本文整理汇总了Python中pylab.loglog函数的典型用法代码示例。如果您正苦于以下问题:Python loglog函数的具体用法?Python loglog怎么用?Python loglog使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了loglog函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: logskew
def logskew(d,floors = [],col='',divvypk=[]):
maxd = max(d.flatten())
if len(floors) == 0:
floors = 1./maxd * 2.**N.arange(-5,5.01,1.)
print floors
for fl in floors:
dcopy = 1.*d
wltf = N.where(dcopy < fl)
dcopy[wltf] = 0.*dcopy[wltf] + fl
logrho = N.log(dcopy)
var = N.var(decreaseres(logrho,f=16).flatten())
#skew = SS.skew(logrho.flatten())
#print fl,'log:',var,'lin:',N.var(dcopy.flatten())
print fl,'log:',var#,SS.skew(dcopy.flatten())
k,pk = power.pk(logrho)
if (len(divvypk) > 0):
M.loglog(k,pk/divvypk/var,col)
if (len(divvypk) == 0):
return pk,pk/var
else:
return
开发者ID:astrofanlee,项目名称:project_TL,代码行数:26,代码来源:distrib.py
示例2: extrapolate
def extrapolate(n, y, tolerance=1e-15, plot=False, call_show=True):
"Extrapolate functional value Y from sequence of values (n, y)."
# Make sure we have NumPy arrays
n = array(n)
y = array(y)
# Create initial "bound"
Y0 = 0.99*y[-1]
Y1 = 1.01*y[-1]
# Compute initial interior points
phi = (sqrt(5.0) + 1.0) / 2.0
Y2 = Y1 - (Y1 - Y0) / phi
Y3 = Y0 + (Y1 - Y0) / phi
# Compute initial values
F0, e, nn, ee, yy = _eval(n, y, Y0)
F1, e, nn, ee, yy = _eval(n, y, Y1)
F2, e, nn, ee, yy = _eval(n, y, Y2)
F3, e, nn, ee, yy = _eval(n, y, Y3)
# Solve using direct search (golden ratio fraction)
while Y1 - Y0 > tolerance:
if F2 < F3:
Y1, F1 = Y3, F3
Y3, F3 = Y2, F2
Y2 = Y1 - (Y1 - Y0) / phi
F2, e, nn, ee, yy = _eval(n, y, Y2)
else:
Y0, F0 = Y2, F2
Y2, F2 = Y3, F3
Y3 = Y0 + (Y1 - Y0) / phi
F3, e, nn, ee, yy = _eval(n, y, Y3)
print Y0, Y1
# Compute reference value
Y = 0.5*(Y0 + Y1)
# Print results
print
print "Reference value:", Y
# Plot result
if plot:
pylab.figure()
pylab.subplot(2, 1, 1)
pylab.title("Reference value: %g" % Y)
pylab.semilogx(n, y, 'b-o')
pylab.semilogx(nn, yy, 'g--')
pylab.subplot(2, 1, 2)
pylab.loglog(n, e, 'b-o')
pylab.loglog(nn, ee, 'g--')
pylab.grid(True)
if call_show:
pylab.show()
return Y
开发者ID:BijanZarif,项目名称:CBC.Solve,代码行数:60,代码来源:extrapolate.py
示例3: romanzuniga07
def romanzuniga07(wavelength, AKs, makePlot=False):
filters = ['J', 'H', 'Ks', '[3.6]', '[4.5]', '[5.8]', '[8.0]']
wave = np.array([1.240, 1.664, 2.164, 3.545, 4.442, 5.675, 7.760])
A_AKs = np.array([2.299, 1.550, 1.000, 0.618, 0.525, 0.462, 0.455])
A_AKs_err = np.array([0.530, 0.080, 0.000, 0.077, 0.063, 0.055, 0.059])
# Interpolate over the curve
spline_interp = interpolate.splrep(wave, A_AKs, k=3, s=0)
A_AKs_at_wave = interpolate.splev(wavelength, spline_interp)
A_at_wave = AKs * A_AKs_at_wave
if makePlot:
py.clf()
py.errorbar(wave, A_AKs, yerr=A_AKs_err, fmt='bo',
markerfacecolor='none', markeredgecolor='blue',
markeredgewidth=2)
# Make an interpolated curve.
wavePlot = np.arange(wave.min(), wave.max(), 0.1)
extPlot = interpolate.splev(wavePlot, spline_interp)
py.loglog(wavePlot, extPlot, 'k-')
# Plot a marker for the computed value.
py.plot(wavelength, A_AKs_at_wave, 'rs',
markerfacecolor='none', markeredgecolor='red',
markeredgewidth=2)
py.xlabel('Wavelength (microns)')
py.ylabel('Extinction (magnitudes)')
py.title('Roman Zuniga et al. 2007')
return A_at_wave
开发者ID:dhomeier,项目名称:PopStar,代码行数:33,代码来源:reddening.py
示例4: plotppf
def plotppf(self,x=None,xmin=None,alpha=None,dolog=True,**kwargs):
"""
Plots the power-law-predicted value on the Y-axis against the real
values along the X-axis. Can be used as a diagnostic of the fit
quality.
"""
if not(xmin): xmin=self._xmin
if not(alpha): alpha=self._alpha
if not(x): x=numpy.sort(self.data[self.data>xmin])
else: x=numpy.sort(x[x>xmin])
# N = M^(-alpha+1)
# M = N^(1/(-alpha+1))
m0 = min(x)
N = (1.0+numpy.arange(len(x)))[::-1]
xmodel = m0 * N**(1/(1-alpha)) / max(N)**(1/(1-alpha))
if dolog:
pylab.loglog(x,xmodel,'.',**kwargs)
pylab.gca().set_xlim(min(x),max(x))
pylab.gca().set_ylim(min(x),max(x))
else:
pylab.plot(x,xmodel,'.',**kwargs)
pylab.plot([min(x),max(x)],[min(x),max(x)],'k--')
pylab.xlabel("Real Value")
pylab.ylabel("Power-Law Model Value")
开发者ID:robypoteau,项目名称:tdproject,代码行数:27,代码来源:plfit.py
示例5: plotData
def plotData(filename):
gatetime, allanvar = np.loadtxt(filename, comments="#", delimiter=",", unpack=True)
pl.loglog(gatetime, allanvar, '.-')
pl.xlabel("Gate time (s)")
pl.ylabel("Allan deviation (Hz)")
pl.xlim([min(gatetime), max(gatetime)])
pl.show()
开发者ID:imrehg,项目名称:labhardware,代码行数:7,代码来源:quick_plot.py
示例6: plot_calibrated
def plot_calibrated(time_len=128, chan=1):
""" Plot calibrated as a function of time """
nar.load_data() if plot_old else nar.take_data(time_len)
cal = (nar.ts_x_on + nar.ts_x_off) * Td / (nar.ts_x_on/nar.ts_x_off - 1)
p_tot = (nar.ts_x_on + nar.ts_x_off)
time_series = cal[:, chan]
p_avg = np.average(p_tot[:, chan])
time_series = time_series / p_avg
spec_series = np.abs(np.fft.rfft(time_series))
#uncal = nar.ts_x_on
#uncal = uncal[:, chan]
#spec_uncal = np.abs(np.fft.rfft(uncal))
t = np.cumsum(np.ones([time_len]))
t = t /np.max(t) * total_time
tu = np.cumsum(np.ones([time_len/2+1]))/total_time
plt.subplot(211)
#plt.plot(t, uncal, c=c[1])
plt.plot(t, time_series, c=c[0])
plt.xlabel("Time (s)")
plt.ylabel("Calibrated signal (K)")
plt.subplot(212)
#plt.loglog(tu, spec_uncal, c=c[1])
plt.loglog(tu, spec_series, c=c[0])
plt.xlabel("Spectrum (Hz)")
plt.ylabel("")
plt.show()
开发者ID:telegraphic,项目名称:hipsr_gateware,代码行数:31,代码来源:nar_test.py
示例7: snr_mat_f
def snr_mat_f(mchvec, reds, lum_dist, fmin, fmax, fvec, finteg, tobs, sn_f):
''''''
mch_fmat=np.transpose(np.tile(mchvec, (len(reds), len(fvec), finteg, 1) ), axes=(0,3,1,2))
z_fmat=np.transpose(np.tile(reds, (len(mchvec), len(fvec), finteg, 1) ),axes=(3,0,1,2))
f_fmat=np.transpose(np.tile(fvec, (len(reds), len(mchvec), finteg, 1) ), axes=(0,1,3,2))
finteg_fmat=np.transpose(np.tile(np.arange(finteg), (len(reds), len(mchvec), len(fvec), 1) ), axes=(0,1,2,3))
stshape=np.shape(z_fmat) #Standard shape of all matrices that I will use.
