本文整理汇总了Python中pylab.errorbar函数的典型用法代码示例。如果您正苦于以下问题:Python errorbar函数的具体用法?Python errorbar怎么用?Python errorbar使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了errorbar函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: demo
def demo():
import pylab
# The module normalize is not part of the osrefl code base.
from reflectometry.reduction import normalize
from .examples import ng7 as dataset
spec = dataset.spec()[0]
water = WaterIntensity(D2O=20,probe=spec.probe)
spec.apply(normalize())
theory = water.model(spec.Qz,spec.detector.wavelength)
pylab.subplot(211)
pylab.title('Data normalized to water scattering (%g%% D2O)'%water.D2O)
pylab.xlabel('Qz (inv Ang)')
pylab.ylabel('Reflectivity')
pylab.semilogy(spec.Qz,theory,'-',label='expected')
scale = theory[0]/spec.R[0]
pylab.errorbar(spec.Qz,scale*spec.R,scale*spec.dR,fmt='.',label='measured')
spec.apply(water)
pylab.subplot(212)
#pylab.title('Intensity correction factor')
pylab.xlabel('Slit 1 opening (mm)')
pylab.ylabel('Incident intensity')
pylab.yscale('log')
pylab.errorbar(spec.slit1.x,spec.R,spec.dR,fmt='.',label='correction')
pylab.show()
开发者ID:reflectometry,项目名称:osrefl,代码行数:29,代码来源:ratiocor.py
示例2: NormDeltaRvT
def NormDeltaRvT(folder,keys):
if folder[0]['IVtemp']<250 and folder[0]['IVtemp']>5:
APiterator = [5,10]
AP = Analysis.AnalyseFile()
P = Analysis.AnalyseFile()
tsum = 0.0
for f in folder:
if f['iterator'] in APiterator:
AP.add_column(f.column('Voltage'),str(f['iterator']))
else:
P.add_column(f.column('Voltage'),str(f['iterator']))
tsum = tsum + f['Sample Temp']
AP.apply(func,0,replace=False,header='Mean NLV')
AP.add_column(f.Current,column_header = 'Current')
P.apply(func,0,replace=False,header='Mean NLV')
P.add_column(f.Current,column_header = 'Current')
APfit= AP.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
Pfit = P.curve_fit(quad,'Current','Mean NLV',bounds=lambda x,y:x,result=True,header='Fit',asrow=True)
DeltaR = Pfit[2] - APfit[2]
ErrDeltaR = numpy.sqrt((Pfit[3]**2)+(APfit[3]**2))
Spinsig.append(DeltaR/Res_Cu(tsum/10))
Spinsig_error.append(ErrDeltaR)
Temp.append(tsum/10)
plt.hold(True)
plt.title('$\Delta$R$_s$ vs T from linear coef of\nNLIV fit for '+f['Sample ID'],verticalalignment='bottom')
plt.xlabel('Temperture (K)')
plt.ylabel(r'$\Delta$R$_s$/$\rho$')
plt.errorbar(f['IVtemp'],1e3*DeltaR,1e3*ErrDeltaR,ecolor='k',marker='o',mfc='r', mec='k')
#plt.plot(f['IVtemp'],ErrDeltaR,'ok')
return Temp, Spinsig
开发者ID:joebatley,项目名称:PythonCode,代码行数:35,代码来源:NLIVvsHvsT.py
示例3: plot_sed
def plot_sed(fluxes, backgrounds, errors, **kwargs):
"""
Trivial SED plotting
"""
pl.errorbar(band_waves.values(),fluxes-backgrounds,yerr=errors,marker='s', **kwargs)
pl.xlabel('$\lambda$ (mm)')
pl.ylabel('mJy/beam')
开发者ID:BGPS,项目名称:MUSIC_usualsuspects,代码行数:7,代码来源:sed_from_dict.py
示例4: _show_rates
def _show_rates(rate, wo, wt, attenuator, tau_NP, tau_P):
import pylab
#pylab.figure()
pylab.errorbar(rate, wt[0], yerr=wt[1], fmt='g.', label='attenuated')
pylab.errorbar(rate, wo[0], yerr=wo[1], fmt='b.', label='unattenuated')
pylab.xscale('log')
pylab.yscale('log')
pylab.xlabel('incident rate (counts/second)')
pylab.ylabel('observed rate (counts/second)')
pylab.legend(loc='best')
pylab.grid(True)
pylab.plot(rate, rate/attenuator, 'g-', label='target')
pylab.plot(rate, rate, 'b-', label='target')
Ipeak, Rpeak = peak_rate(tau_NP=tau_NP, tau_P=tau_P)
if rate[0] <= Ipeak <= rate[-1]:
pylab.axvline(x=Ipeak, ls='--', c='b')
pylab.text(x=Ipeak, y=0.05, s=' %g'%Ipeak,
ha='left', va='bottom',
transform=pylab.gca().get_xaxis_transform())
if False:
pylab.axhline(y=Rpeak, ls='--', c='b')
pylab.text(y=Rpeak, x=0.05, s=' %g\n'%Rpeak,
ha='left', va='bottom',
transform=pylab.gca().get_yaxis_transform())
开发者ID:reflectometry,项目名称:reduction,代码行数:27,代码来源:deadtime_fit.py
示例5: plot
def plot(self, params, errors=None,label=''):
params=[max(1e-100,p) for p in params]
E=np.concatenate(([self._ERange[0]],self._splitE,[self._ERange[1]]))
pl.plot(reduce(lambda a,b:a+b,[[e,e] for e in E]),[1e-10]+reduce(lambda a,b:a+b,[[p,p] for p in params])+[1e-10],label=label)
if errors!=None:
for i in range(len(E)-1):
pl.errorbar([np.sqrt(E[i]*E[i+1])],[params[i]],yerr=[errors[i]],fmt='r')
开发者ID:kpws,项目名称:BSUnfold,代码行数:7,代码来源:spectrumModel.py
示例6: show_table
def show_table(table_name,ls="none", fmt="o", legend=False, name="m", do_half=0):
bt = fi.FITS(table_name)[1].read()
rgpp = (np.unique(bt["rgp_lower"])+np.unique(bt["rgp_upper"]))/2
nbins = rgpp.size
plt.xscale("log")
colours=["purple", "forestgreen", "steelblue", "pink", "darkred", "midnightblue", "gray", "sienna", "olive", "darkviolet"]
pts = ["o", "D", "x", "^", ">", "<", "1", "s", "*", "+", "."]
for i,r in enumerate(rgpp):
sel = (bt["i"]==i)
snr = 10** ((np.log10(bt["snr_lower"][sel]) + np.log10(bt["snr_upper"][sel]))/2)
if do_half==1 and i>nbins/2:
continue
elif do_half==2 and i<nbins/2:
continue
if legend:
plt.errorbar(snr, bt["%s"%name][i*snr.size:(i*snr.size)+snr.size], bt["err_%s"%name][i*snr.size:(i*snr.size)+snr.size], color=colours[i], ls=ls, fmt=pts[i], lw=2.5, label="$R_{gpp}/R_p = %1.2f-%1.2f$"%(np.unique(bt["rgp_lower"])[i],np.unique(bt["rgp_upper"])[i]))
else:
plt.errorbar(snr, bt["%s"%name][i*snr.size:(i*snr.size)+snr.size], bt["err_%s"%name][i*snr.size:(i*snr.size)+snr.size], color=colours[i], ls=ls, fmt=pts[i], lw=2.5)
plt.xlim(10,300)
plt.axhline(0, lw=2, color="k")
plt.xlabel("Signal-to-Noise $SNR_w$")
if name=="m":
plt.ylim(-0.85,0.05)
plt.ylabel("Multiplicative Bias $m \equiv (m_1 + m_2)/2$")
elif name=="alpha":
plt.ylabel(r"PSF Leakage $\alpha \equiv (\alpha _1 + \alpha _2)/2$")
plt.ylim(-0.5,2)
plt.legend(loc="lower right")
开发者ID:ssamuroff,项目名称:cosmology_code,代码行数:35,代码来源:nbc.py
示例7: plot_data
def plot_data(yRange=None):
'''
Plots and saves the cell measurement data. Returns nothing.
