本文整理汇总了Python中pylab.pcolormesh函数的典型用法代码示例。如果您正苦于以下问题:Python pcolormesh函数的具体用法?Python pcolormesh怎么用?Python pcolormesh使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了pcolormesh函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: i5
def i5():
# griddata
r, dr = 10, 4
dth = dr/(1.0*r)
rr = linspace(r,r+dr,15)
th = linspace(-0.5*dth,0.5*dth,16)
R,TH = make_grid(rr,th)
X,Y = R*cos(TH),R*sin(TH)
Z = ff(X,Y)
points = grid_to_points(X,Y)
values = grid_to_points(Z)
xfine = linspace(r,r+dr,50)
yfine = linspace(-0.5*dr,0.5*dr,51)
XF, YF = make_grid(xfine, yfine)
desired_points = grid_to_points(XF, YF)
# Only 'nearest' seems to work
# 'linear' and 'cubic' just give fill value
desired_values = scipy.interpolate.griddata(points, values, desired_points, method='nearest', fill_value=1.0)
ZF = desired_values.reshape(XF.shape)
pl.clf()
pl.pcolormesh(XF, YF, ZF)
pl.colorbar()
return ZF
开发者ID:gnovak,项目名称:plevpy,代码行数:27,代码来源:gsn.py
示例2: i6
def i6():
# Rbf: this works great except that somewhat weird stuff happens
# when you're off the grid.
r, dr = 10, 4
dth = dr/(1.0*r)
rr = linspace(r,r+dr,25)
th = linspace(-0.5*dth,0.5*dth,26)
R,TH = make_grid(rr,th)
X,Y = R*cos(TH),R*sin(TH)
Z = ff(X,Y)
xlist, ylist, zlist = X.ravel(), Y.ravel(), Z.ravel()
# function, epsilon, smooth, norm,
fint = scipy.interpolate.Rbf(xlist, ylist, zlist )
xfine = linspace(-10+r,r+dr+10,99)
yfine = linspace(-10-0.5*dr,10+0.5*dr,101)
XF, YF = make_grid(xfine, yfine)
ZF = fint(XF, YF)
pl.clf()
pl.pcolormesh(XF, YF, ZF)
pl.colorbar()
return ZF
开发者ID:gnovak,项目名称:plevpy,代码行数:25,代码来源:gsn.py
示例3: i1
def i1():
# interp2d
# This does not seem to work. It also does not seem to honor
# bounds_error or fill_value
#xx = linspace(0,2*pi,39)
#yy = linspace(-2,2,41)
xx = linspace(0,2*pi,12)
yy = linspace(-2,2,11)
X,Y = make_grid(xx,yy)
Z = ff(X,Y)
# Note that in this use, xx,yy and 1d, Z is 2d.
# The output shapes are
# fint: () () => (1,)
# fint: (n,) () => (n,)
# fint: () (m,) => (1,m)
# fint: (n,) (m,) => (n,m)
fint = scipy.interpolate.interp2d(xx,yy, Z)
xfine = linspace(0.0,2*pi,99)
yfine = linspace(-2,2,101)
XF, YF = make_grid(xfine, yfine)
ZF = fint(xfine,yfine).transpose()
pl.clf()
pl.pcolormesh(XF,YF,ZF)
pl.colorbar()
开发者ID:gnovak,项目名称:plevpy,代码行数:29,代码来源:gsn.py
示例4: i2
def i2():
# interp2d -- do it on a structured gird, but use calling
# convention for unstructured grid.
xx = linspace(0,2*pi,15)
yy = linspace(-2,2,14)
X,Y = make_grid(xx,yy)
Z = ff(X,Y)
