• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.xlim函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pylab.xlim函数的典型用法代码示例。如果您正苦于以下问题:Python xlim函数的具体用法?Python xlim怎么用?Python xlim使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了xlim函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: plot_frontier

	def plot_frontier(self,frontier_only=False,plot_samples=True) :
		""" Plot the frontier"""
		frontier = self.frontier
		frontier_energy = self.frontier_energy
		feat1,feat2 = self.feats	
	
		pl.figure()
		if not frontier_only :	
			ll_list1,ll_list2 = zip(*self.all_seq_energy)
			pl.plot(ll_list1,ll_list2,'b*')
		if plot_samples :
			ll_list1,ll_list2 = zip(*self.sample_seq_energy)
			pl.plot(ll_list1,ll_list2,'g*')
					
		pl.plot(*zip(*sorted(frontier_energy)),color='magenta',\
			marker='*',	linestyle='dashed')
		ctr = dict(zip(set(frontier_energy),[0]*
			len(set(frontier_energy))))
		for i,e in enumerate(frontier_energy) : 
			ctr[e] += 1
			pl.text(e[0],e[1]+0.1*ctr[e],str(i),fontsize=10)
			pl.text(e[0]+0.4,e[1]+0.1*ctr[e],frontier[i],fontsize=9)	
		pl.xlabel('Energy:'+feat1)
		pl.ylabel('Energy:'+feat2)
		pl.title('Energy Plot')
		xmin,xmax = pl.xlim()
		ymin,ymax = pl.ylim()
		pl.xlim(xmin,xmax)
		pl.ylim(ymin,ymax)
		pic_dir = '../docs/tex/pics/'
		pl.savefig(pic_dir+self.name+'.pdf')
		pl.savefig(pic_dir+self.name+'.png')
开发者ID:smoitra87,项目名称:pareto-hmm,代码行数:32,代码来源:exp1.py


示例2: plot_sphere_x

def plot_sphere_x( s, fname ):
  """ put plot of ionization fractions from sphere `s` into fname """

  plt.figure()
  s.Edges.units = 'kpc'
  s.r_c.units = 'kpc'
  xx = s.r_c
  L = s.Edges[-1]

  plt.plot( xx, np.log10( s.xHe1 ),
            color='green', ls='-', label = r'$x_{\rm HeI}$' )
  plt.plot( xx, np.log10( s.xHe2 ),
            color='green', ls='--', label = r'$x_{\rm HeII}$' )
  plt.plot( xx, np.log10( s.xHe3 ),
            color='green', ls=':', label = r'$x_{\rm HeIII}$' )

  plt.plot( xx, np.log10( s.xH1 ),
            color='red', ls='-', label = r'$x_{\rm HI}$' )
  plt.plot( xx, np.log10( s.xH2 ),
            color='red', ls='--', label = r'$x_{\rm HII}$' )

  plt.xlim( -L/20, L+L/20 )
  plt.xlabel( 'r_c [kpc]' )

  plt.ylim( -4.5, 0.2 )
  plt.ylabel( 'log 10 ( x )' )

  plt.grid()
  plt.legend(loc='best', ncol=2)
  plt.tight_layout()
  plt.savefig( 'doc/img/x_' + fname )
开发者ID:galtay,项目名称:rabacus,代码行数:31,代码来源:make_doc_images_bgnd_sphere.py


示例3: geweke_plot

def geweke_plot(data, name, format='png', suffix='-diagnostic', path='./', fontmap = None, 
    verbose=1):
    # Generate Geweke (1992) diagnostic plots

    if fontmap is None: fontmap = {1:10, 2:8, 3:6, 4:5, 5:4}

    # Generate new scatter plot
    figure()
    x, y = transpose(data)
    scatter(x.tolist(), y.tolist())

    # Plot options
    xlabel('First iteration', fontsize='x-small')
    ylabel('Z-score for %s' % name, fontsize='x-small')

    # Plot lines at +/- 2 sd from zero
    pyplot((nmin(x), nmax(x)), (2, 2), '--')
    pyplot((nmin(x), nmax(x)), (-2, -2), '--')