'''
fig = plt.figure(figsize=(18,12))
ax = plt.subplot(111)
plt.errorbar(range(len(avgCells.index)), avgCells[column], yerr=stdCells[column], fmt='o')
ax = plt.gca()
ax.set(xticks=range(len(avgCells.index)), xticklabels=avgCells.index)
xlims = ax.get_xlim()
ax.set_xlim([lim-1 for lim in xlims])
# adjust yRange if it was specified
if yRange!=None:
ax.set_ylim(yRange)
fileName = column + ' exlcuding outliers'
else:
fileName = column
plt.subplots_adjust(bottom=0.2, right=0.98, left=0.05)
plt.title(column)
plt.ylabel('mm')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
mng = plt.get_current_fig_manager()
mng.window.state('zoomed')
#plt.show()
path1 = 'Y:/Test data/ACT02/vision inspection/plot_100_cells/'
path2 = 'Y:/Nate/git/nuvosun-python-lib/vision system/plot_100_cells/'
fig.savefig(path1 + fileName, bbox_inches = 'tight')
fig.savefig(path2 + fileName, bbox_inches = 'tight')
plt.close()
开发者ID:nateGeorge,项目名称:nuvosun-python-lib,代码行数:30,代码来源:check+precision.py
示例8: p2dscatter
def p2dscatter(self, log=False, color=None, label=None, orientation='horizontal', **kwargs):
""" use pylab.errorplot to visualize these scatter points
Parameters:
log : if true create logartihmic plot
(all other kwargs will be passed to pylab.errobar)
"""
if len(self.x) == 0:
return
ax = p.gca()
if color is None:
color = next(ax._get_lines.color_cycle)
kw = {"xerr" : self.xerr, "yerr" : self.yerr, "fmt" : "k", "capsize" : 0., "linestyle" : 'None', "color" : color}
kw.update(kwargs)
if orientation == 'vertical':
x, y = self.y, self.x
kw["xerr"], kw["yerr"] = kw["yerr"], kw["xerr"]
axis_name = 'x'
else:
x, y = self.x, self.y
axis_name = 'y'
_set_logscale(ax, log, axis=axis_name)
p.errorbar(x, y, **kw)
if not hasattr(ax, "_legend_proxy"):
ax._legend_proxy = LegendProxy(ax)
ax._legend_proxy.add_scatter(label=label, color=color)
_h2label(self, orientation)
开发者ID:iamankit1995,项目名称:dashi,代码行数:35,代码来源:histviews.py
示例9: _plot_aggr_random
def _plot_aggr_random(self, span, Nmax, marker='o', color='r', markersize=6):
# those are the best submitter. Nothing to recompute, can be extracted
# from the df itself.
iauc = [self.df.ix[x].mean_auc for x in range(0, Nmax)]
pylab.clf()
pylab.plot([x for x in span], iauc, marker+color, markersize=markersize,
label="AUC (individual submissions)".format(self.mode))
pylab.grid(True)
#pylab.plot()
pylab.xlabel("N", fontsize=20)
pylab.ylabel("AUROC", fontsize=20)
pylab.title("Aggregated AUROC (random case)", fontsize=20)
pylab.errorbar(span, self.results.mean(axis=0), self.results.std(axis=0),
label="{} aggregation (over N submissions)".format(self.mode))
pylab.legend(loc="lower left")
self._random_results = {}
self._random_results['x'] = span
self._random_results['individual'] = iauc
self._random_results['aggregation_mean'] = list(self.results.mean(axis=0))
self._random_results['aggregation_std'] = list(self.results.std(axis=0))
self._random_results['aggregation_all'] = [list(x) for x in self.results]
xmax = pylab.xlim()[1]
pylab.ylim([0.35, 0.86])
pylab.xlim(0.5, xmax)
开发者ID:nagyistoce,项目名称:dreamtools,代码行数:28,代码来源:aggregation.py
示例10: plot_dmsq2
def plot_dmsq2(HOpions, OOpions, title=None, save=False, name=''):
"Plot m^2_{vs} - m^2_{vv}/2."