# The output shapes are
# fint: () () => (1,)
# fint: (n,) () => (n,)
# fint: () (m,) => (1,m)
# fint: (n,) (m,) => (n,m)
#
# Linear interpolation is all messed up. Cant get sensible results.
# Cubic seems extremely sensitive to the exact number of data points.
# Doesn't respect bounds_error
# Doesn't respect fill_value
# Doesn't respect copy
fint = scipy.interpolate.interp2d(X,Y,Z, kind='quintic')
xfine = linspace(-2,2*pi+2,99)
yfine = linspace(-4,4,101)
XF, YF = make_grid(xfine, yfine)
# NB -- TRANSPOSE HERE!
ZF = fint(xfine,yfine).transpose()
pl.clf()
pl.pcolormesh(XF, YF, ZF)
pl.colorbar()
开发者ID:gnovak,项目名称:plevpy,代码行数:31,代码来源:gsn.py
示例5: logRegress
def logRegress(X,Y):
scores = []
for train_index, test_index in kf:
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = Y[train_index], Y[test_index]
logModel = linear_model.LogisticRegression()
logModel.fit(X_train,y_train)
scores.append(logModel.score(X_test, y_test))
print "Scores" , scores
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(1, figsize=(4, 3))
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=pl.cm.Paired)
pl.xlabel('Sepal length')
pl.ylabel('Sepal width')
pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.xticks(())
pl.yticks(())
pl.show()
开发者ID:liljonnystyle,项目名称:safetyword,代码行数:33,代码来源:GodsPipe2.py
示例6: the_plot
def the_plot():
x,y = linspace(0,2*pi,100), linspace(-2,2,100)
X,Y = make_grid(x,y)
Z = ff(X,Y)
pl.clf()
pl.pcolormesh(X,Y,Z)
pl.colorbar()
开发者ID:gnovak,项目名称:plevpy,代码行数:7,代码来源:gsn.py
示例7: main
def main(plot=True):
# Setup grid
g = 4
nx, ny = 200, 50
Lx, Ly = 26, 26/4
(x, y), (dx, dy) = ghosted_grid([nx, ny], [Lx, Ly], 0)
# monkey patch the velocity
uc = MultiFab(sizes=[nx, ny], n_ghost=4, dof=2)
uc.validview[0] = (y > Ly / 3) * (2 * Ly / 3 > y)
uc.validview[1] = np.sin(2 * pi * x / Lx) * .3 / (2 * pi / Lx)
# state.u = np.random.rand(*x.shape)
tad = BarotropicSolver()
tad.geom.dx = dx
tad.geom.dy = dx
dt = min(dx, dy) / 4
if plot:
import pylab as pl
pl.ion()
for i, (t, uc) in enumerate(steps(tad.onestep, uc, dt, [0.0, 10000 * dt])):
if i % 100 == 0:
if plot:
pl.clf()
pl.pcolormesh(uc.validview[0])
pl.colorbar()
pl.pause(.01)
开发者ID:nbren12,项目名称:gnl,代码行数:32,代码来源:barotropic.py
示例8: plot_results_with_hyperplane
def plot_results_with_hyperplane(clf, clf_name, df, plt_nmbr):
