本文整理汇总了Python中pylab.std函数的典型用法代码示例。如果您正苦于以下问题:Python std函数的具体用法?Python std怎么用?Python std使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了std函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: scatter_stats
def scatter_stats(db, s1, s2, f1=None, f2=None, **kwargs):
if f1 == None:
f1 = lambda x: x # constant function
if f2 == None:
f2 = f1
x = []
xerr = []
y = []
yerr = []
for k in db:
x_k = [f1(x_ki) for x_ki in db[k].__getattribute__(s1).gettrace()]
y_k = [f2(y_ki) for y_ki in db[k].__getattribute__(s2).gettrace()]
x.append(pl.mean(x_k))
xerr.append(pl.std(x_k))
y.append(pl.mean(y_k))
yerr.append(pl.std(y_k))
pl.text(x[-1], y[-1], " %s" % k, fontsize=8, alpha=0.4, zorder=-1)
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel(s1)
pl.ylabel(s2)
开发者ID:aflaxman,项目名称:bednet_stock_and_flow,代码行数:30,代码来源:explore.py
示例2: data_to_ch
def data_to_ch(data):
ch = {}
for ch_ind in range(1, 97):
ch[ch_ind] = {}
ch[ch_ind]["bl"] = data[ch_ind]["blanks"]
ch[ch_ind]["bl_mu"] = pl.mean(ch[ch_ind]["bl"])
ch[ch_ind]["bl_sem"] = pl.std(ch[ch_ind]["bl"]) / pl.sqrt(len(ch[ch_ind]["bl"]))
for ind in sorted(data[ch_ind].keys()):
if ind != "blanks":
k = ind[0]
if k not in ch[ch_ind]:
ch[ch_ind][k] = {}
ch[ch_ind][k]["fr"] = []
ch[ch_ind][k]["fr_mu"] = []
ch[ch_ind][k]["fr_sem"] = []
ch[ch_ind][k]["pos_y"] = []
ch[ch_ind][k]["dprime"] = []
ch[ch_ind][k]["fr"].append(data[ch_ind][ind]["on"])
ch[ch_ind][k]["fr_mu"].append(pl.mean(data[ch_ind][ind]["on"]))
ch[ch_ind][k]["fr_sem"].append(pl.std(data[ch_ind][ind]["on"]) / pl.sqrt(len(data[1][ind]["on"])))
ch[ch_ind][k]["pos_y"].append(ind[2])
# print ch[ch_ind][k]['pos_y']
# print pl.std(data[ch_ind][ind]['on'])
ch[ch_ind][k]["dprime"].append(
(pl.mean(data[ch_ind][ind]["on"]) - ch[ch_ind]["bl_mu"])
/ ((pl.std(ch[ch_ind]["bl"]) + pl.std(data[ch_ind][ind]["on"])) / 2)
)
# print ch[ch_ind]['OSImage_5']['pos_y']
return ch
开发者ID:hahong,项目名称:array_proj,代码行数:29,代码来源:plot_RSVP_POS.py
示例3: compare_models
def compare_models(db, stoch="itn coverage", stat_func=None, plot_type="", **kwargs):
if stat_func == None:
stat_func = lambda x: x
X = {}
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c] = []
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c].append([stat_func(x_ki) for x_ki in db[k].__getattribute__(stoch).gettrace()])
x = pl.array([pl.mean(xc[0]) for xc in X.values()])
xerr = pl.array([pl.std(xc[0]) for xc in X.values()])
y = pl.array([pl.mean(xc[1]) for xc in X.values()])
yerr = pl.array([pl.std(xc[1]) for xc in X.values()])
if plot_type == "scatter":
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
for c in X.keys():
pl.text(pl.mean(X[c][0]), pl.mean(X[c][1]), " %s" % c, fontsize=8, alpha=0.4, zorder=-1)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel("First Model")
pl.ylabel("Second Model")
pl.plot([0, 1], [0, 1], alpha=0.5, linestyle="--", color="k", linewidth=2)
elif plot_type == "rel_diff":
d1 = sorted(100 * (x - y) / x)
d2 = sorted(100 * (xerr - yerr) / xerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean (%)")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err (%)")