DL_fmat=np.transpose(np.tile(lum_dist, (len(mchvec), len(fvec), finteg, 1) ),axes=(3,0,1,2)) #Luminosity distance in Mpc.
flim_fmat=A8.f_cut(1./4., 2.*mch_fmat*2.**(1./5.))*1./(1.+z_fmat) #The symmetric mass ratio is 1/4, since I assume equal masses.
flim_det=np.maximum(np.minimum(fmax, flim_fmat), fmin) #The isco frequency limited to the detector window.
tlim_fmat=CM.tafter(mch_fmat, f_fmat, flim_fmat, z_fmat)
#By construction, f_mat cannot be smaller than fmin or larger than fmax (which are the limits imposed by the detector).
fmin_fmat=np.minimum(f_fmat, flim_det) #I impose that the minimum frequency cannot be larger than the fisco.
fmaxobs_fmat=flim_det.copy()
#fmaxobs_fmat=fmin_fmat.copy()
fmaxobs_fmat[tobs<tlim_fmat]=CM.fafter(mch_fmat[tobs<tlim_fmat], z_fmat[tobs<tlim_fmat], f_fmat[tobs<tlim_fmat], tobs)
fmax_fmat=np.minimum(fmaxobs_fmat, flim_det) #The maximum frequency (after an observation tobs) cannot exceed fisco or the maximum frequency of the detector.
integconst=(np.log10(fmax_fmat)-np.log10(fmin_fmat))*1./(finteg-1)
finteg_fmat=fmin_fmat*10**(integconst*finteg_fmat)
sn_vec=sn_f(fvec)##########
sn_fmat=sn_f(finteg_fmat) #Noise spectral density.
#htilde_fmat=A8.htilde_f(1./4., 2.*mch_fmat*2**(1./5.), z_fmat, DL_fmat, f_fmat)
htilde_fmat=A8.htilde_f(1./4., 2.*mch_fmat*2**(1./5.), z_fmat, DL_fmat, finteg_fmat)
py.loglog(finteg_fmat[0,0,:,0],htilde_fmat[0,0,:,0]**2.)
py.loglog(finteg_fmat[0,0,:,0],sn_fmat[0,0,:,0])
snrsq_int_fmat=4.*htilde_fmat**2./sn_fmat #Integrand of the S/N square.
snrsq_int_m_fmat=0.5*(snrsq_int_fmat[:,:,:,1:]+snrsq_int_fmat[:,:,:,:-1]) #Integrand at the arithmetic mean of the infinitesimal intervals.
df_fmat=np.diff(finteg_fmat, axis=3) #Infinitesimal intervals.
snr_full_fmat=np.sqrt(np.sum(snrsq_int_m_fmat*df_fmat,axis=3)) #S/N as a function of redshift, mass and frequency.
fopt=fvec[np.argmax(snr_full_fmat, axis=2)] #Frequency at which the S/N is maximum, for each pixel of redshift and mass.
snr_opt=np.amax(snr_full_fmat, axis=2) #Maximum S/N at each pixel of redshift and mass.
snr_min=snr_full_fmat[:,:,0]
return snr_opt
开发者ID:pabloarosado,项目名称:horizon_python,代码行数:33,代码来源:CHECK_ALIGO_horizon_single.py
示例8: nishiyama09
def nishiyama09(wavelength, AKs, makePlot=False):
# Data pulled from Nishiyama et al. 2009, Table 1
filters = ['V', 'J', 'H', 'Ks', '[3.6]', '[4.5]', '[5.8]', '[8.0]']
wave = np.array([0.551, 1.25, 1.63, 2.14, 3.545, 4.442, 5.675, 7.760])
A_AKs = np.array([16.13, 3.02, 1.73, 1.00, 0.500, 0.390, 0.360, 0.430])
A_AKs_err = np.array([0.04, 0.04, 0.03, 0.00, 0.010, 0.010, 0.010, 0.010])
# Interpolate over the curve
spline_interp = interpolate.splrep(wave, A_AKs, k=3, s=0)
A_AKs_at_wave = interpolate.splev(wavelength, spline_interp)
A_at_wave = AKs * A_AKs_at_wave
if makePlot:
py.clf()
py.errorbar(wave, A_AKs, yerr=A_AKs_err, fmt='bo',
markerfacecolor='none', markeredgecolor='blue',
markeredgewidth=2)