x_min, x_max = df.x.min() - .5, df.x.max() + .5
y_min, y_max = df.y.min() - .5, df.y.max() + .5
# step between points. i.e. [0, 0.02, 0.04, ...]
step = .02
# to plot the boundary, we're going to create a matrix of every possible point
# then label each point as a wolf or cow using our classifier
xx, yy = np.meshgrid(np.arange(x_min, x_max, step), np.arange(y_min, y_max, step))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# this gets our predictions back into a matrix
Z = Z.reshape(xx.shape)
# create a subplot (we're going to have more than 1 plot on a given image)
pl.subplot(2, 2, plt_nmbr)
# plot the boundaries
pl.pcolormesh(xx, yy, Z, cmap=pl.cm.Paired)
# plot the wolves and cows
for animal in df.animal.unique():
pl.scatter(df[df.animal==animal].x,
df[df.animal==animal].y,
marker=animal,
label="cows" if animal=="x" else "wolves",
color='black',
c=df.animal_type, cmap=pl.cm.Paired)
pl.title(clf_name)
pl.legend(loc="best")
开发者ID:glamp,项目名称:yaksis,代码行数:28,代码来源:farmer.py
示例9: _make_logp_histogram
def _make_logp_histogram(points, logp, nbins, rangeci, weights, cbar):
from numpy import (ones_like, searchsorted, linspace, cumsum, diff,
sort, argsort, array, hstack, log10, exp)
if weights == None: weights = ones_like(logp)
edges = linspace(rangeci[0],rangeci[1],nbins+1)
idx = searchsorted(points, edges)
weightsum = cumsum(weights)
heights = diff(weightsum[idx])/weightsum[-1] # normalized weights
import pylab
vmin,vmax,cmap = cbar
cmap_steps = linspace(vmin,vmax,cmap.N+1)
bins = [] # marginalized maximum likelihood
for h,s,e,xlo,xhi in zip(heights,idx[:-1],idx[1:],edges[:-1],edges[1:]):
if s == e: continue
pv = -logp[s:e]
pidx = argsort(pv)
pw = weights[s:e][pidx]
x = array([xlo,xhi],'d')
y = hstack((0,cumsum(pw)))
z = pv[pidx][:,None]
# centerpoint, histogram height, maximum likelihood for each bin
bins.append(((xlo+xhi)/2,y[-1],exp(vmin-z[0])))
if len(z) > cmap.N:
# downsample histogram bar according to number of colors
pidx = searchsorted(z[1:-1].flatten(), cmap_steps)
if pidx[-1] < len(z)-1: pidx = hstack((pidx,-1))
y,z = y[pidx],z[pidx]
pylab.pcolormesh(x,y,z,vmin=vmin,vmax=vmax,hold=True,cmap=cmap)
# Draw bars around each histogram bin
#pylab.plot([xlo,xlo,xhi,xhi],[y[0],y[-1],y[-1],y[0]],'-k',linewidth=0.1,hold=True)
centers,height,maxlikelihood = array(bins).T
pylab.plot(centers, maxlikelihood*max(height), '-g', hold=True)
开发者ID:ScottSWu,项目名称:bumps,代码行数:33,代码来源:views.py
示例10: load_data
def load_data(self):
self.input_file = self.get_input()
if self.input_file is None:
print "No input file selected. Exiting..."
import sys
sys.exit(0)
self.nc = NC(self.input_file)
nc = self.nc
self.x = np.array(nc.variables['x'][:], dtype=np.double)
self.y = np.array(nc.variables['y'][:], dtype=np.double)
self.z = np.array(np.squeeze(nc.variables['usurf'][:]), dtype=np.double)
self.thk = np.array(np.squeeze(nc.variables['thk'][:]), dtype=np.double)
self.mask = dbg.initialize_mask(self.thk)
print "Mask initialization: done"
plt.figure(1)
plt.pcolormesh(self.x, self.y, self.mask)
plt.contour(self.x, self.y, self.z, colors='black')
plt.axis('tight')
plt.axes().set_aspect('equal')
plt.show()
开发者ID:ckhroulev,项目名称:dbg-playground,代码行数:25,代码来源:pism_regional.py
示例11: compute_mask
def compute_mask(self):
import matplotlib.nxutils as nx
