本文整理汇总了Python中pylab.gray函数的典型用法代码示例。如果您正苦于以下问题:Python gray函数的具体用法?Python gray怎么用?Python gray使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了gray函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: demo_histeq
def demo_histeq():
"""
Gray histogram equalization, make every gray value have same distribution.
This process could imporve contrast of image.
"""
im = np.array(Image.open('./computer_vision/scenery.jpg').convert('L'))
imhist, bins = np.histogram(im.flatten(), bins = 256, normed = True)
cdf = imhist.cumsum()
"""Normalization"""
cdf = 255 * cdf / cdf[-1]
im_n = np.interp(im.flatten(),bins[:-1], cdf)
"""
Image of equalization.
I don't know why reshape() function can't modify shape attribute,
it just change the arrangement of output if you print it out.
I've tried when you create a array with reshape(), it works.
"""
#im_n.reshape(im.shape)
im_n.shape = im.shape
pl.figure('Histogram equalization')
pl.subplot(1,2,1)
pl.gray()
pl.imshow(im)
pl.title('Orignal gray image')
pl.subplot(1,2,2)
pl.gray()
pl.imshow(im_n)
pl.title('equalized image')
pl.show()
开发者ID:T800GHB,项目名称:Python_Basic,代码行数:30,代码来源:basic_process.py
示例2: explore_data
def explore_data(data, images, target):
# try to determine the type of data...
print "data_type belonging to key data:"
try:
print np.dtype(data)
except TypeError as err:
print err
print "It has dimension", np.shape(data)
# plot a 3
# get indices of all threes in target
threes = np.where(target == 3)
#assert threes is not empty
assert(len(threes) > 0)
# choose the first 3
three_indx = threes[0]
# get the image
img = images[three_indx][0]
#plot it
plot.figure()
plot.gray()
plot.imshow(img, interpolation = "nearest")
plot.show()
plot.close()
开发者ID:EmCeeEs,项目名称:machine_learning,代码行数:28,代码来源:ex1.py
示例3: display_head
def display_head(set_x, set_y, n = 5):
'''
show some figures based on gray image matrixs
@type set_x: TensorSharedVariable,
@param set_x: gray level value matrix of the
@type set_y: TensorVariable,
@param set_y: label of the figures
@type n: int,
@param n: numbers of figure to be display, less than 10, default 5
'''
import pylab
if n > 10: n = 10
img_x = set_x.get_value()[0:n].reshape(n, 28, 28)
img_y = set_y.eval()[0:n]
for i in range(n):
pylab.subplot(1, n, i+1);
pylab.axis('off');
pylab.title(' %d' % img_y[i])
pylab.gray()
pylab.imshow(img_x[i])
开发者ID:LiuYouliang,项目名称:Practice-of-Machine-Learning,代码行数:25,代码来源:MLP.py
示例4: compare_keypoints
def compare_keypoints(im1, im2, pos1, pos2, filename = None, separation = 0) :
""" Show two images next to each other with the keypoints marked
"""
# Construct unified image
im3 = append_images(im1,im2, separation)
# Find the offset and add it
offset = im1.shape[1]
pos2_o = [(x+offset + separation,y) for (x,y) in pos2]
# Create figure
fig = pylab.figure(frameon=False, figsize=(12.0, 8.0))
#ax = pylab.Axes(fig, [0., 0., 1., 1.])
# Show images
pylab.gray()
pylab.imshow(im3)
pylab.plot([x for x,y in pos1], [y for x,y in pos1], marker='o', color = '#00aaff', lw=0)
pylab.plot([x for x,y in pos2_o], [y for x,y in pos2_o], marker='o', color = '#00aaff', lw=0)
pylab.axis('off')
pylab.xlim(0,im3.shape[1])
pylab.ylim(im3.shape[0],0)
if filename != None :
fig.savefig(filename, bbox_inches='tight', dpi=300)
开发者ID:arnfred,项目名称:Fast-Match,代码行数:27,代码来源:figures.py
示例5: updateColorTable
def updateColorTable(self, cItem):
print "now viz!"+str(cItem.row())+","+str(cItem.column())
row = cItem.row()
col = cItem.column()
pl.clf()
#pl.ion()
x = pl.arange(self.dataDimen+1)
y = pl.arange(self.dataDimen+1)
X, Y = pl.meshgrid(x, y)
pl.subplot(1,2,1)
pl.pcolor(X, Y, self.mWx[row*self.dataMaxRange+col])
pl.gca().set_aspect('equal')
pl.colorbar()
pl.gray()
pl.title("user 1")
pl.subplot(1,2,2)
pl.pcolor(X, Y, self.mWy[row*self.dataMaxRange+col])
pl.gca().set_aspect('equal')
pl.colorbar()
pl.gray()
pl.title("user 2")
#pl.tight_layout()
pl.draw()
#pl.show()
pl.show(block=False)
开发者ID:cvpapero,项目名称:rqt_cca,代码行数:29,代码来源:cca_interface2.py
示例6: apply_conv
def apply_conv(name):
import pylab
from PIL import Image
# open random image of dimensions 639x516
img = Image.open(open(name))
# capture image height and width
width,height = img.size
# dimensions are (height, width, channel)
img = numpy.asarray(img, dtype='float64') / 256.
# put image in 4D tensor of shape (1, 3, height, width)
img_ = img.transpose(2, 0, 1).reshape(1, 3, height, width)
filtered_img = f(img_)
# plot original image and first and second components of output
pylab.subplot(1, 3, 1); pylab.axis('off'); pylab.imshow(img)
pylab.gray();
# recall that the convOp output (filtered image) is actually a "minibatch",
# of size 1 here, so we take index 0 in the first dimension:
pylab.subplot(1, 3, 2); pylab.axis('off'); pylab.imshow(filtered_img[0, 0, :, :])
pylab.subplot(1, 3, 3); pylab.axis('off'); pylab.imshow(filtered_img[0, 1, :, :])
pylab.show()
开发者ID:rsumana,项目名称:UserProfiling,代码行数:25,代码来源:conv.py
示例7: main
def main():
"""Compute the SSIM index on two input images specified on the cmd line."""
import pylab
argv = sys.argv
if len(argv) != 3:
print('usage: python -m sp.ssim image1.tif image2.tif', file=sys.stderr)
sys.exit(2)
try:
from PIL import Image
img1 = numpy.asarray(Image.open(argv[1]))
img2 = numpy.asarray(Image.open(argv[2]))
except Exception as e:
e = 'Cannot load images' + str(e)
print(e, file=sys.stderr)
ssim_map = ssim(img1, img2)
ms_ssim = msssim(img1, img2)
pylab.figure()
pylab.subplot(131)
pylab.title('Image1')
pylab.imshow(img1, interpolation='nearest', cmap=pylab.gray())
pylab.subplot(132)
pylab.title('Image2')
pylab.imshow(img2, interpolation='nearest', cmap=pylab.gray())
pylab.subplot(133)
pylab.title('SSIM Map\n SSIM: %f\n MSSSIM: %f' % (ssim_map.mean(), ms_ssim))
pylab.imshow(ssim_map, interpolation='nearest', cmap=pylab.gray())
pylab.show()
return 0
开发者ID:incunabulum,项目名称:signal-processing,代码行数:32,代码来源:ssim.py
示例8: test_rot180
def test_rot180():
import cudamat
import numpy as np
num_images = 100
img_size = 50
img_tot_size = 50*50
inputs = np.random.randn(num_images, img_tot_size)
inputs[1:] = (np.random.rand(*inputs[1:].shape)<0.5)
inputs[0] = (np.random.rand(*inputs[1].shape)<0.005)
targets = np.random.randn(num_images, img_tot_size)
cu_inputs = cudamat.CUDAMatrix(inputs.T)
cu_targets = cudamat.CUDAMatrix(targets.T)
cudamat._cudamat.rot180(cu_inputs.p_mat, cu_targets.p_mat, 0)
cua_targets = cu_targets.asarray().T
targets = np.array([x[::-1,::-1]
for x in inputs.reshape(num_images, img_size, img_size)]).reshape(num_images, img_tot_size)
print abs(targets - cua_targets).max()
from pylab import imshow, subplot, gray
gray()
subplot(221)
imshow(inputs[0].reshape(img_size, img_size), interpolation='nearest')
subplot(222)
imshow(targets[0].reshape(img_size, img_size), interpolation='nearest')
subplot(223)
imshow(cua_targets[0].reshape(img_size, img_size), interpolation='nearest')
开发者ID:barapa,项目名称:HF-RNN,代码行数:35,代码来源:test_conv.py
示例9: test_copyOutOf
def test_copyOutOf():
import cudamat
import numpy as np
num_images = 100
img_size = 50
target_size = 72
img_tot_size = img_size**2
target_tot_size = target_size**2
targets = np.random.randn(target_tot_size, num_images)<-2
inputs = np.zeros((img_tot_size, num_images))
cu_inputs = cudamat.CUDAMatrix(inputs)
cu_targets = cudamat.CUDAMatrix(targets)
assert (target_size - img_size) % 2 == 0
padding = (target_size - img_size)/2
cudamat._cudamat.copy_out_of_center(cu_targets.p_mat, cu_inputs.p_mat, padding, 0)
cua_inputs = cu_inputs.asarray()
#print abs(targets - cua_targets).max()
from pylab import imshow, subplot, gray
gray()
#subplot(221)
#imshow(inputs[0].reshape(img_size, img_size), interpolation='nearest')
subplot(222)
imshow(targets[:,1].reshape(target_size, target_size), interpolation='nearest')
subplot(223)
imshow(cua_inputs[:,1].reshape(img_size, img_size), interpolation='nearest')
开发者ID:barapa,项目名称:HF-RNN,代码行数:33,代码来源:test_conv.py
示例10: makeTestPair
def makeTestPair(paths, homography, collection, location=".", size=(250,250), scale = 1.0) :
""" Given a pair of paths to two images and a homography between them,
this function creates two crops and calculates a new homography.
input: paths [strings] (paths to images)
homography [numpy.ndarray] (3 by 3 array homography)
collection [string] (The name of the testset)
location [string] (The location (path) of the testset
size [(int, int)] (The size of an image crop in pixels)
scale [double] (The scale by which we resize the crops after they've been cropped)
out: nothing
"""
# Get width and height
width, height = size
# Load images in black/white
images = map(loadImage, paths)
# Crop part of first image and part of second image:
(top_o, left_o) = (random.randint(0, images[0].shape[0]-height), random.randint(0, images[0].shape[1]-width))
(top_n, left_n) = (random.randint(0, images[1].shape[0]-height), random.randint(0, images[1].shape[1]-width))
# Get two file names
c_path = getRandPath("%s/%s/" % (location, collection))
if not exists(dirname(c_path)) : makedirs(dirname(c_path))
# Make sure we save as gray
pylab.gray()
im1 = images[0][top_o: top_o + height, left_o: left_o + width]
im2 = images[1][top_n: top_n + height, left_n: left_n + width]
im1_scaled = imresize(im1, size=float(scale), interp='bicubic')
im2_scaled = imresize(im2, size=float(scale), interp='bicubic')
pylab.imsave(c_path + "_1.jpg", im1_scaled)
pylab.imsave(c_path + "_2.jpg", im2_scaled)
# Homography for transpose
T1 = numpy.identity(3)
T1[0,2] = left_o
T1[1,2] = top_o
# Homography for transpose back
T2 = numpy.identity(3)
T2[0,2] = -1*left_n
T2[1,2] = -1*top_n
# Homography for scale
Ts = numpy.identity(3)
Ts[0,0] = scale
Ts[1,1] = scale
# Homography for scale back
Tsinv = numpy.identity(3)
Tsinv[0,0] = 1.0/scale
Tsinv[1,1] = 1.0/scale
# Combine homographyies and save
hom = Ts.dot(T2).dot(homography).dot(T1).dot(Tsinv)
hom = hom / hom[2,2]
numpy.savetxt(c_path, hom)
开发者ID:arnfred,项目名称:Mirror-Match,代码行数:60,代码来源:murals.py
示例11: plotSources
def plotSources(im, sources, schema):
plt.clf()
plt.imshow(im.getArray(), origin='lower', interpolation='nearest',
vmin=-100, vmax=500)
plt.gray()
shapekey = schema.find('shape.sdss').key
xykey = schema.find('centroid.sdss').key
flagkeys = [schema.find(x).key for x in [
'shape.sdss.flags.maxiter', 'shape.sdss.flags.shift',
'shape.sdss.flags.unweighted', 'shape.sdss.flags.unweightedbad']]
flagabbr = ['M','S','U','B']
for source in sources:
quad = source.get(shapekey)
ixx,iyy = quad.getIxx(), quad.getIyy()
x,y = source.get(xykey)
sx,sy = sqrt(ixx),sqrt(iyy)
plt.gca().add_artist(Ellipse([x,y], 2.*sx, 2.*sy, angle=0.,
ec='r', fc='none', lw=2, alpha=0.5))
fs = ''
for j,key in enumerate(flagkeys):
val = source.get(key)
if val:
fs += flagabbr[j]
if len(fs):
plt.text(x+5, y, fs, ha='left', va='center')
开发者ID:laurenam,项目名称:meas_algorithms,代码行数:27,代码来源:ticket2019.py
示例12: show_weights
def show_weights(layer):
while isinstance(layer, lasagne.layers.InputLayer) == False:
if isinstance(layer, dnn.Conv2DDNNLayer):
first_conv_layer = layer
layer = layer.input_layer
weights = first_conv_layer.get_params()[0].get_value()
weights_no = weights.shape[0]
display_size = int(math.sqrt(weights_no)) + 1
print 'display_size : %s' % display_size
pylab.gray()
for i in range(display_size):
for j in range(display_size):
index = i * display_size + j + 1
if index >= weights_no:
break
print 'index : %s' % index
one_weight = weights[index][0]
pylab.subplot(display_size, display_size, index)
pylab.axis('off')
pylab.imshow(one_weight)
pylab.show()
开发者ID:only4hj,项目名称:fast-rcnn,代码行数:29,代码来源:util.py
示例13: _test
def _test():
# make a unit circle going counter-clockwise
radius = 60
theta = np.linspace(0, 2*np.pi, 10)
circle_ccw = np.array([radius*np.cos(theta), radius*np.sin(theta)])
area = ContourArea(circle_ccw)
assert area > 0
circle_cw = MakeClockwise(circle_ccw)
area = ContourArea(circle_cw)
assert area < 0
assert (circle_cw == circle_ccw[:,::-1]).all() # it actually got reversed
p = circle_cw + np.array([[280],[430]])
plb.ion()
plb.figure(0)
plb.gray()
i = plb.imread('mri2.png')
i = np.mean(i, axis=2)
plb.imshow(i)
global _contour
_contour, = plb.plot(np.append(p[0,-1], p[0]),np.append(p[1,-1], p[1]))
plb.draw()
Snake2D(i, p, iterations=500)
print 'done'
plb.ioff()
plb.savefig('mri-result.png')
plb.show()
开发者ID:vmonaco,项目名称:balloon-contour,代码行数:27,代码来源:snake2D.py
示例14: main
def main():
butils = measDeblend.BaselineUtilsF
foot = buildExample2()
fbb = foot.getBBox()
mask1 = afwImg.MaskU(fbb.getWidth(), fbb.getHeight())
mask1.setXY0(fbb.getMinX(), fbb.getMinY())
afwDet.setMaskFromFootprint(mask1, foot, 1)
if plt:
plt.clf()
plt.imshow(mask1.getArray(), origin='lower', interpolation='nearest',
extent=(fbb.getMinX(), fbb.getMaxX(), fbb.getMinY(), fbb.getMaxY()))
plt.gray()
plt.savefig('foot2.png')
sfoot = butils.symmetrizeFootprint(foot, 355, 227)
mask2 = afwImg.MaskU(fbb.getWidth(), fbb.getHeight())
mask2.setXY0(fbb.getMinX(), fbb.getMinY())
afwDet.setMaskFromFootprint(mask2, sfoot, 1)
plt.clf()
plt.imshow(mask2.getArray(), origin='lower', interpolation='nearest',
extent=(fbb.getMinX(), fbb.getMaxX(), fbb.getMinY(), fbb.getMaxY()))
plt.gray()
plt.savefig('sfoot3.png')
开发者ID:dr-guangtou,项目名称:hs_hsc,代码行数:28,代码来源:symmFootprint.py
示例15: test
def test():
from PIL import Image
import numpy
import pylab
import os
p = r'C:\repository\research_code\gwb_cropped\gwb_cropped'
imlist = [p+'/'+f for f in os.listdir(p) if 'jpg' in f]
im = numpy.array(Image.open(imlist[0])) #open one image to get the size
m,n = im.shape[0:2] #get the size of the images
imnbr = len(imlist) #get the number of images
#create matrix to store all flattened images
immatrix = numpy.array([numpy.array(Image.open(imlist[i])).flatten() for i in range(imnbr)],'f')
#perform PCA
V,S,immean = pca(immatrix)
#mean image and first mode of variation
immean = immean.reshape(m,n)
mode = V[0].reshape(m,n)
#show the images
pylab.figure()
pylab.gray()
pylab.imshow(immean)
pylab.figure()
pylab.gray()
pylab.imshow(mode)
pylab.show()
开发者ID:bhattsachin,项目名称:PatternRecognition,代码行数:35,代码来源:pca.py
示例16: plot
def plot(self):
"""
.. plot::
:include-source:
:width: 80%
from cellnopt.simulate import *
from cellnopt.core import *
pkn = cnodata("PKN-ToyPB.sif")
midas = cnodata("MD-ToyPB.csv")
s = boolean.BooleanSimulator(CNOGraph(pkn, midas))
s.simulate(30)
s.plot()
"""
pylab.clf()
data = numpy.array([self.data[x] for x in self.species if x in self.species])
data = data.transpose()
data = 1 - pylab.flipud(data)
pylab.pcolor(data, vmin=0, vmax=1, edgecolors="k")
pylab.xlabel("species");
pylab.ylabel("Time (tick)");
pylab.gray()
pylab.xticks([0.5+x for x in range(0,30)], self.species, rotation=90)
pylab.ylim([0, self.tick])
pylab.xlim([0, len(self.species)])
开发者ID:cellnopt,项目名称:cellnopt,代码行数:31,代码来源:simulator.py
示例17: plotAVTable
def plotAVTable(experiment):
pylab.figure()
pylab.gray()
pylab.pcolor(experiment.agent.module.params.reshape(81,4).max(1).reshape(9,9),
shading='faceted')
pylab.title("Action-Value table, %s, Run %d" %
(experiment.agent.learner.__class__.__name__, experiment.stepid))
开发者ID:bgrant,项目名称:portfolio,代码行数:7,代码来源:td.py
示例18: main
def main():
A = pl.imread(IMAGE_FILE)
i = 1
pc_values = (1, 5, 10, 20, 30, 40)
for num_pcs in pc_values:
# perform (truncated) pca
egvecs, proj, egvals = pca(A, num_pcs)
# reconstruct image
A_rec = np.dot(egvecs, proj).T + np.mean(A, axis=0)
# create sublplot
ax = pl.subplot(2, 3, i, frame_on=False)
ax.xaxis.set_major_locator(pl.NullLocator())
ax.yaxis.set_major_locator(pl.NullLocator())
# draw
pl.imshow(A_rec)
pl.title("{} pc's".format(num_pcs))
pl.gray()
i += 1
pl.show()
开发者ID:Adusei,项目名称:science,代码行数:26,代码来源:image.py
示例19: plot_matches
def plot_matches(self, name = "harris_match.jpg", show_below = True, match_maximum = None):
""" 対応点を線で結んで画像を表示する
入力:
show_below(対応の下に画像を表示するならTrue)"""
if self._append_image is None:
self.appendimages()
im1 = self._image_1.get_array_image()
im2 = self._image_2.get_array_image()
im3 = self._append_image
if self._image_1.get_harris_point() is None:
self._image_1.make_harris_points()
if self._image_2.get_harris_point() is None:
self._image_2.make_harris_points()
locs1 = self._image_1.get_harris_point()
locs2 = self._image_2.get_harris_point()
if show_below:
im3 = numpy.vstack((im3,im3))
pylab.figure(dpi=160)
pylab.gray()
pylab.imshow(im3, aspect = "auto")
cols1 = im1.shape[1]
if self._match_score is None:
self.match()
if match_maximum is not None:
self._match_score = self._match_score[:match_maximum]
for i,m in enumerate(self._match_score):
if m>0:
pylab.plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c')
pylab.axis('off')
pylab.savefig(name, dpi=160)
开发者ID:haisland0909,项目名称:python_practice,代码行数:31,代码来源:harrissample.py
示例20: interference_maker
def interference_maker(self):
wavelength = input("input wavelength: ")
k = 2*pi/wavelength
amplitude = input("input amplitude: ")
distance_between_centers = input("input distance between centers: ")
length = 100.0
num_points = 500
spacing = length/num_points
first_x = length/2 + distance_between_centers/2
second_x = length/2 - distance_between_centers/2
first_y = length/2
second_y = first_y
points_array = empty([num_points, num_points], float)
for i in range(num_points):
y = spacing*i
for j in range(num_points):
x = spacing*j
r1 = sqrt((x-first_x)**2 + (y - first_y)**2)
r2 = sqrt((x-second_x)**2 + (y - second_y)**2)
points_array[i, j] = amplitude*(sin(k*r1)+sin(k*r2))
imshow(points_array, origin="lower", extent=[0, length, 0, length])
gray()
show()
开发者ID:SujeethJinesh,项目名称:Computational-Physics-Python,代码行数:28,代码来源:jan_28_wave.py
注:本文中的pylab.gray函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论