elif plot_type == "abs_diff":
d1 = sorted(x - y)
d2 = sorted(xerr - yerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err")
else:
assert 0, "plot_type must be abs_diff, rel_diff, or scatter"
return pl.array([x, y, xerr, yerr])
开发者ID:aflaxman,项目名称:bednet_stock_and_flow,代码行数:60,代码来源:explore.py
示例4: plot2
def plot2():
import pylab as pl
hs, ds = [], []
for event, time in load():
if event == main_start:
start_time = time
elif event == main_end:
d0, h0 = days_hours(start_time)
d1, h1 = days_hours(time)
hs.append((h0, h1))
ds.append((d0, d1))
pl.plot([d0, d1], [h0, h1], 'b')
ihs, fhs = zip(*hs)
ids, fds = zip(*ds)
pl.plot(ids, ihs, 'g')
pl.plot([ids[0], ids[-1]], [pl.mean(ihs)] * 2, 'g--')
pl.plot(fds, fhs, 'r')
pl.plot([fds[0], fds[-1]], [pl.mean(fhs)] * 2, 'r--')
f, i = pl.mean(fhs), pl.mean(ihs)
pl.plot([fds[0], fds[-1]], [(f + i) / 2] * 2, 'b--')
print i, f, f - i, (f + i) / 2
std_i, std_f = pl.std(ihs), pl.std(fhs)
print std_i, std_f
pl.xlim(ids[0], fds[-1])
pl.ylim(4, 28)
pl.grid(True)
pl.xlabel('Time [day]')
pl.ylabel('Day interval [hours]')
pl.show()
开发者ID:maurob,项目名称:timestamp,代码行数:29,代码来源:timestamp.py
示例5: stderr
def stderr(X,Y=None):
if len(X) <= 1: return 0.0
stderr_x = pow(pylab.std(X),2)/len(X)
if Y:
if len(Y) <= 1: return 0.0
stderr_y = pow(pylab.std(Y),2)/len(Y)
else: stderr_y = 0
return math.sqrt(stderr_x + stderr_y)
开发者ID:ronaldahmed,项目名称:robot-navigation,代码行数:8,代码来源:__init__.py
示例6: Vplot
def Vplot(Ws):
"""Calculate the potential function and plot it"""
N_bstrp = input("Please enter the number of bootstraps: ")
N_bin = input("Please enter the bin size: ")
style = raw_input("Please enter a linestyle: ")
Ws = bin(Ws,N_bin)
aVs = pl.zeros((N_bstrp,) + pl.shape(Ws)[1:])
bs = pl.zeros((N_bstrp,3))
for i in xrange(N_bstrp):
W = pl.mean(bootstrap(Ws),axis=0)
aVs[i] = calcaV(W,method="fit")
bs[i] = potfit(aVs[i,:,0])
r = pl.arange(1,7)
aV = pl.mean(aVs,axis=0)
aVerr = pl.std(aVs,axis=0)
b = pl.mean(bs,axis=0)
a_s = 0.5 / pl.sqrt((1.65 + bs[:,1]) / bs[:,0])
sigmas = bs[:,0] / a_s**2
Bs = bs[:,1]
As = bs[:,2] / a_s
a = pl.mean(a_s)
aerr = pl.std(a_s)
sigma = pl.mean(sigmas)
sigmaerr = pl.std(sigmas)
B = pl.mean(Bs)
Berr = pl.std(Bs)
A = pl.mean(As)
Aerr = pl.std(As)
print("Fit parameters:")
print("sigma = %f +/- %f fm^-2 = %f +/- %f MeV^2"
% (sigma, sigmaerr, sigma * 197**2, sigmaerr * 197**2))
print("B = %f +/- %f" % (B, Berr))
print("A = %f +/- %f fm^-1 = %f +/- %f MeV"
% (A, Aerr, A*197, Aerr*197))
print("Lattice spacing, a = %f +/- %f fm = %f +/- %f MeV^-1"
% (a, aerr, a/197, aerr/197))
r_fit = pl.arange(0.25,r[-1]+1,0.1)
aV_fit = V(b,r_fit)
handles = []
handles.append(pl.errorbar(r,aV[:,0],yerr=aVerr[:,0],fmt='o'+style[0]))
handles.append(pl.plot(r_fit,aV_fit,style))
pl.ylim([0,pl.nanmax(aV)+0.25])
pl.xlim([0,pl.nanmax(r_fit)+0.25])
pl.xlabel("$r / a$")
pl.ylabel("$aV(r)$")
return aV,handles
开发者ID:sth,项目名称:pyQCD,代码行数:57,代码来源:postprocess.py
示例7: update
def update(self,t,val):
oldavg = self.avg
avrg = Ema.update(self,t,val)