if self.pts is not None:
def correct_mask(mask, x, y, pts):
for j in range(y.size):
for i in range(x.size):
if mask[j,i] > 0:
if nx.pnpoly(x[i], y[j], pts):
mask[j,i] = 2
else:
mask[j,i] = 1
correct_mask(self.mask, self.x, self.y, self.pts)
dbg.upslope_area(self.x, self.y, self.z, self.mask)
print "Drainage basin computation: done"
self.mask_computed = True
plt.figure(1)
plt.pcolormesh(self.x, self.y, self.mask)
plt.contour(self.x, self.y, self.z, colors='black')
plt.axis('tight')
plt.axes().set_aspect('equal')
plt.show()
开发者ID:ckhroulev,项目名称:dbg-playground,代码行数:25,代码来源:pism_regional.py
示例12: plotRadTilt
def plotRadTilt(plot_data, plot_cmaps, plot_titles, grid, file_name, base_ref=None):
subplot_base = 220
n_plots = 4
xs, ys, gs_x, gs_y, map = grid
pylab.figure(figsize=(12,12))
pylab.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, wspace=0.04)
for plot in range(n_plots):
pylab.subplot(subplot_base + plot + 1)
cmap, vmin, vmax = plot_cmaps[plot]
cmap.set_under("#ffffff", alpha=0.0)
pylab.pcolormesh(xs - gs_x / 2, ys - gs_y / 2, plot_data[plot] >= -90, vmin=0, vmax=1, cmap=mask_cmap)
pylab.pcolormesh(xs - gs_x / 2, ys - gs_y / 2, plot_data[plot], vmin=vmin, vmax=vmax, cmap=cmap)
pylab.colorbar()
if base_ref is not None:
pylab.contour(xs, ys, base_ref, levels=[10.], colors='k', lw=0.5)
# if plot == 0:
# pylab.contour(xs, ys, refl_88D[:, :, 0], levels=np.arange(10, 80, 10), colors='#808080', lw=0.5)
# pylab.plot(radar_x, radar_y, 'ko')
pylab.title(plot_titles[plot])
drawPolitical(map)
pylab.savefig(file_name)
pylab.close()
return
开发者ID:tsupinie,项目名称:research,代码行数:35,代码来源:read_enkf_rad.py
示例13: plotGridPref
def plotGridPref(gridscore, clfName, obj , metric = 'roc_auc'):
''' Plot Grid Performance
'''
# data_path = data_path+obj+'/'+clfName+'_opt.h5'
# f=hp.File(data_path, 'r')
# gridscore = f['grids_score'].value
# Get numblocks
CV = np.unique(gridscore["i_CV"])
folds = np.unique(gridscore["i_fold"])
numblocks = len(CV) * len(folds)
paramNames = gridscore.dtype.fields.keys()
paramNames.remove("mean_validation_score")
paramNames.remove("std")
paramNames.remove("i_CV")
paramNames.remove("i_fold")
score = gridscore["mean_validation_score"]
std = gridscore["std"]
newgridscore = gridscore[paramNames]
num_params = len(paramNames)
### get index of hit ###
hitindex = []
n_iter = len(score)/numblocks
for k in range(numblocks):
hit0index = np.argmax(score[k*n_iter: (k+1)*n_iter])
hitindex.append(k*n_iter+hit0index )
for m in range(num_params-1):
i = paramNames[m]
x = newgridscore[i]
for n in range(m+1, num_params):
# for j in list(set(paramNames)- set([i])):
j = paramNames[n]
y = newgridscore[j]
compound = [x,y]
# Only plot heat map if dtype of all elements of x, y are int or float
if [True]* len(compound)== map(lambda t: np.issubdtype(t.dtype, np.float) or np.issubdtype(t.dtype, np.int), compound):
gridsize = 50
fig = pl.figure()
points = np.vstack([x,y]).T
#####Construct MeshGrids##########
xnew = np.linspace(max(x), min(x), gridsize)
ynew = np.linspace(max(y), min(y), gridsize)
X, Y = np.meshgrid(xnew, ynew)
#####Interpolate Z on top of MeshGrids#######
Z = griddata(points, score, (X, Y), method = "cubic", tol = 1e-2)
z_min = min(score)
z_max = max(score)
pl.pcolormesh(X,Y,Z, cmap='RdBu', vmin=z_min, vmax=z_max)
