本文整理汇总了Python中pylab.fill_between函数的典型用法代码示例。如果您正苦于以下问题:Python fill_between函数的具体用法?Python fill_between怎么用?Python fill_between使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了fill_between函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plotuttdpc
def plotuttdpc():
pylab.figure(1)
auttdpc = uttdperc(always)
modauttdpc = uttdperc(modalways)
for name,pf,c in variables:
ivals = map(lambda x : uttdperc(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
pylab.fill_between(pallthedays, imeanpstd, imeanmstd, facecolor=c, alpha=0.3)
for name,pf,c in variables:
ivals = map(lambda x : uttdperc(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
mdiff = numpy.mean(imean)
pylab.plot(pallthedays,imean,color=c,label=("Mean (+-1std) UTTDpC of 30 \"%s\" users" % name))
pylab.plot(pallthedays,auttdpc,color='black',label="UTTDpC of \"Always Upgrade\" user")
pylab.plot(pallthedays,modauttdpc,color='red',label="UTTDpC of \"Progressive Always Upgrade\" user")
print "Last uttd always",auttdpc[-1]
print "Last uttd mod always",modauttdpc[-1]
pylab.legend(loc="upper left")
pylab.xlabel("Date")
pylab.ylabel("Uptodate Distance per Component")
pylab.title("Uptodate Distance per Component of Users")
pylab.ylim([0,1])
saveFigure("q4auttdperc")
开发者ID:dloti,项目名称:ComponentSystemEvolutionSimulation,代码行数:29,代码来源:aq4a.py
示例2: plotnew
def plotnew():
fig = pylab.figure(20)
for name,pf,c in variables:
ivals = map(lambda x : nntt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
pylab.fill_between(pallthedays, imeanpstd, imeanmstd, facecolor=c, alpha=0.3)
for name,pf,c in variables:
ivals = map(lambda x : nntt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
mdiff = numpy.mean(imean)
pylab.plot(pallthedays,imean,color=c,label=(name +"+-1std "))
nntal = nntt(always)
nntmod =nntt(modalways)
pylab.plot(pallthedays,nntal, color="black", label="Always Upgrade Mean change")
pylab.plot(pallthedays,nntmod, color="red", label="Always Upgrade Mean change")
print "Last new always",nntal[-1]
print "Last new mod always",nntmod[-1]
pylab.legend(loc="upper left")
saveFigure("q4anew")
开发者ID:dloti,项目名称:ComponentSystemEvolutionSimulation,代码行数:27,代码来源:aq4a.py
示例3: plotchange
def plotchange():
fig = pylab.figure(10)
chtalw = chtt(always)
chtmodalw= chtt(modalways)
for name,pf,c in variables:
ivals = map(lambda x : chtt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
pylab.fill_between(pallthedays, imeanpstd, imeanmstd, facecolor=c, alpha=0.3)
for name,pf,c in variables:
ivals = map(lambda x : chtt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
mdiff = numpy.mean(imean)
pylab.plot(pallthedays,imean,color=c,label=("Mean (+-1std) Total Change of 30 \"%s\" users" % name))
pylab.plot(pallthedays,chtalw, color="black", label="Total Change of \"Always Upgrade\" user")
pylab.plot(pallthedays,chtmodalw, color="red", label="Total Change of \"Progressive Always Upgrade\" user")
print "Last change always",chtalw[-1]
print "Last change mod always",chtmodalw[-1]
pylab.legend(loc="upper left")
pylab.xlabel("Date")
pylab.ylabel("Total Change")
pylab.title("Total Change of Users")
saveFigure("q4achange")
开发者ID:dloti,项目名称:ComponentSystemEvolutionSimulation,代码行数:29,代码来源:aq4a.py
示例4: Draw
def Draw(func1, func2):
# генирация точек графика
xlist = mlab.frange(a, b, 0.01)
ylist = [func1(x) for x in xlist]
ylist2 = [func2(x) for x in xlist]
# Генирирум ось
y0 = [0 for x in xlist]
pylab.plot(xlist, ylist)
#pylab.plot(xlist, y0, label='line1', color='blue')
pylab.plot(xlist, ylist2, label='$sin(x)/x)$', color='red')
pylab.legend()
# Включаем рисование сетки
pylab.grid(True)
pylab.fill_between(xlist, ylist, ylist2, color='green', alpha=0.25)
# если мало разбиений, то переопереляем сетку под шаг
if ((round((b - a) / h)) < 25):
pylab.xticks([a + i * h for i in range(round((b - a) / h) + 1)])
# рисуем корни, промерка того что корень не содержит ошибок
for i in range(1, len(table)):
if (table[i][4] != ':-('):
pylab.scatter(table[i][3], table[i][4])
# Рисуем фогрму с графиком
pylab.show()
开发者ID:medva1997,项目名称:bmstu_sem2,代码行数:27,代码来源:roots_search.py
示例5: shade_bands
def shade_bands(edges, y_range=[-1e5,1e5],cmap='prism', **kwargs):
'''
Shades frequency bands.
when plotting data over a set of frequency bands it is nice to
have each band visually seperated from the other. The kwarg `alpha`
is useful.
Parameters
--------------
edges : array-like
x-values seperating regions of a given shade
y_range : tuple
y-values to shade in
cmap : str
see matplotlib.cm or matplotlib.colormaps for acceptable values
\*\* : key word arguments
passed to `matplotlib.fill_between`
Examples
-----------
>>> rf.shade_bands([325,500,750,1100], alpha=.2)
'''
cmap = plb.cm.get_cmap(cmap)
for k in range(len(edges)-1):
plb.fill_between(
[edges[k],edges[k+1]],
y_range[0], y_range[1],
color = cmap(1.0*k/len(edges)),
**kwargs)
开发者ID:edy555,项目名称:scikit-rf,代码行数:30,代码来源:plotting.py
示例6: plot
def plot(self):
if not self.plot_state: return
pop,best = self.plot_state
with self.pylab_interface:
import pylab
pylab.clf()
n,p = pop.shape
iternum = numpy.arange(1,n+1)
tail = int(0.25*n)
pylab.hold(True)
c = coordinated_colors(base=(0.4,0.8,0.2))
if p==5:
pylab.fill_between(iternum[tail:], pop[tail:,1], pop[tail:,3],
color=c['light'], label='_nolegend_')
pylab.plot(iternum[tail:],pop[tail:,2],
label="80% range", color=c['base'])
pylab.plot(iternum[tail:],pop[tail:,0],
label="_nolegend_", color=c['base'])
else:
pylab.plot(iternum,pop, label="population",
color=c['base'])
pylab.plot(iternum[tail:], best[tail:], label="best",
color=c['dark'])
pylab.xlabel('iteration number')
pylab.ylabel('chisq')
pylab.legend()
#pylab.gca().set_yscale('log')
pylab.hold(False)
pylab.draw()
开发者ID:RONNCC,项目名称:bumps,代码行数:29,代码来源:convergence_view.py
示例7: view_simple
def view_simple( self, stats, thetas ):
# plotting params
nbins = 20
alpha = 0.5
label_size = 8
linewidth = 3
linecolor = "r"
# extract from states
#thetas = states_object.get_thetas()[burnin:,:]
#stats = states_object.get_statistics()[burnin:,:]
#nsims = states_object.get_sim_calls()[burnin:]
# plot sample distribution of thetas, add vertical line for true theta, theta_star
f = pp.figure()
sp = f.add_subplot(111)
pp.plot( self.fine_theta_range, self.posterior, linecolor+"-", lw = 1)
ax = pp.axis()
pp.hist( thetas, self.nbins_coarse, range=self.range,normed = True, alpha = alpha )
pp.fill_between( self.fine_theta_range, self.posterior, color="m", alpha=0.5)
pp.plot( self.posterior_bars_range, self.posterior_bars, 'ro')
