecurityAction.Demand, UnmanagedCode = true)]
        public byte[] ReadContents(int length)
        {
            if (_handle.IsInvalid)  // Is the handle disposed?
                throw new ObjectDisposedException("FileReader is closed");

            // This sample code will not work for all files.
            byte[] bytes = new byte[length];
            int numRead = 0;
            int r = NativeMethods.ReadFile(_handle, bytes, length, out numRead, IntPtr.Zero);
            // Since we removed MyFileReader's finalizer, we no longer need to
            // call GC.KeepAlive here.  Platform invoke will keep the SafeHandle
            // instance alive for the duration of the call.
            if (r == 0)
                throw new Win32Exception(Marshal.GetLastWin32Error());
            if (numRead < length)
            {
                byte[] newBytes = new byte[numRead];
                Array.Copy(bytes, newBytes, numRead);
                bytes = newBytes;
            }
            return bytes;
        }
    }

    static class Program
    {
        // Testing harness that injects faults.
        private static bool _printToConsole = false;
        private static bool _workerStarted = false;

        private static void Usage()
        {
            Console.WriteLine("Usage:");
            // Assumes that application is named HexViwer"
            Console.WriteLine("HexViewer <fileName> [-fault]");
            Console.WriteLine(" -fault Runs hex viewer repeatedly, injecting faults.");
        }

        private static void ViewInHex(Object fileName)
        {
            _workerStarted = true;
            byte[] bytes;
            using (MyFileReader reader = new MyFileReader((String)fileName))
            {
                bytes = reader.ReadContents(20);
            }  // Using block calls Dispose() for us here.

            if (_printToConsole)
            {
                // Print up to 20 bytes.
                int printNBytes = Math.Min(20, bytes.Length);
                Console.WriteLine("First {0} bytes of {1} in hex", printNBytes, fileName);
                for (int i = 0; i < printNBytes; i++)
                    Console.Write("{0:x} ", bytes[i]);
                Console.WriteLine();
            }
        }

        static void Main(string[] args)
        {
            if (args.Length == 0 || args.Length > 2 ||
                args[0] == "-?" || args[0] == "/?")
            {
                Usage();
                return;
            }

            String fileName = args[0];
            bool injectFaultMode = args.Length > 1;
            if (!injectFaultMode)
            {
                _printToConsole = true;
                ViewInHex(fileName);
            }
            else
            {
                Console.WriteLine("Injecting faults - watch handle count in perfmon (press Ctrl-C when done)");
                int numIterations = 0;
                while (true)
                {
                    _workerStarted = false;
                    Thread t = new Thread(new ParameterizedThreadStart(ViewInHex));
                    t.Start(fileName);
                    Thread.Sleep(1);
                    while (!_workerStarted)
                    {
                        Thread.Sleep(0);
                    }
                    t.Abort();  // Normal applications should not do this.
                    numIterations++;
                    if (numIterations % 10 == 0)
                        GC.Collect();
                    if (numIterations % 10000 == 0)
                        Console.WriteLine(numIterations);
                }
            }
        }
    }
}
开发者ID:.NET开发者,项目名称:System.Runtime.InteropServices,代码行数:240,代码来源:SafeHandle



注:本文中的System.Runtime.InteropServices.SafeHandle类示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
C# StructLayoutAttribute类代码示例发布时间:2022-05-24
下一篇:
C# RuntimeEnvironment类代码示例发布时间:2022-05-24
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap