本文整理汇总了Python中pylab.polyfit函数的典型用法代码示例。如果您正苦于以下问题:Python polyfit函数的具体用法?Python polyfit怎么用?Python polyfit使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了polyfit函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: tryFits1
def tryFits1(fName):
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h)
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
pylab.legend()
##tryFits1('launcherData.txt')
##pylab.show()
开发者ID:Sabinu,项目名称:6.00x,代码行数:25,代码来源:Lec_18__code.py
示例2: plotFittingCurve
def plotFittingCurve(rabbits, foxes):
r_coeff = pylab.polyfit(range(len(rabbits)), rabbits, 2)
f_coeff = pylab.polyfit(range(len(foxes)), foxes, 2)
pylab.plot(pylab.polyval(r_coeff, range(len(rabbits))), label = "Rabbits Curve")
pylab.plot(pylab.polyval(f_coeff, range(len(foxes))), label = "Foxes Curve")
pylab.legend()
pylab.show()
开发者ID:franzip,项目名称:edx,代码行数:7,代码来源:problem3.py
示例3: processTrajectories
def processTrajectories(filename):
dist, heights = getTrajectory(filename)
trials = len(heights)
dist = pylab.array(dist)
# get array combiming mean height at each distances
totHeights = pylab.array([0] * len(dist))
for h in heights:
totHeights = totHeights + pylab.array(h)
meanHeights = totHeights/len(heights)
# start plotting :)
pylab.title("Trajectile of Projectile " + "(Mean of " + str(trials)
+ " trails)")
pylab.xlabel("Inches from launch point")
pylab.ylabel("Inches above launch point")
pylab.plot(dist, meanHeights, 'bo')
a, b = pylab.polyfit(dist, meanHeights, 1)
altitudes = a * dist + b
pylab.plot(dist, altitudes, 'b', label='linear fit')
print 'RSquared of linear fit: ', rSquared(meanHeights, altitudes)
a, b, c = pylab.polyfit(dist, meanHeights, 2)
altitudes = a*(dist**2) + b*(dist) + c
pylab.plot(dist, altitudes, 'b:', label="Quadratic Fit")
print 'RSquared of quadratic fit: ', rSquared(meanHeights, altitudes)
pylab.legend()
pylab.show()
开发者ID:mbhushan,项目名称:incompy,代码行数:30,代码来源:projectile.py
示例4: tryFits1
def tryFits1(fName):
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h)
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
pylab.legend()
##tryFits1('launcherData.txt')
##pylab.show()
# Calculating the location of the peak of height:
# −(b/2a)=547.1
# Once we have the curve fitting value, we can derrive from it other measurements like speed, strenght etc, using known physics.
开发者ID:SKosztolanyi,项目名称:Python-for-Data-Science,代码行数:30,代码来源:25_plotting+experimental+data.py
示例5: plotPopulations
def plotPopulations(numSteps):
""" Plots populations of Foxes & Rabbits for given timesteps. """
rab_pop, fox_pop = runSimulation(numSteps)
# for i in range(len(rab_pop)):
# print(rab_pop[i], fox_pop[i])
r_style = 'bo' # blue - continuous line
f_style = 'ro' # red - continuous line
pylab.figure('Fox / Rabit Populations')
pylab.plot(rab_pop, r_style, label='Rabbit Pop')
pylab.plot(fox_pop, f_style, label='Fox Pop')
pylab.title('Fox / Rabit Populations: {} timesteps'.format(numSteps))
pylab.xlabel('Time Steps')
pylab.ylabel('Population')
pylab.legend(loc='best')
degree = 2
rab_coeff = pylab.polyfit(range(len(rab_pop)), rab_pop, degree)
pylab.plot(pylab.polyval(rab_coeff, range(len(rab_pop))), 'b-')
fox_coeff = pylab.polyfit(range(len(fox_pop)), fox_pop, degree)
pylab.plot(pylab.polyval(fox_coeff, range(len(fox_pop))), 'r-')
pylab.show()
开发者ID:Sabinu,项目名称:6.00x,代码行数:26,代码来源:exam_problem3+-+rabbits.py
示例6: tryFits
def tryFits(fName):
'''
Linear fit does not fit the data. Not a logical assumption that the arrow
flies in a straight line to the target.
Quadratic fit mirrors a parabolic pathway.
'''
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36 # Convert yards to feet
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h) # Get one avg measurement of height
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit')
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit')
pylab.legend()
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py
示例7: visualise
def visualise(fileName, title="", linearFit=False, polyFit=False):
""" Draw graph representing the result. A bit verbose as that seem to be the only way to make borders gray.
fileName = path and name of the pickled results
"""
with open(fileName, "rb") as f:
data = pickle.load(f)
fig = plt.figure()
p = fig.add_subplot(111)
if not linearFit and not polyfit:
p.plot(data[0], data[1], 'bo-', label="sentiment")
p.plot([data[0][0], data[0][-1]], [data[1][0], data[1][-1]],
'g', label="straight line through first and last point")
elif linearFit:
fit = polyfit(data[0], data[1], 1)
fitFunc = poly1d(fit)
p.plot(data[0], data[1], '-ro', label='sentiment')
p.plot(data[0], fitFunc(data[0]), "--k", label="linear fit")
elif polyFit:
fit = polyfit(data[0], data[1], 2)
f = [d*d*fit[0] + d*fit[1] + fit[2] for d in data[0]]
p.plot(data[0], data[1], '-ro', label='sentiment')
p.plot(data[0], f, "--k", label="polynomial fit")
p.legend(prop={'size': 10}, frameon=False)
plt.ylabel("Average happiness")
plt.xlabel("Rating")
for e in ['bottom', 'top', 'left', 'right']:
p.spines[e].set_color('gray')
if title:
plt.title(title)
plt.show()
开发者ID:BogdanSorlea,项目名称:SentimentAnalysisSDM,代码行数:30,代码来源:sentiment.py
示例8: tryFits1
def tryFits1(fName):
'''
Calculate the coefficient of determination (R**2) to determine how
well the model fits the data and ergo could make predictions.
'''
distances, heights = getTrajectoryData(fName)
distances = pylab.array(distances)*36
totHeights = pylab.array([0]*len(distances))
for h in heights:
totHeights = totHeights + pylab.array(h)
pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
pylab.xlabel('Inches from Launch Point')
pylab.ylabel('Inches Above Launch Point')
meanHeights = totHeights/float(len(heights))
pylab.plot(distances, meanHeights, 'bo')
a,b = pylab.polyfit(distances, meanHeights, 1)
altitudes = a*distances + b
pylab.plot(distances, altitudes, 'r',
label = 'Linear Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
a,b,c = pylab.polyfit(distances, meanHeights, 2)
altitudes = a*(distances**2) + b*distances + c
pylab.plot(distances, altitudes, 'g',
label = 'Quadratic Fit' + ', R2 = '
+ str(round(rSquare(meanHeights, altitudes), 4)))
pylab.legend()
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py
示例9: plot_dco_values
def plot_dco_values(ax, values, color="k"):
interpol1 = {"temperature": values["temperature"][0:7], "values": values["values"][0:7]}
fit1 = pylab.polyfit(interpol1["temperature"], interpol1["values"], 1)
print "m={} b={}".format(fit1[0], fit1[1])
fit_fn1 = pylab.poly1d(fit1)
interpol2 = {"temperature": values["temperature"][6:14], "values": values["values"][6:14]}
fit2 = pylab.polyfit(interpol2["temperature"], interpol2["values"], 1)
print "m={} b={}".format(fit2[0], fit2[1])
fit_fn2 = pylab.poly1d(fit2)
plot = ax.plot(
interpol1["temperature"],
fit_fn1(interpol1["temperature"]),
"k-",
interpol2["temperature"],
fit_fn2(interpol2["temperature"]),
"k-",
# values['temperature'], values['values'], '{}-'.format(color),
values["temperature"],
values["values"],
"{}o".format(color),
markersize=5,
)
pylab.setp(plot[0], linewidth=2)
pylab.setp(plot[1], linewidth=2)
return plot
开发者ID:salkinium,项目名称:bachelor,代码行数:28,代码来源:baudrate_parser.py
示例10: runSimulation2
def runSimulation2(numSteps):
"""
Runs the simulation for `numSteps` time steps.
Returns a tuple of two lists: (rabbit_populations, fox_populations)
where rabbit_populations is a record of the rabbit population at the
END of each time step, and fox_populations is a record of the fox population
at the END of each time step.
Both lists should be `numSteps` items long.