# Make an interpolated curve.
wavePlot = np.arange(wave.min(), wave.max(), 0.1)
extPlot = interpolate.splev(wavePlot, spline_interp)
py.loglog(wavePlot, extPlot, 'k-')
# Plot a marker for the computed value.
py.plot(wavelength, A_AKs_at_wave, 'rs',
markerfacecolor='none', markeredgecolor='red',
markeredgewidth=2)
py.xlabel('Wavelength (microns)')
py.ylabel('Extinction (magnitudes)')
py.title('Nishiyama et al. 2009')
return A_at_wave
开发者ID:jluastro,项目名称:JLU-python-code,代码行数:35,代码来源:synthetic.py
示例9: ConvIndicator
def ConvIndicator(X, Y, pct=0.1, fs=14, eqaxis=False):
"""
Convergence indicator icon
==========================
"""
if len(X)<2: raise Exception('at least 2 points are required')
xx, yy = log10(X), log10(Y)
p = polyfit(xx, yy, 1)
m = round(p[0])
xx0, xx1 = min(xx), max(xx)
yy0, yy1 = min(yy), max(yy)
dxx, dyy = xx1-xx0, yy1-yy0
xxm, yym = (xx0+xx1)/2.0, (yy0+yy1)/2.0
xxl, xxr = xxm-pct*dxx, xxm+pct*dxx
shift = 0.5*pct*dxx*m
xm, ym = 10.0**xxm, 10.0**(yym-shift)
xl, xr = 10.0**xxl, 10.0**xxr
yl, yr = 10.0**(yym+m*(xxl-xxm)-shift),10.0**(yym+m*(xxr-xxm)-shift)
loglog(X, Y)
#plot(xm, ym, 'ro')
#plot(xl, yl, 'go')
#plot(xr, yr, 'mo')
points = array([[xl,yl],[xr,yl],[xr,yr]])
gca().add_patch(Polygon(points, ec='k', fc='None'))
xxR = xxm+1.2*pct*dxx
xR = 10.0**xxR
text(xR, ym, '%g'%m, ha='left', va='center', fontsize=fs)
if eqaxis: axis('equal')
return m
开发者ID:PatrickSchm,项目名称:gosl,代码行数:29,代码来源:gosl.py
示例10: plot_point
def plot_point(rank1, style=None):
if not style:
style = "r--"
# plot lines to point (rank1,pop1)
pop1 = pop[rank1]
P.loglog([rank1, rank1], [0.1, pop1], style)
P.loglog([1, rank1], [pop1, pop1], style)
开发者ID:dudarev,项目名称:datavis,代码行数:7,代码来源:rank_size.py
示例11: main
def main():
plt.ion()
fil = FletcherFilter()
Niter = 12
logp = plt.zeros((Niter,2))
for k in range(Niter):
while True:
#print k
p = plt.rand(2)
if not fil.dominated(p):
break
logp[k] = p
fil.add(p, 0.0, 0.0)
ff = fil.values[fil.valid]
ff = plt.r_[[[1e-6,1]], ff[plt.argsort(ff[:,0])], [[1,1e-6]]]
ww = plt.zeros((ff.shape[0] * 2 - 1, 2))
ww[::2] = ff
ww[1::2,0] = ff[1:,0]
ww[1::2,1] = ff[:-1,1]
plt.loglog(ww[:,0], ww[:,1], '-')
plt.loglog(logp[:,0], logp[:,1], 'ys-', lw=2)
plt.axis([0,1,0,1])
plt.axis('equal')
plt.grid()
code.interact()
开发者ID:nlw0,项目名称:corisco,代码行数:27,代码来源:sqp_plot_filter.py
示例12: test_integrators
def test_integrators(tmax=100,
Nsteps=1000,
x0=[0.0,1.0],
v0=[1.0,0.0]):
mag = lambda x: numpy.sqrt(numpy.dot(x,x))
fprime = lambda x: -x/mag(x)**3
energy = lambda x,v: 0.5*(v**2).sum(1) - 1./numpy.sqrt((x**2).sum(1))
pylab.figure(1)
for (method,N) in ((Euler,Nsteps),
(DriftKick,Nsteps),
(LeapFrog,Nsteps),
(VelocityVerlet,Nsteps),
(RungeKutta,Nsteps/4)):
t = numpy.linspace(0,tmax,N+1)
x_t,v_t = method(fprime,x0,v0,tmax,N)
E = energy(x_t,v_t)
delta_E = abs((E-E[0])/E[0])
pylab.loglog(t[1:],delta_E[1:],