# Set up figure.
fig = p.figure()
p.rc('text', usetex=True)
p.rc('font', size=16)
p.rc('axes', linewidth=0.5)
p.xlabel('$am_{s}$')
p.ylabel('$m^2_{vs} - m^2_{vv}/2$')
legend = ()
xr = np.linspace(0.0,0.06)
# First data set.
hopions = [HOpions[1], HOpions[5]]
r = OOpions[3]
xs = [q.m1 for q in hopions]
ys = [(q.msq - r.msq/2) for q in hopions]
es = [nerror(q.sig_msq, r.sig_msq) for q in hopions]
fit = line_fit2(zip(xs,ys,es))
legend += p.errorbar(xs, ys, fmt='bo')[0],
# Fit results
p.errorbar(xr, fit.a+fit.b*xr, fmt='b-')
print fit.a, fit.sig_a
if save:
p.savefig(name)
else:
p.show()
开发者ID:atlytle,项目名称:tifr,代码行数:30,代码来源:dmix_analysis.py
示例11: plot_results
def plot_results(self, results, xloc, color, ls, label):
iter_counts = sorted(set([it for it, av in results.keys() if av == self.average]))
sorted_results = [results[it, self.average] for it in iter_counts]
avg = np.array([r.train_logprob() for r in sorted_results])
if hasattr(r, 'train_logprob_interval'):
lower = np.array([r.train_logprob_interval()[0] for r in sorted_results])
upper = np.array([r.train_logprob_interval()[1] for r in sorted_results])
if self.logscale:
plot_cmd = pylab.semilogx
else:
plot_cmd = pylab.plot
xloc = xloc[:len(avg)]
lw = 2.
if label not in self.labels:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw, label=label)
else:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw)
self.labels.add(label)
pylab.xticks(fontsize='xx-large')
pylab.yticks(fontsize='xx-large')
try:
pylab.errorbar(xloc, (lower+upper)/2., yerr=(upper-lower)/2., fmt='', ls='None', ecolor=color)
except:
pass
开发者ID:rgrosse,项目名称:fang,代码行数:32,代码来源:plotting.py
示例12: __primativePlotTGNs__
def __primativePlotTGNs__(self,bare=bool(False)):
"""
Is a macro of plotting commands that takes a list of TGNs that
plots each of these individually as a collection of points.