self.__samples.append((t,self.lastvalue))
self.__samples_nonone.append(self.lastvalue)
if oldavg == None:
self.first_t = t
return (None,None,None)
newavg = avrg
# check limits of timeframe
while t - self.__samples[0][0] > self.timeframe and len(self.__samples) > 2:
_, pv = self.__samples.pop(0)
del self.__samples_nonone[0]
#self.variance += (val-pv)*(val-newavg+pv-oldavg)/(self.timeframe) # this seems to use constant number of samples
#std = math.sqrt(self.variance)
std = pylab.std(self.__samples_nonone)*self.k # this takes long
if avrg != None:
return avrg,avrg+std,avrg-std
else:
return (None,None,None)
开发者ID:ersteller,项目名称:erstellers-pys,代码行数:25,代码来源:feedofcsv.py
示例8: flow_rate_hist
def flow_rate_hist(sheets):
ant_rates = []
weights = []
for sheet in sheets:
ants, seconds, weight = flow_rate(sheet)
ant_rate = seconds / ants
#ant_rate = ants / seconds
ant_rates.append(ant_rate)
weights.append(float(weight))
#weights.append(seconds)
weights = pylab.array(weights)
weights /= sum(weights)
#print "ants per second"
print "seconds per ant"
mu = pylab.mean(ant_rates)
print "mean", pylab.mean(ant_rates)
wmean = pylab.average(ant_rates, weights=weights)
print "weighted mean", wmean
print "median", pylab.median(ant_rates)
print "std", pylab.std(ant_rates, ddof=1)
ant_rates = pylab.array(ant_rates)
werror = (ant_rates - mu) * weights
print "weighted std", ((sum(werror ** 2))) ** 0.5
print "weighted std 2", (pylab.average((ant_rates - mu)**2, weights=weights)) ** 0.5
pylab.figure()
pylab.hist(ant_rates)
pylab.savefig('ant_flow_rates.pdf', format='pdf')
pylab.close()
开发者ID:arjunc12,项目名称:Ants,代码行数:30,代码来源:flow_rate.py
示例9: _CalcMutualNearestNeighbors
def _CalcMutualNearestNeighbors(hull_points, all_points):
all_points_list = list(all_points)
ds = distance.pdist(list(all_points))
std_d = p.std(ds)
square_ds = distance.squareform(ds)
nearest_neighbors = {}
for i, point in enumerate(all_points_list):
if point not in hull_points:
continue
my_ds = [(d, j) for j, d in enumerate(square_ds[i])
if j != i]
my_ds.sort()
nearest_neighbors[point] = set([j for d,j in my_ds[:3]])
no_mutual = set()
for i, point in enumerate(all_points_list):
if point not in hull_points:
continue
no_nbrs = True
for neighbor_index in nearest_neighbors.get(point, []):
neighbor = all_points_list[neighbor_index]
neighbor_set = nearest_neighbors.get(neighbor, [])
if i in neighbor_set:
no_nbrs = False
if no_nbrs:
no_mutual.add(point)
return no_mutual
开发者ID:issfangks,项目名称:milo-lab,代码行数:33,代码来源:onionskin.py
示例10: generate_normalized_test_data
def generate_normalized_test_data(self,
channels,
time_points,
function,
sampling_frequency,
initial_phase=0.0):
"""
A method which generates a normalized (mu = 0, sigma =1) signal for testing, with
the specified number of "channels" which are all generated using the given function
"""
#Generate an empty ndarray
data = numpy.zeros((time_points, channels))
#Compute the values for all channels
for channel_index in range(channels):
for time_index in range(time_points):