"""
rabbitPopulationOverTime = []
foxPopulationOverTime = []
for step in range(numSteps):
rabbitGrowth()
rabbitPopulationOverTime.append(CURRENTRABBITPOP)
foxGrowth()
foxPopulationOverTime.append(CURRENTFOXPOP)
print "CURRENTRABBITPOP", CURRENTRABBITPOP, rabbitPopulationOverTime
print "CURRENTFOXPOP", CURRENTFOXPOP, foxPopulationOverTime
pylab.plot(range(numSteps), rabbitPopulationOverTime, '-g', label='Rabbit population')
pylab.plot(range(numSteps), foxPopulationOverTime, '-o', label='Fox population')
rabbit_coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(rabbit_coeff, range(len(rabbitPopulationOverTime))))
fox_coeff = pylab.polyfit(range(len(foxPopulationOverTime)), foxPopulationOverTime, 2)
pylab.plot(pylab.polyval(fox_coeff, range(len(rabbitPopulationOverTime))))
pylab.title('Fox and rabbit population in the wood')
xlabel = "Plot for simulation of {} steps".format(numSteps)
pylab.xlabel(xlabel)
pylab.ylabel('Current fox and rabbit population')
pylab.legend(loc='upper right')
pylab.tight_layout()
pylab.show()
pylab.clf()
开发者ID:SrebniukNik,项目名称:Education,代码行数:35,代码来源:problem3_PartA.py
示例11: runSimulation
def runSimulation(numSteps):
"""
Runs the simulation for `numSteps` time steps.
Returns a tuple of two lists: (rabbit_populations, fox_populations)
where rabbit_populations is a record of the rabbit population at the
END of each time step, and fox_populations is a record of the fox population
at the END of each time step.
Both lists should be `numSteps` items long.
"""
rabbitPop = []
foxPop = []
for i in range(numSteps):
rabbitGrowth()
foxGrowth()
rabbitPop.append(CURRENTRABBITPOP)
foxPop.append(CURRENTFOXPOP)
#return (rabbitPop,foxPop)
pylab.plot(rabbitPop)
pylab.plot(foxPop)
pylab.show()
rabbitPopulationOverTime = rabbitPop[:]
coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPopulationOverTime))))
pylab.show()
rabbitPopulationOverTime = foxPop[:]
coeff = pylab.polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPopulationOverTime))))
pylab.show()
开发者ID:ansh5441,项目名称:code,代码行数:31,代码来源:exam_problem3.py
示例12: fitData2
def fitData2(fileName):
'''
Models predictions using Terman's law model (cubic fit) and
Hooks Law (linear fit).
Hook's Law functions up to the point where the spring reaches
it's elastic limit - when it stops behaving as a spring but instead
as a rope, etc (doesn't get longer b/c hang more weight on it)
'''
xVals, yVals = getData(fileName)
extX = pylab.array(xVals + [1.05, 1.1, 1.15, 1.2, 1.25])
xVals = pylab.array(xVals)
yVals = pylab.array(yVals)
xVals = xVals*9.81 # convert mass to force (F = mg)
extX = extX*9.81 # convert mass to force (F = mg)
pylab.plot(xVals, yVals, 'bo', label = 'Measured displacements')
pylab.title('Measured Displacement of Spring')
pylab.xlabel('|Force| (Newtons)')
pylab.ylabel('Distance (meters)')
a,b = pylab.polyfit(xVals, yVals, 1)
estYVals = a*extX + b
pylab.plot(extX, estYVals, label = 'Linear fit')
a,b,c,d = pylab.polyfit(xVals, yVals, 3)
estYVals = a*(extX**3) + b*extX**2 + c*extX + d
pylab.plot(extX, estYVals, label = 'Cubic fit')
pylab.legend(loc = 'best')
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py
示例13: findOrder
def findOrder(xVals, yVals, accuracy = 1.0e-1):