pp.vlines( thetas.mean(), ax[2], ax[3], color="b", linewidths=linewidth)
#pp.vlines( self.theta_star, ax[2], ax[3], color=linecolor, linewidths=linewidth )
pp.vlines( self.posterior_mode, ax[2], ax[3], color=linecolor, linewidths=linewidth )
pp.xlabel( "theta" )
pp.ylabel( "P(theta)" )
pp.axis([self.range[0],self.range[1],ax[2],ax[3]])
set_label_fonsize( sp, label_size )
pp.show()
开发者ID:tedmeeds,项目名称:abcpy,代码行数:32,代码来源:exponential.py
示例8: plotBkMeasure
def plotBkMeasure(bk, ek, vk, figurePath):
#print bk
#print ek
#print vk
k = list(range(len(bk)))
#for i,j in enumerate(bk):
pylab.ioff()
pylab.figure()
pylab.plot(k, bk, '.', label='Bk')
pylab.plot(k, ek, label='E(Bk)')
#pylab.plot(k, ek+2*np.sqrt(vk), '-.r', label='limit range')
#pylab.plot(k, ek-2*np.sqrt(vk), '-.r')
#for i in range(len(ek)):
pylab.fill_between(k, ek+4*np.sqrt(vk), ek-4*np.sqrt(vk), facecolor='red', interpolate=True )
# figure setting
pylab.xlim(2,k[-1])
pylab.ylim(0,1.0)
pylab.legend(loc='upper right')
pylab.xlabel('Number of Clusters')
pylab.ylabel('Bk')
# pylab.title('Bk measure between two algorithm')
# show result
pylab.savefig(figurePath, format='svg')
开发者ID:miselico,项目名称:twistertries-reproducibility,代码行数:28,代码来源:runBkMeasure.py
示例9: sampleplot_K
def sampleplot_K(r,ylim=None,HDI_y=None):
from pylab import plot,fill_between,gca,text
x,y=histogram(r,plot=False)
plot(x,y,'-o')
fill_between(x,y,facecolor='blue', alpha=0.2)
if ylim:
gca().set_ylim(ylim)
dx=x[1]-x[0]
cs=np.cumsum(y)*dx
HDI=np.percentile(r,[2.5,50,97.5])
yl=gca().get_ylim()
dy=0.05*yl[1]
if HDI_y is None:
HDI_y=yl[1]*.1
text((HDI[0]+HDI[2])/2, HDI_y+dy,'95% HDI', ha='center', va='center',fontsize=12)
plot(HDI,[HDI_y,HDI_y,HDI_y],'k.-',linewidth=1)
for v in HDI:
text(v, HDI_y-dy,'%.3f' % v, ha='center', va='center',
fontsize=12)
xl=gca().get_xlim()
text(.05*(xl[1]-xl[0])+xl[0], 0.9*yl[1],r'$\tilde{x}=%.3f$' % np.median(r), ha='left', va='center')
开发者ID:bblais,项目名称:Statistical-Inference-for-Everyone,代码行数:31,代码来源:sie.py
示例10: bootstrap
def bootstrap(self, nBoot, nbins = 20):
pops = np.zeros((nBoot, nbins))
#medianpop = [[] for i in data.cat]
pylab.figure(figsize = (20,14))
for i in xrange(3):
pylab.subplot(1,3,i+1)
#if i ==0:
#pylab.title("Bootstrap on medians", fontsize = 20.)
pop = self.angles[(self.categories == i)]# & (self.GFP > 2000)]
for index in xrange(nBoot):
newpop = np.random.choice(pop, size=len(pop), replace=True)
#medianpop[i].append(np.median(newpop))
newhist, binedges = np.histogram(newpop, bins = nbins)
pops[index,:] = newhist/1./len(pop)
#pylab.hist(medianpop[i], bins = nbins, label = "{2} median {0:.1f}, std {1:.1f}".format(np.median(medianpop[i]), np.std(medianpop[i]), data.cat[i]), color = data.colors[i], alpha =.2, normed = True)
meanpop = np.sum(pops, axis = 0)/1./nBoot
stdY = np.std(pops, axis = 0)
print "width", binedges[1] - binedges[0]
pylab.bar(binedges[:-1], meanpop, width = binedges[1] - binedges[0], label = "mean distribution", color = data.colors[i], alpha = 0.6)
pylab.fill_between((binedges[:-1]+binedges[1:])/2., meanpop-stdY, meanpop+stdY, alpha = 0.3)
pylab.legend()
pylab.title(data.cat[i])
pylab.xlabel("Angle(degree)", fontsize = 15)
pylab.ylim([-.01, 0.23])
pylab.savefig("/users/biocomp/frose/frose/Graphics/FINALRESULTS-diff-f3/distrib_nBootstrap{0}_bins{1}_GFPsup{2}_{3}.png".format(nBoot, nbins, 'all', randint(0,999)))
开发者ID:biocompibens,项目名称:livespin,代码行数:27,代码来源:analyzeAngle.py
示例11: plotWithVariance
def plotWithVariance(x, y, variance, *args, **kwargs):
"""
Plot data with variance indicated by shading within one sigma.
"""
line = pylab.plot(x, y.flatten(), *args, **kwargs)[0]
sigma = np.sqrt(variance)
pylab.fill_between(x, y - sigma, y + sigma, color=line.get_color(), alpha=0.5)
开发者ID:JonFountain,项目名称:imusim,代码行数:7,代码来源:plotting.py
示例12: drawROC
def drawROC(points,zeTitle,zeFilename,visible,show_fig,save_fig=True,
special_point=None,special_value=None,special_label=None):
AUC=computeAUC(points)
import pylab
pylab.clf()
pylab.grid(color='#aaaaaa', linestyle='-', linewidth=1,alpha=0.5)
pylab.plot([x[0] for x in points], [y[1] for y in points], '-', linewidth=3,color="#000088",zorder=3)
pylab.fill_between([x[0] for x in points], [y[1] for y in points],0,color='0.9')
pylab.plot([0.0,1.0], [0.0, 1.0], '-',color="#AAAAAA")
pylab.ylim((-0.01,1.01))
pylab.xlim((-0.01,1.01))
pylab.xticks(pylab.arange(0,1.1,.1))
pylab.yticks(pylab.arange(0,1.1,.1))
pylab.grid(True)
ax=pylab.gca()
r = pylab.Rectangle((0,0), 1, 1, edgecolor='#444444', facecolor='none',zorder=1)
ax.add_patch(r)
[spine.set_visible(False) for spine in ax.spines.values()]
if len(points)<10:
for i in range(1,len(points)-1):
pylab.plot(points[i][0],points[i][1],'o',color="#000066",zorder=6)
pylab.xlabel('False positive rate')
pylab.ylabel('True positive rate')
if special_point is not None:
pylab.plot(special_point[0],special_point[1],'o',color="#DD9999",zorder=6)
if special_value is not None:
pylab.text(special_point[0]+0.01,special_point[1]-0.01, special_value,
{'color' : '#DD5555', 'fontsize' : 10},
horizontalalignment = 'left',
verticalalignment = 'top',
rotation = 0,
clip_on = False)
if special_label is not None:
if special_label!="":
labels=[special_label]
colors=['#DD9999']
circles=[pylab.Circle((0, 0), 1, fc=colors[0])]
legend_location = 'lower right'
pylab.legend(circles, labels, loc=legend_location)
pylab.text(0.5, 0.3,'AUC=%f'%AUC,
horizontalalignment='center',
verticalalignment='center',
fontsize=18)
pylab.title(zeTitle)
if save_fig:
pylab.savefig(zeFilename,dpi=300)
print("\n result in "+zeFilename)
if show_fig:
pylab.show()
开发者ID:jhonatanoliveira,项目名称:aGrUM_iSep,代码行数:60,代码来源:bn2roc.py
示例13: visualize
def visualize(generation_list):
'''Generate pretty pictures using pylab and pygame'''
best = []
average = []
stddev = []
average_plus_stddev = []
average_minus_stddev = []
for pop in generation_list:
best += [most_fit(pop).fitness]
average += [avg_fitness(pop)]
stddev += [fitness_stddev(pop)]
average_plus_stddev += [average[-1] + stddev[-1]]
average_minus_stddev += [average[-1] - stddev[-1]]
pylab.figure(1)
pylab.fill_between(range(len(generation_list)), average_plus_stddev, average_minus_stddev, alpha=0.2, color='b', label="Standard deviation")
pylab.plot(range(len(generation_list)), best, color='r', label='Best')
pylab.plot(range(len(generation_list)), average, color='b', label='Average with std.dev.')
pylab.title("Fitness plot - Beer-cog")
pylab.xlabel("Generation")
pylab.ylabel("Fitness")
pylab.legend(loc="upper left")
pylab.savefig("mincog_fitness.png")
best_index = best.index(max(best))
best_individual = most_fit(generation_list[-1])
with open('last.txt','w') as f:
f.write(str(best_individual.gtype))
print best_individual.gtype
game = min_cog_game.Game()
game.play(best_individual.ptype, True)
开发者ID:imre-kerr,项目名称:better-ea,代码行数:33,代码来源:min_cog.py
示例14: show_barlines
def show_barlines(page):
import pylab
for i, barlines in enumerate(page.barlines):
sd = page.staves.staff_dist[i]
for j, barline_range in enumerate(barlines):
barline_x = int(barline_range.mean())
staff_y = page.staves.staff_y(i, barline_x)
repeats = page.repeats[i][j]
if repeats:
# Draw thick bar
pylab.fill_between([barline_x - sd/4,
barline_x + sd/4],
staff_y - sd*2,
staff_y + sd*2,
color='g')
for letter, sign in (('L', -1), ('R', +1)):
if letter in repeats:
# Draw thin bar
bar_x = barline_x + sign * sd/2
pylab.plot([bar_x, bar_x],
[staff_y - sd*2,
staff_y + sd*2],
color='g')
for y in (-1, +1):
circ = pylab.Circle((bar_x + sign*sd/2,
staff_y + y*sd/2),
sd/4,
color='g')
pylab.gcf().gca().add_artist(circ)
else:
pylab.plot([barline_x, barline_x],
[staff_y - sd*2,
staff_y + sd*2],
color='g')
开发者ID:liufeigit,项目名称:MetaOMR,代码行数:34,代码来源:projection.py
示例15: addqqplotinfo
def addqqplotinfo(qnull,M,xl='-log10(P) observed',yl='-log10(P) expected',xlim=None,ylim=None,alphalevel=0.05,legendlist=None,fixaxes=False):
distr='log10'
pl.plot([0,qnull.max()], [0,qnull.max()],'k')
pl.ylabel(xl)
pl.xlabel(yl)
if xlim is not None:
pl.xlim(xlim)
if ylim is not None:
pl.ylim(ylim)
if alphalevel is not None:
if distr == 'log10':
betaUp, betaDown, theoreticalPvals = _qqplot_bar(M=M,alphalevel=alphalevel,distr=distr)
lower = -sp.log10(theoreticalPvals-betaDown)
upper = -sp.log10(theoreticalPvals+betaUp)
pl.fill_between(-sp.log10(theoreticalPvals),lower,upper,color="grey",alpha=0.5)
#pl.plot(-sp.log10(theoreticalPvals),lower,'g-.')
#pl.plot(-sp.log10(theoreticalPvals),upper,'g-.')
if legendlist is not None:
leg = pl.legend(legendlist, loc=4, numpoints=1)
# set the markersize for the legend
for lo in leg.legendHandles:
lo.set_markersize(10)
if fixaxes:
fix_axes()
开发者ID:MicrosoftGenomics,项目名称:FaST-LMM,代码行数:25,代码来源:plotp.py
示例16: GP_plotpred
def GP_plotpred(xpred, x, y, cov_par, cov_func = None, cov_typ = 'SE',
MF = None, MF_par = None, MF_args = None, MF_args_pred = None, \
WhiteNoise = False, plot_color = None):
'''
Wrapper for GP_predict that takes care of merging the
covariance and mean function parameters, and (optionally) plots
the predictive distribution (as well as returning it)
'''
if MF != None:
merged_par = scipy.append(cov_par, MF_par)
n_MF_par = len(MF_par)
else:
merged_par = cov_par[:]
n_MF_par = 0
fpred, fpred_err = GP_predict(merged_par, xpred, x, y, \
cov_func = cov_func, cov_typ = cov_typ, \
MF = MF, n_MF_par = n_MF_par, \
MF_args = MF_args, MF_args_pred = MF_args_pred, \
WhiteNoise = WhiteNoise)
xpl = scipy.array(xpred[:,0]).flatten()
if plot_color != None:
pylab.fill_between(xpl, fpred + 2 * fpred_err, fpred - 2 * fpred_err, \
color = plot_color, alpha = 0.1)
pylab.fill_between(xpl, fpred + fpred_err, fpred - fpred_err, \
color = plot_color, alpha = 0.1)
pylab.plot(xpl, fpred, '-', color = plot_color)
return fpred, fpred_err
开发者ID:EdGillen,项目名称:SuzPyUtils,代码行数:27,代码来源:GPSuz.py
示例17: plot_shaded_lines
def plot_shaded_lines(my_xticks, y1, y2, error1, error2, ylab, xlab, filename):
plt.figure(figsize=(6,6))
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
x = range(0, len(y1))
plt.plot(x, y1, 'k-', color="blue", label='men')
plt.fill_between(x, y1-error1, y1+error1, facecolor='blue', alpha=.2)
plt.plot(x, y2, 'k-', color="red", label='women')
plt.fill_between(x, y2-error2, y2+error2, facecolor='red', alpha=.2)
#if isinstance(x, (int, long, float, complex)):
# plt.xlim(np.min(x), np.max(x))
plt.gcf().subplots_adjust(bottom=0.3)
plt.xticks(x, my_xticks)
plt.xticks(rotation=70, fontsize=14)
plt.yticks(fontsize=14)
#plt.setp(ax.get_xticklabels(), rotation='vertical', fontsize=14)
plt.ylabel(ylab, fontsize=14)
plt.xlabel(xlab, fontsize=14)
plt.legend()
plt.savefig(filename)
开发者ID:clauwag,项目名称:WikipediaGenderInequality,代码行数:25,代码来源:util.py
示例18: sun
def sun():
dur = 1000
cad = 29.4 / 60.0 / 24.0
X = numpy.genfromtxt('%ssun/sun_composite_tsi_20130930.txt' % root).T
date = X[0]
t = X[1]
irr = X[2]
l = (irr > 0) * (t > 5000)
t = t[l] - t[l].min()
date_ref = date[l][0]
irr = irr[l] / irr[l].max()
pylab.figure(1)
pylab.clf()
pylab.plot(t, irr, 'k-')
col = ['r','g','b','y','m']
tstart = [1000, 2100, 2600, 3800, 5000]
for i in numpy.arange(5):
time = numpy.r_[tstart[i]:tstart[i]+dur:cad]
if i == 0:
y1 = numpy.zeros(len(time)) + 1
y2 = y1 - 0.0045
g = scipy.interpolate.interp1d(t, irr, bounds_error = False)
dF = filter.boxcare(g(time), 10, fill = True)
pylab.plot(time, dF, c = col[i])
pylab.fill_between(time, y1, y2, color = col[i], alpha = 0.3)
X = numpy.zeros((2,len(time)))
X[0,:] = time - time[0]
X[1,:] = dF
numpy.savetxt('%ssun/sun_lightcurve_%02d.txt' % (root, i), X.T)
pylab.xlim(t.min(), t.max())
pylab.ylim(0.9955,1)
pylab.xlabel('Days since %d' % date_ref)
pylab.ylabel('Flux decrement')
pylab.savefig('%ssun/sun_lightcurves.png' % root)
return
开发者ID:RuthAngus,项目名称:LSST-max,代码行数:35,代码来源:simlc.py
示例19: plotchange
def plotchange():
fig = pylab.figure(10)
for name,pf,c in variables:
ivals = map(lambda x : chtt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
pylab.fill_between(pallthedays, imeanpstd, imeanmstd, facecolor=c, alpha=0.3)
for name,pf,c in variables:
ivals = map(lambda x : chtt(x),pf)
imean,istd,imeanpstd,imeanmstd = multimeanstd(ivals)
mdiff = numpy.mean(imean)
print "Final change",name,imean[-1]
pylab.plot(pallthedays,imean,color=c,label=("Mean (+-1std) Total Change of 30 \"%s\" users" % name))
pylab.legend(loc="upper left")
pylab.xlabel("Date")
pylab.ylabel("Total Change")
pylab.title("Total Change of Users")
pylab.ylim([0,1500])
saveFigure("q1cchange")
#This graph shows the range over which change can occur whn altering the probability to install.
# given the results from this supports the idea that the probability to install corrolates to the amount of packages installed, this is straight forward.
#An effect that did not occur, which was hypothesised might, was that over time the amount of installed packages decreases as common dependended packages are installed.
#This does not occur, but may be because of the randomness that packages are selected.
#It may still occur in reaility, as say a graphics designer will likely install graphics components that will require similar functionality.
#Another interesting point from that can be seen in this graphi is the variability created by the soft failures, as discussed previously.
# it can be seen that the std increased after a soft failure in install twice a week change curve.
uivals = zip(alll,map(lambda x : rempd(x),alll))
for name,ui in uivals:
for date, remv in zip(allthedays,ui):
if remv >= 100:
print date,datetime.date.fromtimestamp(date),name
开发者ID:dloti,项目名称:ComponentSystemEvolutionSimulation,代码行数:35,代码来源:aq1c.py
示例20: demoplot
def demoplot(theta,args):
colour=np.array([0,0,1.0])
faded = 1-(1-colour)/2.0
(X,y) = args
(n, D) = np.shape(X)
xrange = X.max() - X.min()
Xtest = np.arange(X.min()-xrange/2,X.max()+xrange/2,(X.max()-X.min())/100)
Xtest.shape = (len(Xtest),1)
k = kernel2(X,X,theta,wantderiv=False)
kstar = [kernel2(X,xs*np.ones((1,1)),theta,wantderiv=False,measnoise=False) for xs in Xtest]
kstar = np.squeeze(kstar)
kstarstar = [kernel2(xs*np.ones((1,1)),xs*np.ones((1,1)),theta,wantderiv=False,measnoise=False) for xs in Xtest]
kstarstar = np.squeeze(kstarstar)
L = np.linalg.cholesky(k)
invk = np.linalg.solve(L.transpose(),np.linalg.solve(L,np.eye(np.shape(X)[0])))
mean = np.dot(kstar,np.dot(invk,y))
var = kstarstar - np.diag(np.dot(kstar,np.dot(invk,kstar.T)))
#var = np.reshape(var,(100,1))
pl.ion()
fig = pl.figure()
#ax1 = fig.add_subplot(211)
#ax2 = fig.add_subplot(212,sharex=ax1,sharey=ax1)
pl.plot(Xtest,mean,'-k')
#pl.plot(xstar,mean+2*np.sqrt(var),'x-')
#pl.plot(xstar,mean-2*np.sqrt(var),'x-')
#print np.shape(xstar), np.shape(mean), np.shape(var)
pl.fill_between(np.squeeze(Xtest),np.squeeze(mean-2*np.sqrt(var)),np.squeeze(mean+2*np.sqrt(var)),color='0.75')
pl.plot(X,y,'ko')
开发者ID:bigaidream,项目名称:subsets_ml_cookbook,代码行数:33,代码来源:gp.py
注:本文中的pylab.fill_between函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论