data[time_index, channel_index] = function(2.0 * numpy.pi * (channel_index + 1) * (time_index / sampling_frequency + initial_phase))
current_channel = data[:, channel_index]
current_channel = (current_channel - pylab.mean(current_channel))/pylab.std(current_channel)
data[:, channel_index] = current_channel
#Generate a time series build out of the data
test_data = TimeSeries(input_array = data,
channel_names = [("test_channel_%s" % i) for i in range(channels)],
sampling_frequency = sampling_frequency,
start_time = initial_phase,
end_time = float(time_points) / sampling_frequency + initial_phase)
return test_data
开发者ID:AlexanderFabisch,项目名称:pyspace,代码行数:30,代码来源:test_data_generation.py
示例11: pc_pm_std
def pc_pm_std(data, ndim):
"""
This is a helper function.
It returns the value of +1 * std(x), where x is the ndim-th principal
component of the data
Parameters:
-----------
data: `array` (*n*-by-*d*)
the data on which the principal component analysis is performed.
ndim: `integer`
the number of the principal axis on which the analysis is performed.
**NOTE** this is zero-based, i.e. to compute the first principal
component, ndim=0
Returns:
--------
std_pc: `array` (1-by-*d*)
the vector that points in the direction of the *ndim*th principal
axis, and has the length of the standard deviation of the scores
along this axis.
"""
u,s,v = svd(data.T, full_matrices = False)
direction = u[:, ndim : ndim + 1]
scale = std(dot(direction.T, data.T))
return scale * direction.T
开发者ID:MMaus,项目名称:mutils,代码行数:28,代码来源:statistics.py
示例12: zeroPaddData
def zeroPaddData(self,desiredLength,paddmode='zero',where='end'):
#zero padds the time domain data, it is possible to padd at the beginning,
#or at the end, and further gaussian or real zero padding is possible
#might not work for gaussian mode!
desiredLength=int(desiredLength)
#escape the function
if desiredLength<0:
return 0
#calculate the paddvectors
if paddmode=='gaussian':
paddvec=py.normal(0,py.std(self.getPreceedingNoise())*0.05,desiredLength)
else:
paddvec=py.ones((desiredLength,self.tdData.shape[1]-1))
paddvec*=py.mean(self.tdData[-20:,1:])
timevec=self.getTimes()
if where=='end':
#timeaxis:
newtimes=py.linspace(timevec[-1],timevec[-1]+desiredLength*self.dt,desiredLength)
paddvec=py.column_stack((newtimes,paddvec))
longvec=py.row_stack((self.tdData,paddvec))
else:
newtimes=py.linspace(timevec[0]-(desiredLength+1)*self.dt,timevec[0],desiredLength)
paddvec=py.column_stack((newtimes,paddvec))
longvec=py.row_stack((paddvec,self.tdData))
self.setTDData(longvec)
开发者ID:DavidJahn86,项目名称:terapy,代码行数:29,代码来源:TeraData.py
示例13: post_lecture
def post_lecture(self):
STD = std(self.Y, 1)
MM = mean(self.Y, 1)
TT, self.NN = self.Y.shape
if self.centred:
for t in xrange(0, TT):
self.Y[t, :] = (self.Y[t, :] - MM[t]) / STD[t]
开发者ID:ImageAnalyser,项目名称:satellite-analyzer,代码行数:7,代码来源:core.py
示例14: getelnNoise
def getelnNoise(self,tdData):
#returns the uncertainty due to electronic noise
#signal preceeding the pulse (X and Y channel)
precNoise=self.getPreceedingNoise(tdData)
#is this normalization really correct?!