pl.axis([x.min(), x.max(), y.min(), y.max()])
pl.xlabel(i, fontsize = 30)
pl.ylabel(j, fontsize = 30)
cb = pl.colorbar()
cb.set_label(metric, fontsize = 30)
##### Mark the "hit" points #######
hitx = x[hitindex]
hity = y[hitindex]
pl.plot(hitx, hity, 'rx')
# Save the plot
save_path = plot_path +obj+'/'+ clfName +'_' +metric+'_'+ i +'_'+ j+'.pdf'
fig.savefig(save_path)
开发者ID:rexshihaoren,项目名称:MSPrediction-Python,代码行数:60,代码来源:MSPred.py
示例14: __call__
def __call__(self, n):
if len(self.f.shape) == 3:
# f = f[x,v,t], 2 dim in phase space
ft = self.f[n,:,:]
pylab.pcolormesh(self.X, self.V, ft.T, cmap = 'jet')
pylab.colorbar()
pylab.clim(0,0.38) # for Landau test case
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$v$', fontsize = 18)
pylab.title('$N_x$ = %d, $N_v$ = %d, $t$ = %2.1f' % (self.x.N, self.v.N, self.it*self.t.width))
pylab.savefig(self.path + self.filename)
pylab.clf()
return None
if len(self.f.shape) == 2:
# f = f[x], 1 dim in phase space
ft = self.f[n,:]
pylab.plot(self.x.gridvalues,ft,'ob')
pylab.grid()
pylab.axis([self.xmin, self.xmax, self.ymin, self.ymax])
pylab.xlabel('$x$', fontsize = 18)
pylab.ylabel('$f(x)$', fontsize = 18)
pylab.savefig(self.path + self.filename)
return None
开发者ID:dsirajud,项目名称:IPython-notebooks,代码行数:26,代码来源:plots.py
示例15: plotLL
def plotLL(fname='out4.npy'):
plt.figure()
h= np.linspace(0,1,21)
g= np.linspace(0,1,21)
m=np.linspace(0,2,21)
d=np.linspace(0,2,21)
out=np.load(fname)
print np.nanmax(out),np.nanmin(out)
rang=np.nanmax(out)-np.nanmin(out)
maxloc= np.squeeze(np.array((np.nanmax(out)==out).nonzero()))
H,G=np.meshgrid(h,g)
print maxloc
for mm in range(m.size/2):
for dd in range(d.size/2):
plt.subplot(10,10,(9-mm)*10+dd+1)
plt.pcolormesh(h,g,out[:,:,mm*2,dd*2].T,
vmax=np.nanmax(out),vmin=np.nanmax(out)-rang/4.)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
if mm==maxloc[2]/2 and dd==maxloc[3]/2:
plt.plot(h[maxloc[0]],g[maxloc[1]],'ow',ms=8)
if dd==0:
print mm,dd
plt.ylabel('%.1f'%m[mm*2])
if mm==0: plt.xlabel('%.1f'%d[dd*2])
plt.title(fname[:6])
开发者ID:simkovic,项目名称:toolbox,代码行数:26,代码来源:Model.py
示例16: plot_iris_knn
def plot_iris_knn():
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
knn.fit(X, y)
x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1
y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure()
pl.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
pl.xlabel('sepal length (cm)')
pl.ylabel('sepal width (cm)')
pl.axis('tight')
开发者ID:Arjunil,项目名称:BangPypers-SKLearn,代码行数:25,代码来源:plot.py
示例17: outside_juristiction
def outside_juristiction(self, data):
data = copy.deepcopy(data)
xynames = ['X', 'Y']
data['Prediction'] = pandas.Series(self.clf.predict(data[xynames]))
data = data[data.PdDistrictInt != data.Prediction]
data = data.reset_index(drop=True)
data['Prob'] = pandas.Series(
[max(x) for x in self.clf.predict_proba(data[xynames])]
)
data = data[data.Prob > 0.95].reset_index(drop=True)
fig = pl.figure()
x_min, x_max = data.X.min() - 0.01, data.X.max() + 0.01
y_min, y_max = data.Y.min() - 0.01, data.Y.max() + 0.01
xx, yy = np.meshgrid(
np.arange(x_min, x_max, self.step),
np.arange(y_min, y_max, self.step)
)
Z = self.clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.pcolormesh(xx, yy, Z, cmap='jet', alpha=1.0)