# Your Code Here
i = 0
r = pylab.polyfit(xVals, yVals, 0, full=True)[1][0]
while r > accuracy:
i += 1
r = pylab.polyfit(xVals, yVals, i, full=True)[1][0]
s = pylab.polyfit(xVals, yVals, i, full=True)[0]
return s
开发者ID:leanton,项目名称:6.00x,代码行数:9,代码来源:P8.py
示例14: plotFitSimulation
def plotFitSimulation(numSteps):
ans = runSimulation(numSteps)
rabbitCoeff = pylab.polyfit(range(numSteps), ans[0], 2)
foxCoeff = pylab.polyfit(range(numSteps), ans[1], 2)
print rabbitCoeff, foxCoeff
pylab.plot(pylab.polyval(rabbitCoeff, range(numSteps)), 'r')
pylab.plot(pylab.polyval(foxCoeff, range(numSteps)), 'g')
pylab.title("polyfit result")
pylab.show()
开发者ID:adolphlwq,项目名称:MIT6002x,代码行数:9,代码来源:exam_problem3.py
示例15: fitAverage
def fitAverage(self,
linear_fit_min_value,
linear_fit_max_value,
degree,
# function taking the list of parameters
# and translating it into a label for writing
# a text on the graph
# with the fit result
label_func,
):
""" perform a linear fit to the average values """
import utils
global linear_fit_min_num_vertices, linear_fit_max_num_vertices
# filter the values for the fit
xpos_for_fit = []
ypos_for_fit = []
uncert_for_fit = []
oneSigmaIndex = 2
assert standardQuantileHistoDefs[oneSigmaIndex]['title'] == '1 sigma'
for x,y, sigmaUp, sigmaDown in zip(self.xpos, self.avg_values, self.quantile_values_upper[oneSigmaIndex], self.quantile_values_lower[oneSigmaIndex]):
if x >= linear_fit_min_value and \
x <= linear_fit_max_value:
xpos_for_fit.append(x)
# mean
ypos_for_fit.append(y)
# 1 sigma
uncert_for_fit.append(0.5 * (sigmaUp - sigmaDown))
if len(xpos_for_fit) < 2:
raise Exception("must have at least two points for a linear fit (linear_fit_min_value=" + str(linear_fit_min_value) + " linear_fit_max_value=" + str(linear_fit_max_value) + ")")
# perform fit to means
# note that pylab.polyfit returns coefficients in an order
# where the first coefficient corresponds to the highest power of x,
# we reverse this
import pylab
fittedCoeffs = pylab.polyfit(xpos_for_fit, ypos_for_fit, degree)
fittedCoeffs = fittedCoeffs[::-1]
self.addFitResult('mean', linear_fit_min_value, linear_fit_max_value, self.meanFitResult, fittedCoeffs)
self.fitResultLabel = label_func(fittedCoeffs * self.y_scale_factor, self.yaxis_unit_label)
# perform fit to symmetrized 1 sigma bands
fittedCoeffs = pylab.polyfit(xpos_for_fit, uncert_for_fit, degree)
fittedCoeffs = fittedCoeffs[::-1]
self.addFitResult('uncert', linear_fit_min_value, linear_fit_max_value, self.uncertFitResult, fittedCoeffs)
开发者ID:andreh7,项目名称:cms-fed-sizes-pileup,代码行数:55,代码来源:FedSizePerXUtils.py
示例16: main
def main(filename):
pOut = parse( filename)
oM, oB = polyfit(pOut[0], pOut[1], 1)
tM, tB = polyfit(pOut[2], pOut[3], 1)
print("rep_overlap = {} * overlap + {}".format(oM, oB))
print("rep_tanimoto = {} * tanimoto + {}".format(tM, tB))
oC = polyfit(pOut[0], pOut[1], 0)
tC = polyfit(pOut[2], pOut[3], 0)
print("rep_overlap = {} * overlap".format(oM, oB))
print("rep_tanimoto = {} * tanimoto + {}".format(tM, tB))
makeGraphs( pOut)
开发者ID:ndaniels,项目名称:Ammolite,代码行数:11,代码来源:overlap_conversion.py
示例17: plotSimulation
def plotSimulation():
rabbits, foxes = runSimulation(200)
pylab.plot(rabbits, label='Rabbits')