Creates a figure plotting the thread of list of TGNs using the
centroid and an X,Y error bars. Take a optional boolean to
make the plot not include a title and legend
"""
#Determine the index that corresponds to X and Y quantities
xIndex=0
yIndex=0
xLabel="NULL"
yLabel="NULL"
(xIndex,xLabel,yIndex,yLabel)=self.__getIndexAndLabels__()
plotValues=list()
gpsTimesInList=list()
for thisTGN in self.tgnList:
label=str(thisTGN.getID())
#Get the X,Y property
(xC,xE)=thisTGN.getCentroidErrorViaIndex(xIndex)
(yC,yE)=thisTGN.getCentroidErrorViaIndex(yIndex)
plotValues.append([xC,yC,xE,yE,label])
gpsTimesInList.append(thisTGN.getGPS())
for x,y,ex,ey,txtLabel in plotValues:
pylab.errorbar(x,y,xerr=ex,yerr=ey,label=txtLabel,marker='o')
pylab.xlabel(str(xLabel))
pylab.ylabel(str(yLabel))
if not bare:
pylab.title("TGNs: %i"%(min(gpsTimesInList)))
pylab.legend()
开发者ID:GeraintPratten,项目名称:lalsuite,代码行数:30,代码来源:autotrackutils.py
示例13: plot_fitness
def plot_fitness(self, show=True, save=False):
df = pd.DataFrame([res['t1opt']['results']['Best_score'].values
for res in self.results.allRes])
df = df.astype(float)
pylab.clf()
for res in self.results.allRes:
pylab.plot(res['t1opt']['results']['Best_score'], '--', color='grey')
pylab.grid()
pylab.xlabel("Generation")
pylab.ylabel("Score")
#pylab.plot(df.mean().values, 'kx--', lw=3, label='Mean Score')
y = df.mean().values
x = range(0, len(y))
yerr = df.std().values
pylab.errorbar(x, y, yerr=yerr, xerr=None, fmt='-', label='Mean Score',
color='k', lw=3)
pylab.legend()
if save is True:
self._report.savefig("fitness.png")
if show is False:
pylab.close()
开发者ID:cellnopt,项目名称:cellnopt,代码行数:26,代码来源:cnorfuzzy.py
示例14: nishiyama09
def nishiyama09(wavelength, AKs, makePlot=False):
# Data pulled from Nishiyama et al. 2009, Table 1
filters = ['V', 'J', 'H', 'Ks', '[3.6]', '[4.5]', '[5.8]', '[8.0]']
wave = np.array([0.551, 1.25, 1.63, 2.14, 3.545, 4.442, 5.675, 7.760])
A_AKs = np.array([16.13, 3.02, 1.73, 1.00, 0.500, 0.390, 0.360, 0.430])
A_AKs_err = np.array([0.04, 0.04, 0.03, 0.00, 0.010, 0.010, 0.010, 0.010])
# Interpolate over the curve
spline_interp = interpolate.splrep(wave, A_AKs, k=3, s=0)
A_AKs_at_wave = interpolate.splev(wavelength, spline_interp)
A_at_wave = AKs * A_AKs_at_wave
if makePlot:
py.clf()
py.errorbar(wave, A_AKs, yerr=A_AKs_err, fmt='bo',
markerfacecolor='none', markeredgecolor='blue',
markeredgewidth=2)
# Make an interpolated curve.
wavePlot = np.arange(wave.min(), wave.max(), 0.1)
extPlot = interpolate.splev(wavePlot, spline_interp)
py.loglog(wavePlot, extPlot, 'k-')
# Plot a marker for the computed value.
py.plot(wavelength, A_AKs_at_wave, 'rs',
markerfacecolor='none', markeredgecolor='red',
markeredgewidth=2)
py.xlabel('Wavelength (microns)')
py.ylabel('Extinction (magnitudes)')
py.title('Nishiyama et al. 2009')
return A_at_wave
开发者ID:jluastro,项目名称:JLU-python-code,代码行数:35,代码来源:synthetic.py
示例15: scatter_stats
def scatter_stats(db, s1, s2, f1=None, f2=None, **kwargs):
if f1 == None:
f1 = lambda x: x # constant function
if f2 == None:
f2 = f1
x = []
xerr = []
y = []
yerr = []
for k in db:
x_k = [f1(x_ki) for x_ki in db[k].__getattribute__(s1).gettrace()]
y_k = [f2(y_ki) for y_ki in db[k].__getattribute__(s2).gettrace()]
