本文整理汇总了Python中pylab.get_cmap函数的典型用法代码示例。如果您正苦于以下问题:Python get_cmap函数的具体用法?Python get_cmap怎么用?Python get_cmap使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了get_cmap函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: visibility
def visibility(vis,pol):
"""
Helper function for plotMP. Defines the visibility/transparency of scatter
symbols.
@param vis: keyword among 'Visible', 'Invisible', and 'Transparent'.
@type vis: string
"""
if vis == "Visible":
c = [pol]
cmap = P.get_cmap('jet')
v = True
col = "0.0"
elif vis == "Invisible":
c = [0.0]
cmap = P.get_cmap('gist_yarg')
v = False
col = "1.0"
elif vis == "Transparent":
c = [0.20]
cmap = P.get_cmap('gist_yarg')
v = True
col = "0.80"
else:
c = None
cmap = None
v = None
col = None
return [c, cmap, v, col]
开发者ID:jradavenport,项目名称:clearogram,代码行数:31,代码来源:conf-gcB-rossby-age-v4-big.py
示例2: show_matrix_with_names
def show_matrix_with_names(matrix, vert_names, horiz_names, colormap='b_jet', overlay=None, force_range=False):
def full_rename(namelist, subtypes):
def rename(list, subtype, character):
ret_list = []
for bearer in list:
modded = False
for mod_decider in subtype:
if mod_decider in bearer:
modded = True
ret_list.append(bearer+' '+str(character))
break
if not modded:
ret_list.append(bearer)
return ret_list
new_vert_names = namelist
for idux, subtype in enumerate(subtypes, 1):
new_vert_names = rename(new_vert_names, subtype, ''.join(['*']*idux))
return new_vert_names
if colormap == 'b_jet':
prism_cmap = get_cmap('jet')
prism_vals = prism_cmap(np.arange(0, 1, 0.01))
prism_vals[99] = [0, 0, 0, 1]
costum_cmap = colors.LinearSegmentedColormap.from_list('my_colormap', prism_vals)
else:
costum_cmap = get_cmap(colormap)
if force_range:
plt.imshow(matrix, interpolation='nearest', cmap=costum_cmap, vmin=force_range[0], vmax=force_range[1])
else:
plt.imshow(matrix, interpolation='nearest', cmap=costum_cmap)
plt.colorbar()
if overlay:
print overlay[0]
print overlay[1]
overlay_y, overlay_x = np.nonzero(overlay[0])
plt.scatter(overlay_x, overlay_y, c='k', marker='*', label=overlay[1])
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, mode="expand", borderaxespad=0.)
plt.tick_params(axis='both', labelsize=10)
if type(vert_names) == list:
plt.yticks(range(0, len(vert_names)), vert_names, rotation='horizontal')
if type(horiz_names) == list:
plt.xticks(range(0, len(horiz_names)), horiz_names, rotation='vertical')
if type(vert_names) == tuple:
vert_names = full_rename(vert_names[0], vert_names[1:])
plt.yticks(range(0, len(vert_names)), vert_names, rotation='horizontal')
if type(horiz_names) == tuple:
horiz_names = full_rename(horiz_names[0], horiz_names[1:])
plt.xticks(range(0, len(horiz_names)), horiz_names, rotation='vertical')
plt.subplots_adjust(left=0.2, bottom=0.2)
plt.show()
开发者ID:chiffa,项目名称:chiffatools,代码行数:60,代码来源:Linalg_routines.py
示例3: compare
def compare(hdf5_in, hdf5_out, pdf_out, n_events):
"""Plots original and cropped img side by side."""