pylab.plot(foxes, label='Foxes')
a, b, c = pylab.polyfit(range(len(rabbits)), rabbits, 2)
pylab.plot(pylab.polyval([a, b, c], range(len(rabbits))), label='Rabbits')
d, e, f = pylab.polyfit(range(len(foxes)), foxes, 2)
pylab.plot(pylab.polyval([d, e, f], range(len(foxes))), label='Foxes')
pylab.grid()
pylab.legend()
pylab.show()
开发者ID:vduenasg,项目名称:edX,代码行数:11,代码来源:exam_problem3.py
示例18: plotLineFit
def plotLineFit():
rabbitPops, foxPops = runSimulation(200)
steps = [n for n in range(1, 201)]
coeff = pylab.polyfit(range(len(rabbitPops)), rabbitPops, 2)
pylab.plot(pylab.polyval(coeff, range(len(rabbitPops))))
coeff = pylab.polyfit(range(len(foxPops)), foxPops, 2)
pylab.plot(pylab.polyval(coeff, range(len(foxPops))))
pylab.title('Fox vs. Rabbit')
pylab.legend(('Rabbit Pop', 'Fox Pop'))
pylab.xlabel('Step')
pylab.ylabel('Population')
pylab.show()
开发者ID:trimcao,项目名称:intro-computational-thinking-mit-6.00.2x,代码行数:12,代码来源:p3-fox-rabbit.py
示例19: plot
def plot(rabbits, foxes):
N = len(rabbits)
pylab.plot(range(N), rabbits, 'go', label = "rabbit pop")
pylab.plot(range(N), foxes, 'ro', label = "foxes pop")
rab_coeff = pylab.polyfit(range(N), rabbits, 2)
fox_coeff = pylab.polyfit(range(N), foxes, 2)
pylab.plot(pylab.polyval(rab_coeff, range(N)), 'g-', label = "rabbit polyfit")
pylab.plot(pylab.polyval(fox_coeff, range(N)), 'r-', label = "fox polyfit")
pylab.xlabel("Time")
pylab.ylabel("Population")
pylab.title("Dynamics of Rabbit and Fox Population")
pylab.legend()
pylab.show()
开发者ID:bninopaul,项目名称:online_courses,代码行数:13,代码来源:exam_problem3.py
示例20: anscombe
def anscombe(plotPoints):
dataFile = open('anscombe.txt', 'r')
X1,X2,X3,X4,Y1,Y2,Y3,Y4 = [],[],[],[],[],[],[],[]
for line in dataFile:
x1,y1,x2,y2,x3,y3,x4,y4 = line.split()
X1.append(float(x1))
X2.append(float(x2))
X3.append(float(x3))
X4.append(float(x4))
Y1.append(float(y1))
Y2.append(float(y2))
Y3.append(float(y3))
Y4.append(float(y4))
dataFile.close()
xVals = pylab.array(range(21))
if plotPoints: pylab.plot(X1, Y1, 'o')
a, b = pylab.polyfit(X1, Y1, 1)
yVals = a*xVals + b
pylab.plot(xVals, yVals)
pylab.xlim(0, 20)
mean = sum(Y1)/float(len(Y1))
median = Y1[len(Y1)/2 + 1]
pylab.title('Mean = ' + str(mean) + ', Median = ' + str(median))
pylab.figure()
if plotPoints: pylab.plot(X2, Y2, 'o')
a, b = pylab.polyfit(X2, Y2, 1)
yVals = a*xVals + b
pylab.plot(xVals, yVals)
pylab.xlim(0, 20)
mean = sum(Y1)/float(len(Y1))
median = Y1[len(Y1)/2 + 1]
pylab.title('Mean = ' + str(mean) + ', Median = ' + str(median))
pylab.figure()
if plotPoints: pylab.plot(X3, Y3, 'o')
a, b = pylab.polyfit(X3, Y3, 1)
yVals = a*xVals + b
pylab.plot(xVals, yVals)
pylab.xlim(0, 20)
mean = sum(Y1)/float(len(Y1))
median = Y1[len(Y1)/2 + 1]
pylab.title('Mean = ' + str(mean) + ', Median = ' + str(median))
pylab.figure()
if plotPoints: pylab.plot(X4, Y4, 'o')
a, b = pylab.polyfit(X4, Y4, 1)
yVals = a*xVals + b
pylab.plot(xVals, yVals)
pylab.xlim(0, 20)
mean = sum(Y1)/float(len(Y1))
median = Y1[len(Y1)/2 + 1]
pylab.title('Mean = ' + str(mean) + ', Median = ' + str(median))
pylab.show()
开发者ID:KWresearch,项目名称:teacher-mitArchive-git,代码行数:51,代码来源:lec24.py
注:本文中的pylab.polyfit函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论