x.append(pl.mean(x_k))
xerr.append(pl.std(x_k))
y.append(pl.mean(y_k))
yerr.append(pl.std(y_k))
pl.text(x[-1], y[-1], " %s" % k, fontsize=8, alpha=0.4, zorder=-1)
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel(s1)
pl.ylabel(s2)
开发者ID:aflaxman,项目名称:bednet_stock_and_flow,代码行数:30,代码来源:explore.py
示例16: plot_one_ppc
def plot_one_ppc(model, t):
""" plot data and posterior predictive check
:Parameters:
- `model` : data.ModelData
- `t` : str, data type of 'i', 'r', 'f', 'p', 'rr', 'm', 'X', 'pf', 'csmr'
"""
stats = model.vars[t]['p_pred'].stats()
if stats == None:
return
pl.figure()
pl.title(t)
x = model.vars[t]['p_obs'].value.__array__()
y = x - stats['quantiles'][50]
yerr = [stats['quantiles'][50] - pl.atleast_2d(stats['95% HPD interval'])[:,0],
pl.atleast_2d(stats['95% HPD interval'])[:,1] - stats['quantiles'][50]]
pl.errorbar(x, y, yerr=yerr, fmt='ko', mec='w', capsize=0,
label='Obs vs Residual (Obs - Pred)')
pl.xlabel('Observation')
pl.ylabel('Residual (observation-prediction)')
pl.grid()
l,r,b,t = pl.axis()
pl.hlines([0], l, r)
pl.axis([l, r, y.min()*1.1 - y.max()*.1, -y.min()*.1 + y.max()*1.1])
开发者ID:aflaxman,项目名称:gbd,代码行数:29,代码来源:graphics.py
示例17: compare_models
def compare_models(db, stoch="itn coverage", stat_func=None, plot_type="", **kwargs):
if stat_func == None:
stat_func = lambda x: x
X = {}
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c] = []
for k in sorted(db.keys()):
c = k.split("_")[2]
X[c].append([stat_func(x_ki) for x_ki in db[k].__getattribute__(stoch).gettrace()])
x = pl.array([pl.mean(xc[0]) for xc in X.values()])
xerr = pl.array([pl.std(xc[0]) for xc in X.values()])
y = pl.array([pl.mean(xc[1]) for xc in X.values()])
yerr = pl.array([pl.std(xc[1]) for xc in X.values()])
if plot_type == "scatter":
default_args = {"fmt": "o", "ms": 10}
default_args.update(kwargs)
for c in X.keys():
pl.text(pl.mean(X[c][0]), pl.mean(X[c][1]), " %s" % c, fontsize=8, alpha=0.4, zorder=-1)
pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
pl.xlabel("First Model")
pl.ylabel("Second Model")
pl.plot([0, 1], [0, 1], alpha=0.5, linestyle="--", color="k", linewidth=2)
elif plot_type == "rel_diff":
d1 = sorted(100 * (x - y) / x)
d2 = sorted(100 * (xerr - yerr) / xerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean (%)")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err (%)")
elif plot_type == "abs_diff":
d1 = sorted(x - y)
d2 = sorted(xerr - yerr)
pl.subplot(2, 1, 1)
pl.title("Percent Model 2 deviates from Model 1")
pl.plot(d1, "o")
pl.xlabel("Countries sorted by deviation in mean")
pl.ylabel("deviation in mean")
pl.subplot(2, 1, 2)
pl.plot(d2, "o")
pl.xlabel("Countries sorted by deviation in std err")
pl.ylabel("deviation in std err")
else:
assert 0, "plot_type must be abs_diff, rel_diff, or scatter"
return pl.array([x, y, xerr, yerr])
开发者ID:aflaxman,项目名称:bednet_stock_and_flow,代码行数:60,代码来源:explore.py
示例18: plotRes_varyingTrees
def plotRes_varyingTrees( data_dict, dataset_name, max_correct=3000 , show=True):
'''
Plots the results of a varyingNumTrees() experiment, using a dictionary
structure to hold the data. See the loadRes_varyingTrees() comments on the
dictionary layout.
'''
xvals = data_dict['NumTrees']
#prox forest trials
pf_avg = data_dict['PF'].mean(axis=0)
pf_std = data_dict['PF'].std(axis=0)
pf_95_conf = 1.96 * pf_std / math.sqrt(data_dict['PF'].shape[0])
#kdt forest trials
kdt_avg = data_dict['KDT'].mean(axis=0)
kdt_std = data_dict['KDT'].std(axis=0)
kdt_95_conf = 1.96 * kdt_std / math.sqrt(data_dict['KDT'].shape[0])
#plot average results of each, bounded by lower and upper bounds of 95% conf intv
pl.hold(True)
pl.errorbar(xvals, pf_avg/max_correct, yerr=pf_95_conf/max_correct, fmt='-r',
label="PF")
pl.errorbar(xvals, kdt_avg/max_correct, yerr=kdt_95_conf/max_correct, fmt='-.b',
label="KDT")
pl.ylim([0,1.05])
pl.title(dataset_name)
pl.xlabel("Number of Trees in Forest")
pl.ylabel("Percent Correct")
pl.legend(loc='lower right')
if show: pl.show()
开发者ID:Sciumo,项目名称:ProximityForest,代码行数:30,代码来源:plotResults.py
示例19: plotCorr
def plotCorr(self,pars=None,SHOW=True,SAVE=True):
skipfits=True
pb.clf()
for irn in range(len(self.ranges)):
for ist in range(len(self.params)/3):
pb.errorbar(np.arange(len(self.Pcorr[irn,ist,:]))/self.Fs,self.Pcorr[irn,ist,:],yerr=self.PcorrERR[irn,ist,:],color=colours[ist])
pb.ylim([0,1])
pb.grid(True)
pb.xlabel('Time (s)',fontsize=20)
pb.ylabel('Probabilities',fontsize=20)
pb.xticks(fontsize=16)
pb.yticks(fontsize=16)
if SAVE:
fn=os.path.basename(self.filename)
pb.savefig(self.figdir+'corr_'+'range_'+str(irn)+fn[:-4]+'.eps')
f=open(self.datdir+fn[:-4]+'.dat','a')
f.seek(0,2)
f.write('#corr_range_'+str(irn)+'\n')
#f.write('BinCentre(pA)\tBinMin(pA)\tBinMax(pA)\tCounts\n')
#for i in range(len(self.n)):
# f.write(str(self.x[i])+'\t'+str(self.bins[i])+'\t'+str(self.bins[i+1])+'\t'+str(self.n[i])+'\n')
f.close()
if SHOW:pb.show()
pb.clf()
return
开发者ID:taucer,项目名称:kynalyze,代码行数:25,代码来源:ttCorr.py
示例20: blocks_per_trial
def blocks_per_trial(experiment, neutral_blocks = False, clf = True, fig_no = 1, last_n = 6):
days = set([s.day for s in experiment.get_sessions('all', 'all')])
residual_trials = np.zeros(len(experiment.subject_IDs)) # Number of trials in last (uncompleted) block of session.
mean_bpt, sd_bpt = ([],[]) # Lists to hold mean and standard deviation of blocks per trial for each day.
for day in days:
day_blocks_per_trial = []
sessions = experiment.get_sessions('all', day)
for session in sessions:
assert hasattr(session,'blocks'), 'Session does not have block info.'
ax = experiment.subject_IDs.index(session.subject_ID) # Index used for residual trials array.
blocks_per_trial, residual_trials[ax] = _session_blocks_per_trial(session, residual_trials[ax], neutral_blocks)
day_blocks_per_trial.append(blocks_per_trial)
mean_bpt.append(ut.nanmean(day_blocks_per_trial))
sd_bpt.append (np.sqrt(ut.nanvar(np.array(day_blocks_per_trial))))
days = np.array(list(days))-min(days) + 1
p.figure(fig_no)
if clf: p.clf()
p.subplot(2,1,1)
p.errorbar(days, mean_bpt, sd_bpt/np.sqrt(len(experiment.subject_IDs)))
p.xlim(0.5, max(days) + 0.5)
p.ylim(ymin = 0)
p.ylabel('Blocks per trial')
p.subplot(2,1,2)
p.plot(days,1 / np.array(mean_bpt))
p.xlabel('Day')
p.ylabel('Trials per block')
开发者ID:dydcfg,项目名称:Two_Step,代码行数:26,代码来源:plotting.py
注:本文中的pylab.errorbar函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论