_, original = load_dataset(hdf5_in) # original dataset
_, cropped = load_dataset(hdf5_out) # cropped dataset
# labels
pid_ticks = [0, 1, 2, 3, 4, 5, 6, 7]
pid_labels = ['nth', 'EM', 'mu', 'pi+', 'pi-', 'n', 'p', 'oth']
with PdfPages(pdf_out) as pdf:
for _ in range(n_events):
# grab random event
i = np.random.randint(0, cropped.shape[0])
fig, axes = plt.subplots(1, 2)
cmap = 'tab10'
cbt = 'pid'
fig.suptitle("Event: " + str(i))
# plot pid image
im = axes[0].imshow(original[i][0], cmap=pylab.get_cmap(cmap),
vmin=0, vmax=7)
# plot pid image
im = axes[1].imshow(cropped[i], cmap=pylab.get_cmap(cmap),
vmin=0, vmax=7)
# just plot settings
cbar = pylab.colorbar(im, fraction=0.04, ticks=pid_ticks)
cbar.ax.set_yticklabels(pid_labels)
cbar.set_label("pid", size=9)
cbar.ax.tick_params(labelsize=6)
pdf.savefig()
开发者ID:TomaszGolan,项目名称:ANNMINERvA,代码行数:35,代码来源:bb_extractor.py
示例4: plot_stats
def plot_stats(X,Y,model,costs):
#two plots, the decision fcn and points and the cost over time
y_onehot = Trainer.class_to_onehot(Y)
f,(p1,p2) = plot.subplots(1,2)
p2.plot(range(len(costs)),costs)
p2.set_title("Cost over time")
#plot points/centroids/decision fcn
cls_ct = y_onehot.shape[1]
y_cls = Trainer.onehot_to_int(y_onehot)
colors = get_cmap("RdYlGn")(np.linspace(0,1,cls_ct))
#model_cents = model.c.get_value()
#p1.scatter(model_cents[:,0], model_cents[:,1], c='black', s=81)
for curclass,curcolor in zip(range(cls_ct),colors):
inds = [i for i,yi in enumerate(y_cls) if yi==curclass]
p1.scatter(X[inds,0], X[inds,1], c=curcolor)
nx,ny = 200, 200
x = np.linspace(X[:,0].min()-1,X[:,0].max()+1,nx)
y = np.linspace(X[:,1].min()-1,X[:,1].max()+1,ny)
xv,yv = np.meshgrid(x,y)
Z = np.array([z for z in np.c_[xv.ravel(), yv.ravel()]])
Zp = Trainer.onehot_to_int(np.array(model.probability(Z)))
Zp = Zp.reshape(xv.shape)
p1.imshow(Zp, interpolation='nearest',
extent=(xv.min(), xv.max(), yv.min(), yv.max()),
origin = 'lower', cmap=get_cmap("Set1"))
p1.set_title("Decision boundaries and centroids")
f.tight_layout()
plot.show()
开发者ID:ChenglongChen,项目名称:RBFnet,代码行数:33,代码来源:wrapper.py
示例5: plotDensityMap
def plotDensityMap(bins,binnedData,xscale='log',yscale='log',normaliseX=True,logScale=True):
if logScale:
l, b, r, t = 0.1, 0.12, 1.0, 0.970
else:
l, b, r, t = 0.1, 0.12, 1.05, 0.970
axes_rect = [l,b,r-l,t-b]
fig=p.figure()
fig.subplots_adjust(left=0.01, bottom=.05, right=.985, top=.95, wspace=.005, hspace=.05)
ax = fig.add_axes(axes_rect)
ax.set_xscale(xscale)
ax.set_yscale(yscale)
X,Y=bins.edge_grids
if normaliseX:
ySum=p.sum(binnedData,1)
ySum=p.ma.masked_array(ySum,ySum==0)
Z=binnedData.transpose()/ySum
else:
Z=binnedData.transpose()
if logScale:
mappable=ax.pcolor(X,Y,p.ma.array(Z,mask=Z==0),cmap=p.get_cmap("jet"),norm=matplotlib.colors.LogNorm())
else:
mappable=ax.pcolor(X,Y,p.ma.array(Z,mask=Z==0),cmap=p.get_cmap("jet"))
markersize=5.0
linewidth=2.0
fig.colorbar(mappable)
#ax.set_ylim((T/2.0/bins2D.centers[0][-1],T/2.0*2))
#ax.set_xlim(bins2D.centers[0][0]*day,bins2D.centers[0][-1]*day)
return fig,ax
开发者ID:CxAalto,项目名称:verkko,代码行数:32,代码来源:binhelp.py
示例6: create_plot_2d_speeches
def create_plot_2d_speeches(self, withLabels = True):
if withLabels:
font = { 'fontname':'Tahoma', 'fontsize':0.5, 'verticalalignment': 'top', 'horizontalalignment':'center' }
labels= [ (i['who'], i['date']) for i in self.data ]
pylab.subplots_adjust(bottom =0.1)