elnNoise = py.std(precNoise, ddof = 1,axis=0)/py.sqrt(precNoise.shape[0])
return elnNoise
开发者ID:DavidJahn86,项目名称:terapy,代码行数:8,代码来源:TeraData.py
示例15: readDatDirectory
def readDatDirectory(key, directory):
global stats
#Don't read data in if it's already read
if not key in DATA["mean"]:
data = defaultdict(array)
#Process the dat files
for datfile in glob.glob(directory + "/*.dat"):
fileHandle = open(datfile, 'rb')
keys, dataDict = csvExtractAllCols(fileHandle)
stats = union(stats, keys)
for aKey in keys:
if not aKey in data:
data[aKey] = reshape(array(dataDict[aKey]),
(1, len(dataDict[aKey])))
else:
data[aKey] = append(data[aKey],
reshape(array(dataDict[aKey]),
(1, len(dataDict[aKey]))),
axis=0)
#Process the div files'
for datfile in glob.glob(directory + "/*.div"):
fileHandle = open(datfile, 'rb')
keys, dataDict = csvExtractAllCols(fileHandle)
stats = union(stats, keys)
for aKey in keys:
if not aKey in data:
data[aKey] = reshape(array(dataDict[aKey]),
(1, len(dataDict[aKey])))
else:
data[aKey] = append(data[aKey],
reshape(array(dataDict[aKey]),
(1, len(dataDict[aKey]))),
axis=0)
#Iterate through the stats and calculate mean/standard deviation
for aKey in stats:
if aKey in data:
DATA["mean"][key][aKey] = mean(data[aKey], axis=0)
DATA["median"][key][aKey] = median(data[aKey], axis=0)
DATA["std"][key][aKey] = std(data[aKey], axis=0)
DATA["ste"][key][aKey] = std(data[aKey], axis=0)/ sqrt(len(data[aKey]))
DATA["min"][key][aKey] = mean(data[aKey], axis=0)-amin(data[aKey], axis=0)
DATA["max"][key][aKey] = amax(data[aKey], axis=0)-mean(data[aKey], axis=0)
DATA["actual"][key][aKey] = data[aKey]
开发者ID:eoinomurchu,项目名称:pyPlotData,代码行数:46,代码来源:plot.py
示例16: xyamb
def xyamb(xytab,qu,xyout=''):
mytb=taskinit.tbtool()
if not isinstance(qu,tuple):
raise Exception,'qu must be a tuple: (Q,U)'
if xyout=='':
xyout=xytab
if xyout!=xytab:
os.system('cp -r '+xytab+' '+xyout)
QUexp=complex(qu[0],qu[1])
print 'Expected QU = ',qu # , ' (',pl.angle(QUexp)*180/pi,')'
mytb.open(xyout,nomodify=False)
QU=mytb.getkeyword('QU')['QU']
P=pl.sqrt(QU[0,:]**2+QU[1,:]**2)
nspw=P.shape[0]
for ispw in range(nspw):
st=mytb.query('SPECTRAL_WINDOW_ID=='+str(ispw))
if (st.nrows()>0):
q=QU[0,ispw]
u=QU[1,ispw]
qufound=complex(q,u)
c=st.getcol('CPARAM')
fl=st.getcol('FLAG')
xyph0=pl.angle(pl.mean(c[0,:,:][pl.logical_not(fl[0,:,:])]),True)
print 'Spw = '+str(ispw)+': Found QU = '+str(QU[:,ispw]) # +' ('+str(pl.angle(qufound)*180/pi)+')'