    # Set plot bound
    ylim(min(-2.5, nmin(y)), max(2.5, nmax(y)))
    xlim(0, nmax(x))

    # Save to file
    if not os.path.exists(path):
        os.mkdir(path)
    if not path.endswith('/'):
        path += '/'
    savefig("%s%s%s.%s" % (path, name, suffix, format))
开发者ID:CosmologyTaskForce,项目名称:pymc,代码行数:29,代码来源:Matplot.py


示例4: rmsdSpreadSubplot

    def rmsdSpreadSubplot(multiplier=1.0, layout=(-1, -1)):
        rmsd_data   = dict( (e, rad_data[e]['innov'][quant])  for e in rad_data.iterkeys() )
        spread_data = dict( (e, rad_data[e]['spread'][quant]) for e in rad_data.iterkeys() )

        times = temp.getTimes()
        n_t = len(times)

        for exp, exp_name in exp_names.iteritems():
            pylab.plot(sawtooth(times, times)[:(n_t + 1)], rmsd_data[exp][:(n_t + 1)], color=colors[exp], linestyle='-')
            pylab.plot(times[(n_t / 2):], rmsd_data[exp][n_t::2], color=colors[exp], linestyle='-')
 
        for exp, exp_name in exp_names.iteritems():
            pylab.plot(sawtooth(times, times)[:(n_t + 1)], spread_data[exp][:(n_t + 1)], color=colors[exp], linestyle='--')
            pylab.plot(times[(n_t / 2):], spread_data[exp][n_t::2], color=colors[exp], linestyle='--')

        ylim = pylab.ylim()
        pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='-', label="RMS Innovation")
        pylab.plot(times, -1 * np.ones((len(times),)), color='#999999', linestyle='--', label="Spread")

        pylab.axhline(y=7, color='k', linestyle=':')
        pylab.axvline(x=14400, color='k', linestyle=':')

        pylab.ylabel("RMS Innovation/Spread (dBZ)", size='large')

        pylab.xlim(times[0], times[-1])
        pylab.ylim(ylim)

        pylab.legend(loc=4)

        pylab.xticks(times[::2], [ "" for t in times[::2] ])
        pylab.yticks(size='x-large')
        return
开发者ID:tsupinie,项目名称:research,代码行数:32,代码来源:plot_obs_space.py


示例5: plotB3reg

def plotB3reg():
    w=loadStanFit('revE2B3BHreg.fit')
    printCI(w,'mmu')
    printCI(w,'mr')
    for b in range(2):
        subplot(1,2,b+1)
        plt.title('')
        px=np.array(np.linspace(-0.5,0.5,101),ndmin=2)
        a0=np.array(w['mmu'][:,b],ndmin=2).T
        a1=np.array(w['mr'][:,b],ndmin=2).T
        y=np.concatenate([sap(a0+a1*px,97.5,axis=0),sap(a0+a1*px[:,::-1],2.5,axis=0)])
        x=np.squeeze(np.concatenate([px,px[:,::-1]],axis=1))
        plt.plot(px[0,:],np.median(a0)+np.median(a1)*px[0,:],'red')
        #plt.plot([-1,1],[0.5,0.5],'grey')
        ax=plt.gca()
        ax.set_aspect(1)
        ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
        y=np.concatenate([sap(a0+a1*px,75,axis=0),sap(a0+a1*px[:,::-1],25,axis=0)])
        ax.add_patch(plt.Polygon(np.array([x,y]).T,alpha=0.2,fill=True,fc='red',ec='w'))
        man=np.array([-0.4,-0.2,0,0.2,0.4])
        mus=[]
        for m in range(len(man)):
            mus.append(loadStanFit('revE2B3BH%d.fit'%m)['mmu'][:,b])
        mus=np.array(mus).T
        errorbar(mus,x=man)
        ax.set_xticks(man)
        plt.xlim([-0.5,0.5])
        plt.ylim([-0.4,0.8])
        #plt.xlabel('Manipulated Displacement')
        if b==0:
            plt.ylabel('Perceived Displacemet')
            plt.gca().set_yticklabels([])
        subplot_annotate()
    plt.text(-1.1,-0.6,'Pivot Displacement',fontsize=8);
开发者ID:simkovic,项目名称:wolfpackRevisited,代码行数:34,代码来源:Evaluation.py