label=method.__name__)
pylab.ylim(1E-8,1E4)
pylab.legend(loc=2)
pylab.xlabel(r'$\mathdefault{t}$')
pylab.ylabel(r'$\mathdefault{|\Delta E/E|}$')
pylab.show()
开发者ID:jakevdp,项目名称:pyOrbits,代码行数:30,代码来源:integrators.py
示例13: plot_convergence_data_from_file
def plot_convergence_data_from_file( labels ):
import pickle
l2_error = pickle.load( open( 'l2-error.p', 'rb' ) )
inf_error = pickle.load( open( 'inf-error.p', 'rb' ) )
num_pts = pickle.load( open( 'num-grid-points.p', 'rb' ) )
max_error = 0.
min_error = 1.
for i in xrange( len( l2_error ) ):
pylab.figure( 1 )
pylab.loglog( num_pts[i], l2_error[i], '-o', label = labels[i] )
pylab.figure( 2 )
pylab.loglog( num_pts[i], inf_error[i], '-o', label = labels[i] )
max_error = max( max_error, numpy.array( l2_error[i] ).max() )
min_error = min( min_error, numpy.array( l2_error[i] ).min() )
#matplotlib.rcParams.update({'font.size': 16})
pylab.figure( 1 )
pylab.legend()
pylab.xlabel(r'Number of grid points')
pylab.ylabel(r'$\lVert f - \hat{f}\rVert_{\ell_2}$')#,fontsize=16)
pylab.ylim(min_error/5.,5.*max_error)
pylab.savefig('genz-corner-peak-10d-5e-1c-quartic-decay-l2-convergence.eps',dpi=1200)
pylab.figure( 2 )
#pylab.title(r'$\int_{-1}^1 f(x)$', fontsize=10)
pylab.legend()
pylab.xlabel(r'Number of grid points')
pylab.ylabel(r'$\lVert I[f] - Q[f]\rVert_{\ell_2}$')
pylab.ylim(1e-16,5*max_error)
开发者ID:jjakeman,项目名称:pyheat,代码行数:34,代码来源:convergence_study.py
示例14: expy
def expy(d):
colors = ['b','g','r','c','m','y','k','b--','g--','r--','c--','m--','y--']
multi = 2.**N.arange(2,3.1,1.)
#multi = [77.]
for i in range(len(multi)):
dinflate = N.exp((d)*multi[i])-1.
k,p = power.pk(dinflate)
var = N.var((d)*multi[i])
lognocor = ((N.exp(var)-1)*N.exp(var)/var)
lognovar = (N.exp(var)-1)*N.exp(var)
print 1+2*var,'lognocor:',lognocor
#varlog = N.var(N.log(dinflate+1.).flatten())
k,plog = power.pk(N.log(dinflate+1))
print p[0]/plog[0], p[-1]/plog[-1]
#M.subplot(121)
M.loglog(k,p/plog/lognocor,colors[i])
#M.subplot(122)
#M.loglog(k,plog,colors[i])
#M.loglog([k[0],k[-1]],[lognovar,lognovar],colors[i])
#M.loglog(k,1./plog**mul,colors[i])
#preal = M.load('mill/s63/pm.pnl.dat')
#plogreal = M.load('mill/s63/plogm.pnl.dat')
#M.loglog(preal[:,0],preal[:,1]/plogreal[:,1],'b')
#M.xlabel(r'$k\ [\rm{Mpc}/h]$',fontsize=20)
#M.ylabel(r'$P_\delta(k)/P_{\log (1+\delta)}(k)$',fontsize=20)
M.show()
开发者ID:astrofanlee,项目名称:project_TL,代码行数:34,代码来源:distrib.py
示例15: MisorientationScalingCollapseCompareInset
def MisorientationScalingCollapseCompareInset(misses, bdlengths, labels, alpha=2.5):
""" good values for alpha seem to be 4, but 2.5 for experiment """
colors = ['b', 'r', 'g', 'y']
pl.rcParams.update({'legend.fontsize': 14,
'legend.columnspacing':1.2,
})
for i, (mis, label, bdlength) in enumerate(zip(misses, labels, bdlengths)):
t = mis*bdlength/(mis*bdlength).mean()
dx = 5./100.