pylab.scatter(self.speech_2d[:,0], self.speech_2d[:,1], marker = '.' ,cmap = pylab.get_cmap('Spectral'))
for label, x, y in zip(labels, self.speech_2d[:, 0], self.speech_2d[:, 1]):
pylab.annotate(
label,
xy = (x, y), xytext = None,
ha = 'right', va = 'bottom', **font)
#,textcoords = 'offset points',bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
#arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
pylab.title('U.S. Presidential Speeches(1790-2006)')
pylab.xlabel('X')
pylab.ylabel('Y')
pylab.savefig('plot_with_labels', bbox_inches ='tight', dpi = 1000, orientation = 'landscape', papertype = 'a0')
else:
pylab.subplots_adjust(bottom =0.1)
pylab.scatter(self.speech_2d[:,0], self.speech_2d[:,1], marker = 'o' ,cmap = pylab.get_cmap('Spectral'))
pylab.title('U.S. Presidential Speeches(1790-2006)')
pylab.xlabel('X')
pylab.ylabel('Y')
pylab.savefig('plot_without_labels', bbox_inches ='tight', dpi = 1000, orientation = 'landscape', papertype = 'a0')
pylab.close()
开发者ID:Sophie-Germain,项目名称:U.S-Presidential-Speeches,代码行数:27,代码来源:w2v_tsne.py
示例7: __call__
def __call__(self, inputs):
from numpy import outer, arange, ones
from pylab import figure, axis, imshow, title, show, subplot, text, clf, subplots_adjust
maps = self.get_input('colormap')
a=outer(arange(0,1,0.01),ones(10))
if self.get_input('showall') is True:
figure(figsize=(10,5))
clf()
l = len(tools.cmaps)
subplots_adjust(top=0.9,bottom=0.05,left=0.01,right=0.99)
for index, m in enumerate(tools.cmaps):
#print index
subplot(int(l/2)+l%2+1, 2, index+1)
#print int(l/2)+l%2, 2, (index+1)/2+(index+1)%2+1
axis("off")
imshow(a.transpose(),aspect='auto',cmap=tools.get_cmap(m),origin="lower")
#title(m,rotation=0,fontsize=10)
text(0.5,0.5, m)
show()
elif self.get_input('show') is True:
figure(figsize=(10,5))
clf()
axis("off")
imshow(a.transpose(),aspect='auto',cmap=get_cmap(maps),origin="lower")
title(maps,rotation=0,fontsize=10)
show()
from pylab import get_cmap
res = get_cmap(maps)
return res
开发者ID:MarieLatutu,项目名称:openalea-components,代码行数:30,代码来源:py_pylab.py
示例8: run_main
def run_main(options):
try:
inp = open(options.input_file,'rb')
geo_input = pickle.load(inp)
inp.close()
except:
print 'Problems in opening the %s. Check the file.' % options.input_file
exit()
width,height = map(int,options.size.split(','))
mode_colormap = options.mode
n_connections = options.n_connections
#Create image
im = Image.new('RGBA', (width, height), (0, 0, 0, 0))
draw = ImageDraw.Draw(im)
geo_final = {}
#Remove the same start == end and repeated cities (start,end) == (end,start).
for origem,destino in geo_input:
if origem != destino:
if not geo_final.has_key((origem,destino)):
if not geo_final.has_key((destino,origem)):
geo_final.setdefault((origem,destino),0)
geo_final[(origem,destino)] += geo_input[(origem,destino)]
else:
geo_final.setdefault((destino,origem),0)
geo_final[(destino,origem)] += geo_input[(origem,destino)]
matrix_geo = {}
#Find all valid cities and calculate the distances
max_distance = -10000000
for origem,destino in geo_final:
if geo_final[(origem,destino)] > n_connections:
x1,y1 = geo2pixel(origem[0],origem[1],width,height)
x2,y2 = geo2pixel(destino[0],destino[1],width,height)
distance = sqrt((y2-y1)**2 + (x2-x1)**2)*40000/360.0
if distance > max_distance: max_distance = distance
matrix_geo[(x1,y1),(x2,y2)] = distance
#Sort by distance.