示例6: plotFeatureImportance

def plotFeatureImportance(featureImportance, title, originalImage=None, lim=0.06, colorate=None):
    """
    originalImage : the index of the original image. If None, ignore
    """
    indices = featureImportanceIndices(len(featureImportance), originalImage)
    pl.figure()
    pl.title(title)
    if colorate is not None:
        nbType = len(colorate)
        X = [[] for i in range(nbType)]
        Y = [[] for i in range(nbType)]
        for j, f in enumerate(featureImportance):
            X[j % nbType].append(j)
            Y[j % nbType].append(f)
        for i in range(nbType):
            pl.bar(X[i], Y[i], align="center", label=colorate[i][0], color=colorate[i][1])
        pl.legend()
    else:
        pl.bar(range(len(featureImportance)), featureImportance, align="center")
    #pl.xticks(pl.arange(len(indices)), indices, rotation=-90)
    pl.xlim([-1, len(indices)])
    pl.ylabel("Feature importance")
    pl.xlabel("Filter indices")
    pl.ylim(0, lim)
    pl.show()
开发者ID:jm-begon,项目名称:masterthesis,代码行数:25,代码来源:util.py


示例7: InitializePlot

    def InitializePlot(self, goal_config):
        self.fig = pl.figure()
        lower_limits, upper_limits = self.boundary_limits
        pl.xlim([lower_limits[0], upper_limits[0]])
        pl.ylim([lower_limits[1], upper_limits[1]])
        pl.plot(goal_config[0], goal_config[1], 'gx')

        # Show all obstacles in environment
        for b in self.robot.GetEnv().GetBodies():
            if b.GetName() == self.robot.GetName():
                continue
            bb = b.ComputeAABB()
            pl.plot([bb.pos()[0] - bb.extents()[0],
                     bb.pos()[0] + bb.extents()[0],
                     bb.pos()[0] + bb.extents()[0],
                     bb.pos()[0] - bb.extents()[0],
                     bb.pos()[0] - bb.extents()[0]],
                    [bb.pos()[1] - bb.extents()[1],
                     bb.pos()[1] - bb.extents()[1],
                     bb.pos()[1] + bb.extents()[1],
                     bb.pos()[1] + bb.extents()[1],
                     bb.pos()[1] - bb.extents()[1]], 'r')
                    
                     
        pl.ion()
        pl.show()
开发者ID:ardyadipta,项目名称:robot_autonomy,代码行数:26,代码来源:SimpleEnvironment.py


示例8: updatePlot

    def updatePlot(self):
        """ Updates the antenna config plot"""
                
        self.sp_ax.clear()
        self.sp_fig.clear()
        
        row = self.slider.value()
        self.spinner.setValue(row)
        
        data_x    = self.fits_data[row,0,0,0,:]
        data_y    = self.fits_data[row,0,0,1,:]
        flagged_x = self.fits_flagged[row,0,0,0,:]
        flagged_y = self.fits_flagged[row,0,0,1,:]        
        freqs     = self.fits_freqs
        tsys      = self.fits_tsys[row,:]
        
        #plt.plot(freqs, data_x)
        plt.plot(freqs[flagged_x == 0], data_x[flagged_x == 0], color='#333333', label='Pol A [%2.1f Jy]'%tsys[0])  
        plt.plot(freqs[flagged_y == 0], data_y[flagged_y == 0], color='#CC0000', label='Pol B [%2.1f Jy]'%tsys[1])         
        
        
        plt.ylabel('%s [%s]'%(self.fits_data_name, self.fits_data_unit))
        plt.xlabel('%s [%s]'%(self.fits_freq_type, self.fits_freq_unit))
        plt.title('Beam %s: %s %s'%(self.fits_beam[row], self.fits_date[row], self.fits_time[row]))
        plt.xlim(np.min(freqs[flagged_x == 0]), np.max(freqs[flagged_x == 0]))
        plt.legend()
        plt.show()

        
        self.sp_fig.canvas.draw()
              
        self.lab_info.setText(self.fits_filename)       
开发者ID:telegraphic,项目名称:hipsr_viewer,代码行数:32,代码来源:hipsr-sdview_bak.py