y,x = np.histogram(t, bins=np.linspace(0, 5, 100))
x = (x[:-1]+x[1:])/2
y = y.astype('float')/y.sum() / dx
pl.plot(x, y, colors[i]+'o--', label=label)
alpha = fit_alpha(x, y)
xt = np.linspace(0,5, 1000)
pl.plot(xt, scaling(alpha, xt), colors[i]+'-', label=r"Fit, $\alpha$ = %0.1f" % alpha)
pl.xlabel(r"$\theta / \theta_{av}$")
pl.ylabel(r"$\theta_{av}\,P(\theta, \theta_{av})$")
pl.legend(loc='lower right')
ax = pl.axes([0.52, 0.52, 0.35, 0.35])
for i, (mis, label, bdlength) in enumerate(zip(misses, labels, bdlengths)):
t = mis*bdlength/(mis*bdlength).mean()
dx = 5./100.
y,x = np.histogram(t, bins=np.linspace(0, 5, 100))
x = (x[:-1]+x[1:])/2
y = y.astype('float')/y.sum() / dx
pl.plot(x, y, colors[i]+'o-', label=label)
pl.loglog()
return x, y
开发者ID:mattbierbaum,项目名称:cuda-plasticity,代码行数:34,代码来源:BoundaryPowerLaw.py
示例16: plotDependencyComponents
def plotDependencyComponents():
"""Plot thoretical dependency between n_samples and n_components"""
# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = pl.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))
# range of number of samples to embed
n_samples_range = np.logspace(1, 9, 9)
pl.figure()
for eps, color in zip(eps_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, \
eps=eps)
pl.loglog(n_samples_range, min_n_components, color=color)
pl.legend(["eps = %.1f" % eps for eps in eps_range], \
loc="lower right")
pl.xlabel("Number of observations to eps-embed")
pl.ylabel("Minimum number of dimensions")
pl.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
pl.show()
开发者ID:AkiraKane,项目名称:Python,代码行数:26,代码来源:the_Johnson-Lindenstrauss_bound_for_embedding_with_random_projections.py
示例17: plot_gain_drift
def plot_gain_drift(time_len=128, chan=1):
""" Have a look at the gain drift """
nar.load_data() if plot_old else nar.take_data(time_len)
time_series_on = nar.ts_x_on[:, chan]
spec_series_on = np.abs(np.fft.fft(time_series_on))
time_series_off = nar.ts_x_off[:, chan]
spec_series_off = np.abs(np.fft.fft(time_series_off))
#t = np.cumsum(np.ones([time_len]))
#tt = t/ np.max(t) * total_time
#tu = np.cumsum(np.ones([time_len]))/total_time
#print spec_series_off.shape
#print tu.shape
plt.subplot(211)
plt.plot(time_series_on, label="X-on", c=c[1])
#plt.plot(tt, 10*np.log10(time_series_off)), label="X-off", c=c[2])
plt.xlabel("Time")
plt.legend()
plt.subplot(212)
plt.loglog(spec_series_on, c=c[1])
#plt.loglog(tu, spec_series_off, c=c[2])
plt.xlabel("Spectrum")
plt.show()
开发者ID:telegraphic,项目名称:hipsr_gateware,代码行数:28,代码来源:nar_test.py
示例18: Run
def Run(inputfile,input,shape,fieldtype,corrfunctype,symmetrytype,logbinning,binnum,outputfile,plot):
"""
Performs RadialCorrelationFunctions on an inputfile that holds field data
in the space separated values of arbitrary arrangement (i.e. rows / columns don't matter).