#if ( (abs(q)>0.0 and abs(qu[0])>0.0 and (q/qu[0])<0.0) or
# (abs(u)>0.0 and abs(qu[1])>0.0 and (u/qu[1])<0.0) ):
if ( pl.absolute(pl.angle(qufound/QUexp)*180/pi)>90.0 ):
c[0,:,:]*=-1.0
xyph1=pl.angle(pl.mean(c[0,:,:][pl.logical_not(fl[0,:,:])]),True)
st.putcol('CPARAM',c)
QU[:,ispw]*=-1
print ' ...CONVERTING X-Y phase from '+str(xyph0)+' to '+str(xyph1)+' deg'
else:
print ' ...KEEPING X-Y phase '+str(xyph0)+' deg'
st.close()
QUr={}
QUr['QU']=QU
mytb.putkeyword('QU',QUr)
mytb.close()
QUm=pl.mean(QU[:,P>0],1)
QUe=pl.std(QU[:,P>0],1)
Pm=pl.sqrt(QUm[0]**2+QUm[1]**2)
Xm=0.5*atan2(QUm[1],QUm[0])*180/pi
print 'Ambiguity resolved (spw mean): Q=',QUm[0],'U=',QUm[1],'(rms=',QUe[0],QUe[1],')','P=',Pm,'X=',Xm
stokes=[1.0,QUm[0],QUm[1],0.0]
print 'Returning the following Stokes vector: '+str(stokes)
return stokes
开发者ID:schiebel,项目名称:casa,代码行数:57,代码来源:almapolhelpers.py
示例17: __init__
def __init__(self, fp, delimiter="\t", require_header=False):
"""Load matrix of floats into self.
File Format:
===========
First line: Column titles.
-------
First column is row variable name, all other columns are sample IDs
e.g.:
miRNA_ID sample_id_1 sample_id_2...
Next lines: rows of float data. Each row represents a single variable.
-----
e.g.
hsa-let-7e 332.0 690.0...
Args:
fp: [*str] like open filepointer to matrix of floats.
delimiter: str of column delimiter
require_header: bool if to require first line file header from input
"""
self.rows = {}
for line in fp:
# Skip header comments
if line[0] == "#": continue
first_row = line.strip('\n').split(delimiter)
# Verify that the first line looks like column headers.
if require_header and first_row != "miRNA_ID":
# Headers are required but the first row seems malformed. Error.
raise ValueError, "Line not valid matrix column table header."
elif first_row[0] == "miRNA_ID":
# This looks a list of sample_IDs as column titles. Set samples.
self.samples = first_row[1:]
else:
# This looks like a data row. Add it.
self.samples = None
self._add_row(first_row)
break # Exit loop after parsing first non-comment line
# Parse all other lines as rows of floats named by the first column entry.
for line in fp:
# WARNING: DO NOT STRIP TRAILING TABS
row = line.strip('\n').split(delimiter)
self._add_row(row)
# Set matrix dimensions from last row.
self.n = len(row) -1 # first entry is variable name
self.m = len(self.rows)
# Compute and store all variable standard deviations.
self.stds = {}
for name, values in self.rows.items():