示例9: draw

    def draw(self):

        print self.edgeno

        pos = 0
        dy = 8
        edgeno = self.edgeno
        edge = self.edges[edgeno]
        edgeprev = self.edges[edgeno-1]
        p = np.round(edge["top"](1024))
        top = min(p+2*dy, 2048)
        bot = min(p-2*dy, 2048)
        self.cutout = self.flat[1][bot:top,:].copy()

        pl.figure(1)
        pl.clf()
        start = 0
        dy = 512
        for i in xrange(2048/dy):
            pl.subplot(2048/dy,1,i+1)
            pl.xlim(start, start+dy)

            if i == 0: pl.title("edge %i] %s|%s" % (edgeno,
                edgeprev["Target_Name"], edge["Target_Name"]))


            pl.subplots_adjust(left=.07,right=.99,bottom=.05,top=.95)

            pl.imshow(self.flat[1][bot:top,start:start+dy], extent=(start,
                start+dy, bot, top), cmap='Greys', vmin=2000, vmax=6000)

            pix = np.arange(start, start+dy)
            pl.plot(pix, edge["top"](pix), 'r', linewidth=1)
            pl.plot(pix, edgeprev["bottom"](pix), 'r', linewidth=1)
            pl.plot(edge["xposs_top"], edge["yposs_top"], 'o')
            pl.plot(edgeprev["xposs_bot"], edgeprev["yposs_bot"], 'o')


            hpp = edge["hpps"]
            pl.axvline(hpp[0],ymax=.5, color='blue', linewidth=5)
            pl.axvline(hpp[1],ymax=.5, color='red', linewidth=5)

            hpp = edgeprev["hpps"]
            pl.axvline(hpp[0],ymin=.5,color='blue', linewidth=5)
            pl.axvline(hpp[1],ymin=.5,color='red', linewidth=5)


            if False:
                L = top-bot
                Lx = len(edge["xposs"])
                for i in xrange(Lx):
                    xp = edge["xposs"][i]
                    frac1 = (edge["top"](xp)-bot-1)/L
                    pl.axvline(xp,ymin=frac1)

                for xp in edgeprev["xposs"]: 
                    frac2 = (edgeprev["bottom"](xp)-bot)/L
                    pl.axvline(xp,ymax=frac2)

            start += dy
开发者ID:themiyan,项目名称:MosfireDRP_Themiyan,代码行数:60,代码来源:Flats.py


示例10: plot_file_color

def plot_file_color(base, thin=True, start=0, size=14, save=False):
    conf, track, pegs = load(base)

    fig = pl.figure(figsize=(size,size*conf['top']/conf['wall']))

    track = track[start:]
    x = track[:,0];   y = track[:,1]
    t = np.linspace(0,1,x.shape[0])
    points = np.array([x,y]).transpose().reshape(-1,1,2)
    segs = np.concatenate([points[:-1],points[1:]],axis=1)
    lc = LineCollection(segs, linewidths=0.25, cmap=pl.cm.coolwarm)
    lc.set_array(t)
    pl.gca().add_collection(lc)

    #pl.scatter(x, y, c=np.arange(len(x)),linestyle='-',cmap=pl.cm.coolwarm)
    #pl.plot(track[-1000000:,0], track[-1000000:,1], '-', linewidth=0.0125, alpha=0.8)
    for peg in pegs:
        pl.gca().add_artist(pl.Circle(peg, conf['radius'], color='k', alpha=0.3))
    pl.xlim(0, conf['wall'])
    pl.ylim(0, conf['top'])
    pl.xticks([])
    pl.yticks([])
    pl.tight_layout()
    pl.show()
    if save:
        pl.savefig(base+".png", dpi=200)
开发者ID:mattbierbaum,项目名称:plinko,代码行数:26,代码来源:plotting.py