Input is either by filename or by numpy.array. If input is specified it is taken to be the
data array. If not, the inputfile is opened and read for data.
data structure: array.shape should be like (dimension, dimension[0], dimension[1], ...).
examples:
* one dimensional 3-component vector field with 256 values - (3, 256)
* three dimensional 3-component vector field - (3, 256, 256, 256)
* 3x3 3d tensor field - (3, 3, 256, 256, 256)
"""
if input is None:
import Data_IO
data = Data_IO.ReadInScalarField(inputfile,shape)
else:
data = input
corr_func = RadialCorrelationFunctions(data,fieldtype,corrfunctype,symmetrytype,logbinning,binnum,fromState=False)
if outputfile is None:
outputfile = inputfile+'_correlationfunction.dat'
Data_IO.OutputXY(corr_func[0],corr_func[1],outputfile)
if plot:
import pylab
pylab.figure()
pylab.loglog(corr_func[0],corr_func[1],'.-')
pylab.xlabel(r'$C(r)$',fontsize=20)
pylab.ylabel(r'$r$',fontsize=20)
pylab.show()
开发者ID:mattbierbaum,项目名称:cuda-plasticity,代码行数:30,代码来源:CorrelationFunction.py
示例19: plot_cluster_context
def plot_cluster_context(sizes, densities, dir, name=None, k=None, suffix="png"):
"""
so many conditionals!
"""
print("plot_cluster_context(): plotting", name)
if name is None:
K = len(sizes)
fn = "{}/clusters_{:04d}.{}".format(dir, K, suffix)
else:
fn = "{}/{}_context.{}".format(dir, name, suffix)
if os.path.exists(fn):
print("plot_cluster_context(): {} exists already".format(fn))
return
if k is None:
fig = plt.figure(figsize=(6,6))
plt.subplots_adjust(left=0.15, right=0.97, bottom=0.15, top=0.97)
ms = 7.5
else:
fig = plt.figure(figsize=(4,4))
plt.subplots_adjust(left=0.2, right=0.96, bottom=0.2, top=0.96)
ms = 5.0
plt.clf()
if name is not None and k is None:
plt.savefig(fn)
print("plot_cluster_context(): wrote", fn)
return
_clusterplot(sizes, densities, k, ms=ms)
_clusterlims(sizes, densities)
plt.ylabel("cluster abundance-space density")
plt.xlabel("number in abundance-space cluster")
plt.loglog()
[l.set_rotation(45) for l in plt.gca().get_xticklabels()]
[l.set_rotation(45) for l in plt.gca().get_yticklabels()]
plt.savefig(fn)
print("plot_cluster_context(): wrote", fn)
开发者ID:abonaca,项目名称:Platypus,代码行数:35,代码来源:kmeans.py
示例20: plot_session_figs
def plot_session_figs(in_file):
"""Plot some graphs on the generated session file:
- thp vs duration
- cdf of duration
"""
sessions = np.load(in_file)
# duration vs min thp
pylab.clf()
pylab.plot(sessions[:, 3], sessions[:, 1], 'k, ')
pylab.loglog()
axes = pylab.gca()
pylab.grid()
axes = pylab.gca()
for tick in axes.xaxis.get_major_ticks():
tick.label1.set_fontsize(16)
pylab.xlabel("Minimum throughput in kbps", size=16)
for tick in axes.yaxis.get_major_ticks():
tick.label1.set_fontsize(16)
pylab.ylabel("Session duration per client (sec)", size=16)
pylab.savefig('%s_session_duration_vs_min_thp.pdf' % in_file)
# nb flows vs avg thp
pylab.clf()
pylab.plot(sessions[:, 4], sessions[:, 2], 'k, ')
pylab.loglog()
pylab.grid()
# axes = pylab.gca()
pylab.xlabel("Average throughput in kbps", size=16)
pylab.ylabel("Nb of flows", size=16)
pylab.savefig('%s_session_nb_fl_vs_avg_thp.pdf' % in_file)
pylab.clf()
import cdfplot
cdfplot.cdfplotdata(sessions[:, 1], _xlabel='Duration in seconds',
_title='Session durations', _fs_legend='x-large')
开发者ID:LouisPlisso,项目名称:analysis_tools,代码行数:33,代码来源:flow2session.py
注:本文中的pylab.loglog函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论