# Remove None's from values; DO NOT remove zeros!
std = pylab.std(filter(lambda x: x is not None, values))
self.stds[name] = std
开发者ID:andrewdyates,项目名称:compile_mic_results,代码行数:57,代码来源:__init__.py
示例18: plot_histogram
def plot_histogram(histogram, html_writer, title='', max_pathway_length=8, xmin=None, xlim=20, error_bars=True, min_to_show=20, legend_loc='upper left'):
fig = pylab.figure()
pylab.hold(True)
reps = 1000
y_offset = 0
offset_step = 0.007
colors = {1:'r', 2:'orange', 3:'green', 4:'cyan', 5:'blue', 'Rest':'violet', 'Not first':'k--', 'No known regulation':'grey', 'Activated':'green', 'Inhibited':'r', 'Mixed regulation':'blue'}
for key, value in histogram.iteritems():
if len(value) >= min_to_show:
m = stats.cmedian(value)
sample_std = None
if error_bars:
sample_vals = []
i = 0
while i < reps:
samples = []
while len(samples) < len(value):
samples.append(random.choice(value))
sample_vals.append(pylab.median(samples))
i += 1
sample_std = pylab.std(sample_vals)
plotting.cdf(value, label='%s (med=%.1f, N=%d)' % \
(key, m, len(value)),
style=colors.get(key, 'grey'), std=sample_std, y_offset=y_offset)
y_offset += offset_step
xmin = -1 * xlim if xmin == None else xmin
pylab.xlim(xmin, xlim)
pylab.xlabel('Irreversability')
#pylab.xlabel('deltaG')
pylab.ylabel('Cumulative distribution')
legendfont = matplotlib.font_manager.FontProperties(size=11)
pylab.legend(loc=legend_loc, prop=legendfont)
pylab.title(title)
pylab.hold(False)
if 'Not first' in histogram:
print '%s, first vs. non-first ranksum test: ' % title + '(%f, %f)' % stats.ranksums(histogram[1], histogram['Not first'])
if 'Inhibited' in histogram:
print '%s, inhibited vs. non-regulated ranksum test: ' % title + '(%f, %f)' % stats.ranksums(histogram['Inhibited'], histogram['No known regulation'])
#for k1, h1 in histogram.iteritems():
# for k2, h2 in histogram.iteritems():
# print k1, k2, stats.ranksums(h1, h2)
return fig
开发者ID:issfangks,项目名称:milo-lab,代码行数:56,代码来源:reversibility.py
示例19: old_bar_graph_WOULD_NEED_FIX
def old_bar_graph_WOULD_NEED_FIX(
img_dst, points, independent, dependent, search):
from pylab import arange, xticks, xlim, mean, std
# Lines
plots = []
labels = []
args = {}
for point in points:
args[point.get(independent)] = True
keys = args.keys()
keys.sort()
ind = {}
bars = {}
for k in keys:
ind[k] = keys.index(k)
bars[k] = {}
# Float is necessary
ticks = arange(len(args), dtype='float')
for point_type in selected:
x_val = []
y_val = []
for point in selected[point_type]:
x_val.append(point.get(independent))
y_val.append(point.get(dependent))
width = 1./(len(selected)+2)
for point in selected[point_type]:
pi = point.get(independent)
pd = point.get(dependent)
# bars[independent][screen] = ([points],position,color)
if point_type not in bars[pi].keys():
bars[pi][point_type] = ([pd], \
ind[pi]+width*len(bars[pi]), \
color)
else:
bars[pi][point_type][0].append(pd)
labels.append(label_type(point_type))
plotlist = {}
for pi in bars:
for pt in bars[pi]:
if len(bars[pi][pt][0]) > 1:
error = std(bars[pi][pt][0])
else:
error = 0
p = bar(bars[pi][pt][1],mean(bars[pi][pt][0]),width,\
color=bars[pi][pt][2], yerr=error)
plotlist[pt] = p
ticks[ind[pi]] += width/2
plots = plotlist.values()
plots.sort()
keys = args.keys()
keys.sort()
xticks(ticks, keys)
xlim(-width,len(ticks))
开发者ID:marcosmamorim,项目名称:snac-nox,代码行数:56,代码来源:graph.py
示例20: __init__
def __init__(self, v, bin_precision=5):
self.size = len(v)
self.mean = pylab.mean(v)
self.std = pylab.std(v)
self.min = min(v)
self.max = min(v)
self.bins = {}
for x in v:
key = ("%%.%df" % precision) % x
bins[key] = bins.get(key, 0) + 1
开发者ID:andrewdyates,项目名称:random_mic_experiment,代码行数:10,代码来源:compile_results.py
注:本文中的pylab.std函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论