示例11: tracks_movie

def tracks_movie(base, skip=1, frames=500, size=10):
    """
    A movie of each particle as a point
    """
    conf, track, pegs = load(base)

    fig = pl.figure(figsize=(size,size*conf['top']/conf['wall']))
    plot = None

    for t in xrange(1,max(frames, track.shape[1]/skip)):
        tmp = track[:,t*skip,:]
        if not ((tmp[:,0] > 0) & (tmp[:,1] > 0) & (tmp[:,0] < conf['wall']) & (tmp[:,1] < conf['top'])).any():
            continue

        if plot is None:
            plot = pl.plot(tmp[:,0], tmp[:,1], 'k,', alpha=1.0, ms=0.1)[0]
            pl.xticks([])
            pl.yticks([])
            pl.xlim(0,conf['wall'])
            pl.ylim(0,conf['top'])
            pl.tight_layout()
        else:
            plot.set_xdata(tmp[:,0])
            plot.set_ydata(tmp[:,1])
        pl.draw()
        pl.savefig(base+'-movie-%05d.png' % (t-1))
开发者ID:mattbierbaum,项目名称:plinko,代码行数:26,代码来源:plotting.py


示例12: plotFreqVsGoodTuring

def plotFreqVsGoodTuring(counts, confidence=1.96, loglog=False):
    """
    Draws a scatterplot of the empirical frequencies of the counted species
    versus their Simple Good Turing smoothed values, in rank order. Depends on
    pylab and matplotlib.
    """
    import pylab
    from matplotlib import rc

    tot = float(sum(counts.values()))
    freqs = dict([(species, cnt/tot) for species, cnt in counts.iteritems()])
    sgt, p0 = simpleGoodTuringProbs(counts, confidence)

    if loglog:
        plotFunc = pylab.loglog
    else:
        plotFunc = pylab.plot
    plotFunc(sorted(freqs.values(), reverse=True), 'kD', mfc='white',
            label="Observed")
    plotFunc(sorted(sgt.values(), reverse=True), 'k+', 
            label="Simple Good-Turing Estimate")
    pylab.xlim(-0.5, len(freqs)+0.5)
    pylab.xlabel("Rank")
    pylab.ylabel("Frequency")
    pylab.legend(numpoints=1)
开发者ID:panand,项目名称:Ling248_2016,代码行数:25,代码来源:sgt.py


示例13: plotVOI

    def plotVOI(self,n,points,L,data,kern,temp1,temp2,a,m,path):
        z=np.zeros(m)
        
        for i in xrange(m):
            z[i]=self.VOIfunc(n,points[i,:],L,data,kern,temp1,temp2,False,a,False)
            
        fig=plt.figure()
        fig.set_size_inches(21, 21)
        plt.plot(points,z,'-')
        plt.xlabel('x',fontsize=60)
        Xp=data.Xhist[0:self._numberTraining,0]
        pylab.plot(Xp,np.zeros(len(Xp))+0.00009,'o',color='red',markersize=40,label="Training point")
        if n>0:
            Xp=data.Xhist[self._numberTraining:self._numberTraining+n,0]
            pylab.plot(Xp,np.zeros(len(Xp))+0.00009,'o',color='firebrick',markersize=40,label="Chosen point")
        ax = plt.subplot(111)
        box = ax.get_position()
        ax.set_position([box.x0, box.y0+box.height*0.1, box.width, box.height*0.9])

        # Put a legend to the right of the current axis
        ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.09),ncol=2,fontsize=50)
        
        pylab.xlim([-0.5,0.5])
      #  plt.legend()
        plt.savefig(os.path.join(path,'%d'%n+"VOI_n.pdf"))
        plt.close(fig)
开发者ID:toscanosaul,项目名称:SBO,代码行数:26,代码来源:VOI.py


示例14: plot_prob_effector

def plot_prob_effector(sens, fpr, xmax=1, baserate=0.1):
    """Plots a line graph of P(effector|positive test) against
    the baserate of effectors in the input set to the classifier.
        