sorted_matrix = sorted(matrix_geo.items(),key= lambda x: x[1], reverse=True)
cmap = get_cmap('jet') if mode_colormap == 'all' else get_cmap('jet')
dist_bins = logspace(1,log(max_distance)/log(10),255)
#Plot using the correct colormap
for ((x1,y1),(x2,y2)),distance in sorted_matrix:
for i in range(len(dist_bins)-1):
if distance > dist_bins[i] and distance < dist_bins[i+1]:
break
p = rgb2hex(converter.to_rgb(cmap(255-i)))
draw.line([(y1,x1),(y2,x2)], p )
#Save the image.
im.save(options.output_file)
开发者ID:FHFard,项目名称:scipy2013_talks,代码行数:57,代码来源:plot2.py
示例9: flamePlot
def flamePlot(mapZ, noNanZ, markRegions, flatten, colorCeil):
print '\nPlotting flameview'
ratios=[4,1,4]
gs = gridspec.GridSpec(len(ratios), 1, height_ratios=ratios)
plt.figure(figsize=(24,9))
# Direct
plt.subplot(gs[0])
plt.imshow(mapZ, cmap=get_cmap(fColorMap), interpolation='nearest', aspect='auto')
plt.clim(-colorCeil,colorCeil)
plt.title('Overview')
plt.xlabel('Probe number')
plt.ylabel('Window Step')
# Markers
plt.subplot(gs[1])
flatMarkers = [0]*len(markRegions[0])
for i, val in enumerate(markRegions[0]):
if abs(val) > flatten:
flatMarkers[i] = val
markRegions.append(flatMarkers)
plt.imshow(markRegions, cmap=get_cmap(fColorMap), interpolation='nearest', aspect='auto')
plt.clim(-colorCeil,colorCeil)
plt.title('Maximum values')
plt.xlabel('Probe number')
plt.ylabel('Post|Pre')
# Flattened
for i in range(len(mapZ)):
for j in range(len(noNanZ)):
stouff=mapZ[i][j]
if abs(stouff) < flatten:
stouff = 0
mapZ[i][j]=stouff
plt.subplot(gs[2])
plt.imshow(mapZ, cmap=get_cmap(fColorMap), interpolation='nearest', aspect='auto')
plt.clim(-colorCeil,colorCeil)
plt.title('Filtered at abs(z) > ' + str(flatten))
plt.xlabel('Probe number')
plt.ylabel('Window Step')
plt.tight_layout()
return plt
开发者ID:VUmcCGP,项目名称:wisexome,代码行数:53,代码来源:cnvplot.py
示例10: _get__pl
def _get__pl(self):
'''return the LinearSegmentedColormap describing this CustomColormap'''
if self.cmap=='file' and self.fname:
colors = lut_manager.parse_lut_file(self.fname)
if self.reverse:
colors.reverse()
return LinearSegmentedColormap.from_list('file',colors)
elif self.cmap=='custom_heat':
return gen_heatmap(t=self.threshold,reverse=self.reverse)
elif self.reverse:
return get_cmap(self.cmap+'_r')
else:
return get_cmap(self.cmap)
开发者ID:aestrivex,项目名称:cvu,代码行数:13,代码来源:color_map.py
示例11: getColorMapPlotSettings
def getColorMapPlotSettings(trackFile, colorPropertyName, settings):
if 'colorSettings' in settings:
colorSettings = settings['colorSettings']
vmin = colorSettings['vmin']
vmax = colorSettings['vmax']
separation = colorSettings['separation']
colormap = P.get_cmap(colorSettings['colorMap'])
else:
vmin = (trackFile.axisLimits[colorPropertyName])[0]
vmax = (trackFile.axisLimits[colorPropertyName])[1]
separation = 35
colormap = P.get_cmap('jet')
return vmin, vmax, separation, colormap
开发者ID:AndrewHanSolo,项目名称:CMP,代码行数:14,代码来源:General.py
示例12: embed_dat_matrix_two_dimensions
def embed_dat_matrix_two_dimensions(low_dimension_data_matrix,
y=None,
labels=None,
density_colormap='Blues',
instance_colormap='YlOrRd'):
from sklearn.preprocessing import scale
low_dimension_data_matrix = scale(low_dimension_data_matrix)
# make mesh
x_min, x_max = low_dimension_data_matrix[:, 0].min(), low_dimension_data_matrix[:, 0].max()
y_min, y_max = low_dimension_data_matrix[:, 1].min(), low_dimension_data_matrix[:, 1].max()
step_num = 50
h = min((x_max - x_min) / step_num, (y_max - y_min) / step_num) # step size in the mesh
b = h * 10 # border size
x_min, x_max = low_dimension_data_matrix[:, 0].min() - b, low_dimension_data_matrix[:, 0].max() + b
y_min, y_max = low_dimension_data_matrix[:, 1].min() - b, low_dimension_data_matrix[:, 1].max() + b
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# induce a one class model to estimate densities
from sklearn.svm import OneClassSVM
gamma = max(x_max - x_min, y_max - y_min)
clf = OneClassSVM(gamma=gamma, nu=0.1)
clf.fit(low_dimension_data_matrix)
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max] . [y_min, y_max].
if hasattr(clf, "decision_function"):
score_matrix = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
score_matrix = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
levels = np.linspace(min(score_matrix), max(score_matrix), 40)
score_matrix = score_matrix.reshape(xx.shape)
if y is None:
y = 'white'
plt.contourf(xx, yy, score_matrix, cmap=plt.get_cmap(density_colormap), alpha=0.9, levels=levels)
plt.scatter(low_dimension_data_matrix[:, 0], low_dimension_data_matrix[:, 1],
alpha=.5,
s=70,
edgecolors='gray',
c=y,
cmap=plt.get_cmap(instance_colormap))
# labels
if labels is not None:
for id in range(low_dimension_data_matrix.shape[0]):
label = labels[id]
x = low_dimension_data_matrix[id, 0]
y = low_dimension_data_matrix[id, 1]
plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')
开发者ID:gianlucacorrado,项目名称:EDeN,代码行数:50,代码来源:embedding.py
示例13: plot_vapor
def plot_vapor(self,imagename='vapor.png', title='',timestep=0):
"""plot qvapor
Optional input:
--------
imagename = 'your file name.png', defaults to vapor.png'
title = 'your title' defaults to none
timestep = integer. If there are multiple time periods per file then
choose your timestep, defaults to 0'
Returns:
--------
contour plot of qvapor
"""
pl.figure(2)
pl.clf()
try:
vapor_full=self.variable_dict['QVAPOR']
except:
vapor_full=self.get_var('QVAPOR')
qvapor=vapor_full[timestep,0,:,:].copy()
custom_map=pl.get_cmap('jet',lut=22)
try:
m=self.map_proj
x=self.map_x
y=self.map_y
except:
self.bmap()
m=self.map_proj
x=self.map_x
y=self.map_y
custom_map=pl.get_cmap('jet',lut=10)
contour_levs=n.arange(0.012,0.025, 0.001)
vapor_plot=m.contourf(x,y,qvapor[:,:],contour_levs,cmap=custom_map, title=title)#,cmap=custom_map)
vapor_plot.set_clim((0.012,0.025))
self.map_lines()
pl.colorbar(orientation='horizontal')
pl.title(title)
pl.savefig(self.plot_directory+'/'+imagename)
开发者ID:louwil,项目名称:pyWRF,代码行数:48,代码来源:pyWRF.py
示例14: ST_pi_pure
def ST_pi_pure(r,steps = 99):
"""
Makes a heat map over ST space for a given value of r, using the pure strategy model, plotting
fitness.
Inputs
======
r : float
Value of relatedness
steps : int {99}
Number of points to sample S and T at.
"""
Ss = np.linspace(-1,2,steps)
Ts = np.linspace(0,3,steps)
dataFull = np.zeros( (steps,steps) )
for i,S in enumerate(Ss):
for j,T in enumerate(Ts):
x = ESS_pure(r,S,T)
dataFull[i,j] = fit_pure(x,r,S,T)/maximal_possible_fitness(S,T)
#pl.figure()
cmap = pl.get_cmap('Reds')
pl.imshow(dataFull, origin = [Ts[0], Ss[0]], interpolation = 'nearest',\
extent = [ Ts[0],Ts[-1],Ss[0],Ss[-1] ], cmap = cmap, vmin = 0, vmax = .5*(Ss[-1]+Ts[-1]))
pl.plot( [ Ts[0], Ts[-1] ],[ 0,0 ],color='black', linewidth = 2.5 )
pl.plot( [ 1, 1 ],[ Ss[0],Ss[-1] ],'--',color='black', linewidth = 2.5 )
pl.plot( [ 0, 3 ],[ 2, -1 ],'--',color='black', linewidth = 2.5 )
开发者ID:simontudge,项目名称:DOL_games_data,代码行数:29,代码来源:parental_ESS.py
示例15: makeimg
def makeimg(wav):
global callpath
global imgpath
fs, frames = wavfile.read(os.path.join(callpath, wav))
pylab.ion()
# generate specgram
pylab.figure(1)
# generate specgram
pylab.specgram(
frames,
NFFT=256,
Fs=22050,
detrend=pylab.detrend_none,
window=numpy.hamming(256),
noverlap=192,
cmap=pylab.get_cmap('Greys'))
x_width = len(frames)/fs
pylab.ylim([0,11025])
pylab.xlim([0,round(x_width,3)-0.006])
img_path = os.path.join(imgpath, wav.replace(".wav",".png"))
pylab.savefig(img_path)
return img_path
开发者ID:tomauer,项目名称:nfc_tweet,代码行数:31,代码来源:nfc_images.py
示例16: ST_beta
def ST_beta(r,steps = 99):
"""
Makes a heat map of beta over ST space, for a given value of r.
Uses the full model.
Steps : int {99}
Number of steps to sample S and T at
Returns
=======
None
"""
Ss = np.linspace(-1,3,steps)
Ts = np.linspace(0,4,steps)
dataFull = np.zeros( (steps,steps) )
for i,S in enumerate(Ss):
for j,T in enumerate(Ts):
mod = ESS_class(r,S,T)
state = mod.getESS()
dataFull[i,j] = mod.beta(state,r)
#pl.figure()
cmap = pl.get_cmap('coolwarm')
pl.imshow(dataFull, origin = [Ts[0], Ss[0]],\
extent = [ Ts[0],Ts[-1],Ss[0],Ss[-1] ], vmin = -1,vmax = 1, cmap = cmap)
pl.plot( [ Ts[0], Ts[-1] ],[ 0,0 ],color='black', linewidth = 2.5 )
pl.plot( [ 1, 1 ],[ Ss[0],Ss[-1] ],'--',color='black', linewidth = 2.5 )
pl.plot( [ 0, 3 ],[ 2, -1 ],'--',color='black', linewidth = 2.5 )
开发者ID:simontudge,项目名称:DOL_games_data,代码行数:27,代码来源:parental_ESS.py
示例17: ST_xA
def ST_xA(r,steps = 99):
"""
Makes a heat map for x over ST space for a given r using the full model.
inputs
======
r : float
Value of relatedness
steps: int {99}
Number of decrete points at which to sample S and T
"""
Ss = np.linspace(-1,2,steps)
Ts = np.linspace(0,3,steps)
dataFull = np.zeros( (steps,steps) )
for i,S in enumerate(Ss):
for j,T in enumerate(Ts):
mod = ESS_class(r,S,T)
state = mod.getESS()
dataFull[i,j] = mod.xA(state,r)
#pl.figure()
cmap = pl.get_cmap('Reds')
pl.imshow(dataFull, origin = [Ts[0], Ss[0]],\
extent = [ Ts[0],Ts[-1],Ss[0],Ss[-1] ], vmin = 0,vmax = 1, cmap = cmap)
pl.plot( [ Ts[0], Ts[-1] ],[ 0,0 ],color='black', linewidth = 2.5 )
pl.plot( [ 1, 1 ],[ Ss[0],Ss[-1] ],'--',color='black', linewidth = 2.5 )
pl.plot( [ 0, 3 ],[ 2, -1 ],'--',color='black', linewidth = 2.5 )
开发者ID:simontudge,项目名称:DOL_games_data,代码行数:29,代码来源:parental_ESS.py
示例18: cluster_show
def cluster_show(_3D_chan1, _3D_chan2, _3D_labels, n_clusters_, means, std, hulls):
"""
:param _3D_chan1:
:param _3D_chan2:
:param _3D_labels:
"""
red = (1.0, 0.0, 0.0)
green = (0.0, 1.0, 0.1)
mlab.pipeline.volume(mlab.pipeline.scalar_field(_3D_chan1), color=green)
mlab.pipeline.volume(mlab.pipeline.scalar_field(_3D_chan2), color=red)
mlab.show()
cm = get_cmap('gist_rainbow')
for i in range(0, n_clusters_):
re_img = np.zeros(_3D_chan2.shape)
re_img[_3D_labels == i] = _3D_chan2[_3D_labels == i]
mlab.pipeline.volume(mlab.pipeline.scalar_field(re_img), color=tuple(cm(1.*i/n_clusters_)[:-1]))
# mean_arr = np.zeros((n_clusters_, 3))
# std_arr = np.zeros((n_clusters_))
# for i in range(0, n_clusters_):
# mean_arr[i, :] = means[i]
# std_arr[i] = std[i]
# x,y,z = mean_arr.T
# mlab.points3d(x,y,z, std_arr)
for hull in hulls:
x,y,z = hull.points.T
triangles = hull.simplices
mlab.triangular_mesh(x, y, z, triangles, representation='wireframe', color=(0, 0, 0))
mlab.show()
开发者ID:chiffa,项目名称:Chromo_vision,代码行数:35,代码来源:nucleus_inspector.py
示例19: color_iterator
def color_iterator(grouping, cmap='jet', n=None):
'''
Given a Matplotlib colormap, iterate through the color range in equal-sized
increments based on the size of the group.
Parameters
----------
grouping : iterable
Values to return on each iteration
cmap : string
Matplotlib colormap to use
n : int
Size of the group. If not provided, will attempt to estimate the size
from the iterable.
'''
# Attempt to get the length of the iterator first. If we can't get the
# length, then we need to convert the iterator into a list so we can get
# the number of elements.
if n is None:
try:
n = len(grouping)
except:
grouping = list(grouping)
n = len(grouping)
if isinstance(cmap, basestring):
cmap = pylab.get_cmap(cmap)
for i, g in enumerate(grouping):
if n == 1:
yield cmap(1), g
else:
yield cmap(i/(n-1)), g
开发者ID:bburan,项目名称:NeuroBehavior,代码行数:33,代码来源:plottools.py
示例20: _plot_annotation_on_ax
def _plot_annotation_on_ax(self, signal, ax, autoscale=False, colourmap="flag"):
if autoscale:
xstart = 0
xdelta = signal.duration.total_seconds()
else:
xstart,ystart,xdelta,ydelta = ax.viewLim.bounds
if xstart <0:
start_time = timedelta()
else:
start_time = timedelta(seconds=xstart)
stop_time = timedelta(seconds=xdelta) + timedelta(seconds=xstart)
sub_sig = signal[start_time:stop_time]
xs =np.linspace(0, sub_sig.duration.total_seconds() ,sub_sig.size) + start_time.total_seconds()
ys = sub_sig.values
probs = sub_sig.probas
ys = ys.reshape((1,ys.size))
zoom_f = float(self.max_point_amplitude_plot)/ sub_sig.size
ys = zoom(ys,[1, zoom_f], order=0)
ax.imshow(ys, extent=[np.min(xs), np.max(xs), 1.5, -0.5], aspect="auto",
cmap=colourmap, vmin=0, vmax=255, origin='lower')
ax.plot(xs,probs,"-", color="k", linewidth=3)
ax.plot(xs,probs,"-", color="y", linewidth=1,alpha=0.5)
jet = cm = pl.get_cmap(colourmap)
cNorm = colors.Normalize(vmin=0, vmax=255)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)
states = np.unique(ys)
boxes = [pl.Rectangle((0, 0), 1, 1, fc=scalarMap.to_rgba(col)) for col in states]
labels = [chr(s) for s in states]
pl.legend(boxes,labels, loc='lower right')
n_labels = 8 #fixme magic number
if len(xs) > n_labels:
trimming = int(float(len(xs)) / float(n_labels))
xs_trimmed = np.round(xs[::trimming])
else:
xs_trimmed = xs
time_strings = [str(timedelta(seconds=s)) for s in xs_trimmed]
ax.set_xticks(xs_trimmed)
ax.set_xticklabels(time_strings, rotation=70)
return
开发者ID:Lx37,项目名称:pyrem,代码行数:60,代码来源:visualization.py
注:本文中的pylab.get_cmap函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论