pl.scatter(data.X, data.Y, c=data.PdDistrictInt, cmap='jet', alpha=1.0)
pl.savefig('plots/knn_PD_2.png')
pl.close(fig)
return data
开发者ID:scphall,项目名称:samandbobbs,代码行数:26,代码来源:pdnn.py
示例18: plotter
def plotter(view=None, **kw):
x,y = kw[args[0]],kw[args[1]]
r = linspace(range[0],range[1],200)
X,Y = meshgrid(x+r,y+r)
kw['x'],kw['y'] = X,Y
pylab.pcolormesh(x+r,y+r,nllf(**kw))
pylab.plot(x,y,'o',hold=True, markersize=6,markerfacecolor='red',markeredgecolor='black',markeredgewidth=1, alpha=0.7)
开发者ID:ScottSWu,项目名称:bumps,代码行数:7,代码来源:model.py
示例19: plot_knn_boundary
def plot_knn_boundary():
## Training dataset preparation
# use sklearn iris dataset
iris_dataset = datasets.load_iris()
# first two dimensions as the features
# it's easy to plot boundary in 2D
train_data = iris_dataset.data[:,:2]
print "init:",train_data
# get labels
labels = iris_dataset.target # labels
print "init2:",labels
## Test dataset preparation
h = 0.1
x0_min = train_data[:,0].min() - 0.5
x0_max = train_data[:,0].max() + 0.5
x1_min = train_data[:,1].min() - 0.5
x1_max = train_data[:,1].max() + 0.5
x0_features, x1_features = np.meshgrid(np.arange(x0_min, x0_max, h),
np.arange(x1_min, x1_max, h))
# test dataset are samples from the whole regions of feature domains
test_data = np.c_[x0_features.ravel(), x1_features.ravel()]
## KNN classification
p_labels = [] # prediction labels
for test_sample in test_data:
# knn prediction
p_label = knn_predict(train_data, labels, test_sample, n_neighbors = 6)
p_labels.append(p_label)
# list to array
p_labels = np.array(p_labels)
p_labels = p_labels.reshape(x0_features.shape)
## Boundary plotting 边界策划
pl.figure(1)
pl.set_cmap(pl.cm.Paired)
pl.pcolormesh(x0_features, x1_features, p_labels)
pl.scatter(train_data[:,0], train_data[:,1], c = labels)
# x y轴的名称
pl.xlabel('feature 0')
pl.ylabel('feature 1')
# 设置x,y轴的上下限
pl.xlim(x0_features.min(), x0_features.max())
pl.ylim(x1_features.min(), x1_features.max())
# 设置x,y轴记号
pl.xticks(())
pl.yticks(())
pl.show()
开发者ID:gssgch,项目名称:gssgML,代码行数:60,代码来源:knn_boundary_plot.py
示例20: plotTiming
def plotTiming(vortex_prob, vortex_times, times, map, grid_spacing, tornado_track, title, file_name, obs=None, centers=None, min_prob=0.1):
nx, ny = vortex_prob.shape
gs_x, gs_y = grid_spacing
xs, ys = np.meshgrid(gs_x * np.arange(nx), gs_y * np.arange(ny))
time_color_map = matplotlib.cm.Accent
time_color_map.set_under('#ffffff')
vortex_times = np.where(vortex_prob >= min_prob, vortex_times, -1)
track_xs, track_ys = map(*reversed(tornado_track))
pylab.figure(figsize=(10, 8))
pylab.axes((0.025, 0.025, 0.95, 0.925))
pylab.pcolormesh(xs, ys, vortex_times, cmap=time_color_map, vmin=times.min(), vmax=times.max())
tick_labels = [ (datetime(2009, 6, 5, 18, 0, 0) + timedelta(seconds=int(t))).strftime("%H%M") for t in times ]
bar = pylab.colorbar()#orientation='horizontal', aspect=40)
bar.locator = FixedLocator(times)
bar.formatter = FixedFormatter(tick_labels)
bar.update_ticks()
pylab.plot(track_xs, track_ys, 'mv-', lw=2.5, mfc='k', ms=8)
drawPolitical(map, scale_len=(xs[-1, -1] - xs[0, 0]) / 10.)
pylab.title(title)
pylab.savefig(file_name)
pylab.close()
开发者ID:tsupinie,项目名称:research,代码行数:31,代码来源:plot_probability_swaths.py
注:本文中的pylab.pcolormesh函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论