    The baserate argument draws an annotation arrow
    indicating P(pos|+ve) at that baserate
    """
    assert 0.1 <= xmax <= 1, "Max x axis value must be in range [0,1]"
    assert 0.01 <= baserate <= 1, "Baserate annotation must be in range [0,1]"
    baserates = pylab.arange(0, 1.05, xmax * 0.005)  
    probs = [p_correct_given_pos(sens, fpr, b) for b in baserates]
    pylab.plot(baserates, probs, 'r')
    pylab.title("P(eff|pos) vs baserate; sens: %.2f, fpr: %.2f" % (sens, fpr))
    pylab.ylabel("P(effector|positive)")
    pylab.xlabel("effector baserate")
    pylab.xlim(0, xmax)
    pylab.ylim(0, 1)
    # Add annotation arrow
    xpos, ypos = (baserate, p_correct_given_pos(sens, fpr, baserate))
    if baserate < xmax:
        if xpos > 0.7 * xmax:
            xtextpos = 0.05 * xmax
        else:
            xtextpos = xpos + (xmax-xpos)/5.
        if ypos > 0.5:
            ytextpos = ypos - 0.05
        else:
            ytextpos = ypos + 0.05
        pylab.annotate('baserate: %.2f, P(pos|+ve): %.3f' % (xpos, ypos), 
                       xy=(xpos, ypos), 
                       xytext=(xtextpos, ytextpos),
                       arrowprops=dict(facecolor='black', shrink=0.05))
    else:
        pylab.text(0.05 * xmax, 0.95, 'baserate: %.2f, P(pos|+ve): %.3f' % \
                   (xpos, ypos))
开发者ID:widdowquinn,项目名称:Teaching-EMBL-Plant-Path-Genomics,代码行数:35,代码来源:ex03.py


示例15: drunkTest

def drunkTest(numTrials = 1000):
    #stepsTaken = [10, 100, 1000, 10000]
    stepsTaken = 1000
    
    for dClass in (UsualDrunk, ColdDrunk, EDrunk, PhotoDrunk, DDrunk):
        #initialize field
        field = Field()
        origin = Location(0, 0)
        
        # initialize drunk 
        drunk = dClass('Drunk')
        field.addDrunk(drunk, origin)

        x_pos, y_pos = [], [] # initialize to empty
        x, y = 0.0, 0.0
        
        for trial in range(numTrials): # trials 
            x, y = walkVector(field, drunk, stepsTaken)
            x_pos.append(x)
            y_pos.append(y)
            
        #pylab.plot(x_pos, y_pos, 'ro', s=5,
        #           label = dClass.__name__)
        pylab.scatter(x_pos, y_pos,s=5, color='red')
        pylab.title(str(dClass))
        pylab.xlabel('x')
        pylab.grid()
        pylab.xlim(-100, 100)
        pylab.ylim(-100,100)
        pylab.ylabel('y')
        pylab.show()
开发者ID:lizhicao1986,项目名称:mit6-00-2,代码行数:31,代码来源:quizProb4.py


示例16: InitializePlot

    def InitializePlot(self, goal_config):  # default
        self.fig = pl.figure()
        pl.xlim([self.lower_limits[0], self.upper_limits[0]])
        pl.ylim([self.lower_limits[1], self.upper_limits[1]])
        pl.plot(goal_config[0], goal_config[1], "gx")

        # Show all obstacles in environment
        for b in self.robot.GetEnv().GetBodies():
            if b.GetName() == self.robot.GetName():
                continue
            bb = b.ComputeAABB()
            pl.plot(
                [
                    bb.pos()[0] - bb.extents()[0],
                    bb.pos()[0] + bb.extents()[0],
                    bb.pos()[0] + bb.extents()[0],
                    bb.pos()[0] - bb.extents()[0],
                    bb.pos()[0] - bb.extents()[0],
                ],
                [
                    bb.pos()[1] - bb.extents()[1],
                    bb.pos()[1] - bb.extents()[1],
                    bb.pos()[1] + bb.extents()[1],
                    bb.pos()[1] + bb.extents()[1],
                    bb.pos()[1] - bb.extents()[1],
                ],
                "r",
            )

        pl.ion()
        pl.show()
开发者ID:ChunyangSun,项目名称:PlanningWithCost,代码行数:31,代码来源:SimpleEnvironment.py


示例17: run

def run(steps=10):
	for i in range(steps):
	    Q.time_step()
	    #Q.plot_links()
	    py.xlim((0,config['XSIZE']))
	    py.ylim((0,config['YSIZE']))
	    py.draw()
开发者ID:OpenSourceCancer,项目名称:cancersim,代码行数:7,代码来源:quick_test_sim.py


示例18: plot_spectrum

def plot_spectrum():
    #get the data...    
    a_0=struct.unpack('>1024l',fpga.read('even',1024*4,0))
    a_1=struct.unpack('>1024l',fpga.read('odd',1024*4,0))

    interleave_a=[]

    for i in range(1024):
        interleave_a.append(a_0[i])
        interleave_a.append(a_1[i])

    pylab.figure(num=1,figsize=(10,10))
    pylab.ioff()
    pylab.plot(interleave_a)
    #pylab.semilogy(interleave_a)
    pylab.title('Integration number %i.'%prev_integration)
    pylab.ylabel('Power (arbitrary units)')
    pylab.grid()
    pylab.xlabel('Channel')
    pylab.xlim(0,2048)
    pylab.ioff()

    pylab.hold(False)
    pylab.show()
    pylab.draw()
开发者ID:Vereese,项目名称:tutorials_devel,代码行数:25,代码来源:spectrometer.py


示例19: correlation_matrix

def correlation_matrix(data, size=8.0):
    """ Calculates and shows the correlation matrix of the pandas data frame
        'data' as a heat map.
        Only the correlations between numerical variables are calculated!
    """
    # calculate the correlation matrix
    corr = data.corr()
    #print corr
    lc = len(corr.columns)
    # set some settings for plottin'
    pl.pcolor(corr, vmin = -1, vmax = 1, edgecolor = "black")
    pl.colorbar()
    pl.xlim([-5,lc])
    pl.ylim([0,lc+5])
    pl.axis('off')
    # anotate the rows and columns with their corresponding variables
    ax = pl.gca()            
    for i in range(0,lc):
        ax.annotate(corr.columns[i], (-0.5, i+0.5), \
            size='large', horizontalalignment='right', verticalalignment='center')
        ax.annotate(corr.columns[i], (i+0.5, lc+0.5),\
            size='large', rotation='vertical',\
            horizontalalignment='center', verticalalignment='right')
    # change the size of the image
    fig = pl.figure(num=1)    
    fig.set_size_inches(size+(size/4), size)     
    
    pl.show()
开发者ID:ThomasvanHeyningen,项目名称:BestMLGroup2,代码行数:28,代码来源:ExploringData.py


示例20: plot_importances

def plot_importances(imp, clfName, obj):
    imp=np.vstack(imp)
    print imp
    mean_importance = np.mean(imp,axis=0)
    std_importance = np.std(imp,axis=0)
    indices = np.argsort(mean_importance)[::-1]
    print indices
    print featureNames
    featureList = []
    # num_features = len(featureNames)
    print("Feature ranking:")
    for f in range(num_features):
        featureList.append(featureNames[indices[f]])
        print("%d. feature %s (%.2f)" % (f, featureNames[indices[f]], mean_importance[indices[f]]))
    fig = pl.figure(figsize=(8,6),dpi=150)
    pl.title("Feature importances",fontsize=30)
    pl.bar(range(num_features), mean_importance[indices],
            yerr = std_importance[indices], color=paired[0], align="center",
            edgecolor=paired[0],ecolor=paired[1])
    pl.xticks(range(num_features), featureList, size=15,rotation=90)
    pl.ylabel("Importance",size=30)
    pl.yticks(size=20)
    pl.xlim([-1, num_features])
    # fix_axes()
    pl.tight_layout()
    save_path = 'plots/'+obj+'/'+clfName+'_feature_importances.pdf'
    fig.savefig(save_path)
开发者ID:rexshihaoren,项目名称:MSPrediction-Python,代码行数:27,代码来源:EnjoyLifePred.py



注:本文中的pylab.xlim函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.xscale函数代码示例发布时间:2022-05-25
下一篇:
Python pylab.xlabel函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap