• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.concatenate函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pylab.concatenate函数的典型用法代码示例。如果您正苦于以下问题:Python concatenate函数的具体用法?Python concatenate怎么用?Python concatenate使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了concatenate函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: gp_plot_prediction

def gp_plot_prediction(predict_x, mean, variance = None):
    """
    Plot a gp's prediction using pylab including error bars if variance specified

    Error bars are 2 * standard_deviation as in GP for ML book
    """
    from pylab import plot, concatenate, fill
    if None != variance:
        # check variances are just about +ve - could signify a bug if not
        #assert variance.all() > -1e-10
        data = [
            (x,y,max(v,0.0))
            for x,y,v
            in zip( predict_x, mean.flat, variance  )
            ]
    else:
        data = [
            (x,y)
            for x,y
            in zip( predict_x, mean )
            ]
    data.sort( key = lambda d: d[0] ) # sort on X axis
    predict_x = [ d[0] for d in data ]
    predict_y = np.array( [ d[1] for d in data ] )
    plot( predict_x, predict_y, color='k', linestyle=':' )
    if None != variance:
        sd = np.sqrt( np.array( [ d[2] for d in data ] ) )
        var_x = concatenate((predict_x, predict_x[::-1]))
        var_y = concatenate((predict_y + 2.0 * sd, (predict_y - 2.0 * sd)[::-1]))
        p = fill(var_x, var_y, edgecolor='w', facecolor='#d3d3d3')
开发者ID:davmre,项目名称:cs281b-coarse-to-fine-GPs,代码行数:30,代码来源:gp_regression.py


示例2: homog2D

def homog2D(xPrime, x):
    """
    
    Compute the 3x3 homography matrix mapping a set of N 2D homogeneous 
    points (3xN) to another set (3xN)

    """

    numPoints = xPrime.shape[1]
    assert numPoints >= 4

    A = None
    for i in range(0, numPoints):
        xiPrime = xPrime[:, i]
        xi = x[:, i]

        Ai_row0 = pl.concatenate((pl.zeros(3), -xiPrime[2] * xi, xiPrime[1] * xi))
        Ai_row1 = pl.concatenate((xiPrime[2] * xi, pl.zeros(3), -xiPrime[0] * xi))
        Ai = pl.row_stack((Ai_row0, Ai_row1))

        if A is None:
            A = Ai
        else:
            A = pl.vstack((A, Ai))

    U, S, V = pl.svd(A)
    V = V.T
    h = V[:, -1]
    H = pl.reshape(h, (3, 3))
    return H
开发者ID:pjozog,项目名称:PylabUtils,代码行数:30,代码来源:dlt.py


示例3: example

def example():

    from pylab import rand, ones, concatenate
    import matplotlib.pyplot as plt
    # EXAMPLE data code from:
    # http://matplotlib.sourceforge.net/pyplots/boxplot_demo.py
    # fake up some data
    spread= rand(50) * 100
    center = ones(25) * 50
    flier_high = rand(10) * 100 + 100
    flier_low = rand(10) * -100
    data =concatenate((spread, center, flier_high, flier_low), 0)

    # fake up some more data
    spread= rand(50) * 100
    center = ones(25) * 40
    flier_high = rand(10) * 100 + 100
    flier_low = rand(10) * -100
    d2 = concatenate( (spread, center, flier_high, flier_low), 0 )
    data.shape = (-1, 1)
    d2.shape = (-1, 1)
    #data = [data, d2, d2[::2,0]]
    data = [data, d2]

    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.set_xlim(0,4)
    percentile_box_plot(ax, data, [2,3])
    plt.show()
开发者ID:boada,项目名称:scripts,代码行数:29,代码来源:boxplot_percentile.py


示例4: homog3D

def homog3D(points2d, points3d):
    """
    
    Compute a matrix relating homogeneous 3D points (4xN) to homogeneous
    2D points (3xN)

    Not sure why anyone would do this.  Note that the returned transformation 
    *NOT* an isometry.  But it's here... so deal with it.

    """

    numPoints = points2d.shape[1]
    assert numPoints >= 4

    A = None
    for i in range(0, numPoints):
        xiPrime = points2d[:, i]
        xi = points3d[:, i]

        Ai_row0 = pl.concatenate((pl.zeros(4), -xiPrime[2] * xi, xiPrime[1] * xi))
        Ai_row1 = pl.concatenate((xiPrime[2] * xi, pl.zeros(4), -xiPrime[0] * xi))
        Ai = pl.row_stack((Ai_row0, Ai_row1))

        if A is None:
            A = Ai
        else:
            A = pl.vstack((A, Ai))

    U, S, V = pl.svd(A)
    V = V.T
    h = V[:, -1]
    P = pl.reshape(h, (3, 4))
    return P
开发者ID:pjozog,项目名称:PylabUtils,代码行数:33,代码来源:dlt.py


示例5: drawBetween

def drawBetween(x, yl, yh, col, lw, alpha = 1, plot = pylab.plot) :
  fx = pylab.concatenate( (x,x[::-1]) )
  fy = pylab.concatenate( (yh,yl[::-1]) )

  # probably does not work with log??
  p = pylab.fill(fx, fy, facecolor=col, lw = 0, alpha = alpha)
  if lw :
    plot(x, yl, x, yh, aa = 1, alpha = alpha, lw = lw, color='k')
开发者ID:4ment,项目名称:beast-mcmc,代码行数:8,代码来源:popGraphUtil.py


示例6: density_plot

def density_plot ( x, D ):
    """Plot the density D along with a confidence region"""
    # TODO: pass parameters through (e.g. color, axes, ...)
    fx = D(x)
    x_ = pl.concatenate ( (x, x[::-1]) )
    fx_ = pl.clip(pl.concatenate ( (fx+D.c,fx[::-1]-D.c) ), 0, pl.inf )
    pl.fill ( x_, fx_, edgecolor=[.5]*3, facecolor=[.8]*3 )
    pl.plot ( x, fx, color=[0]*3 )
开发者ID:igordertigor,项目名称:nopard,代码行数:8,代码来源:plot.py


示例7: shadowing

 def shadowing(self):
     "Select the shadowed antennas from the FLAG column and return the index of the shadowed measurement and the percentage of shadowing "
     
     indexFlag=pl.concatenate((pl.where(self.f==1)[0],pl.where(self.ff[0,0,])[0],pl.where(self.ff[1,0,])[0]))
     indexNoFlag=pl.concatenate((pl.where(self.f==0)[0],pl.where(self.ff[0,0,]==False)[0],pl.where(self.ff[1,0,]==False)[0]))
     
     Ntot=len(indexFlag)+len(indexNoFlag)
     fractionShadow=100.*len(indexFlag)/Ntot
     
     return(indexFlag,fractionShadow)
开发者ID:nodarai,项目名称:acdc,代码行数:10,代码来源:UVW.py


示例8: int_peak

 def int_peak(self,fitrange=None, intrange=None, normalize=False, plot=False, npoints=10):
     """
     Fits a linear background, subtracts the background, and integrates. Intended to be used for integrating peaks.
     
     wavelen : list
         list of wavelengths in nm. Can be sorted from low to high or high to low
     lum : list
         list of luminescence
     fitrange : 2-element list, optional
         Defaults to the span of the data. Input: [low nm, high nm]
     intrange : 2-element list, optional
         Defaults to the span of the data or fitrange (if given). Input: [low nm, high nm]
     normalize : boolean, optional
         Default is False
     plot : boolean, optional
         Default is False. Plots the original data, the linear background, and the data with the background subtracted
     npoints : int
         Default is 10. Number of points above and below the given fitrange point to average over.
     """
     if fitrange is None:
         fitindex=[0+npoints/2, len(self._wavelen)-1-npoints/2]
     else:
         fitindex=[0, 0]
         fitindex[0]=py.where(self._wavelen>fitrange[0])[0][0]
         fitindex[1]=py.where(self._wavelen>fitrange[1])[0][0]
     
     wavelenfit=py.concatenate((self._wavelen[fitindex[0]-npoints/2:fitindex[0]+npoints/2], 
                            self._wavelen[fitindex[1]-npoints/2:fitindex[1]+npoints/2]))
     lumfit=py.concatenate((self._lum[fitindex[0]-npoints/2:fitindex[0]+npoints/2], 
                         self._lum[fitindex[1]-npoints/2:fitindex[1]+npoints/2]))
     linearfit = py.polyfit(wavelenfit, lumfit, 1)
     linear_bg = py.polyval( linearfit, self._wavelen[fitindex[0]:fitindex[1]+1] )
     wavelen_bg = self._wavelen[fitindex[0]:fitindex[1]+1].copy()
     lum_bg = self._lum[fitindex[0]:fitindex[1]+1].copy()
     lum_bg -= linear_bg
     
     if plot is True:
         py.plot(self._wavelen,self._lum,'k')
         py.plot(wavelen_bg,linear_bg,'k:')
         py.plot(wavelen_bg,lum_bg,'r')
         py.show()
     
     intindex=[0,0]
     if intrange is None:
         wavelen_int = wavelen_bg
         lum_int = lum_bg  
     else:
         intindex[0]=py.where(wavelen_bg>intrange[0])[0][0]
         intindex[1]=py.where(wavelen_bg>intrange[1])[0][0]    
         wavelen_int = wavelen_bg[intindex[0]:intindex[1]+1]
         lum_int = lum_bg[intindex[0]:intindex[1]+1]
     
     peak_area = py.trapz(lum_int, x=wavelen_int)
     return peak_area
开发者ID:cuishanying,项目名称:python_misc_modules,代码行数:54,代码来源:NVanalysis.py


示例9: set_pdf

 def set_pdf(self, x, p, Nrl = 1000):
   """Generate the lookup tables. 
   x is the value of the random variate
   pdf is its probability density
   cdf is the cumulative pdf
   inversecdf is the inverse look up table
   
   """
   
   self.x = x
   self.pdf = p/p.sum() #normalize it
   self.cdf = self.pdf.cumsum()
   self.inversecdfbins = Nrl
   self.Nrl = Nrl
   y = pylab.arange(Nrl)/float(Nrl)
   delta = 1.0/Nrl
   self.inversecdf = pylab.zeros(Nrl)    
   self.inversecdf[0] = self.x[0]
   cdf_idx = 0
   for n in xrange(1,self.inversecdfbins):
     while self.cdf[cdf_idx] < y[n] and cdf_idx < Nrl:
       cdf_idx += 1
     self.inversecdf[n] = self.x[cdf_idx-1] + (self.x[cdf_idx] - self.x[cdf_idx-1]) * (y[n] - self.cdf[cdf_idx-1])/(self.cdf[cdf_idx] - self.cdf[cdf_idx-1]) 
     if cdf_idx >= Nrl:
       break
   self.delta_inversecdf = pylab.concatenate((pylab.diff(self.inversecdf), [0]))
开发者ID:jacob-carrier,项目名称:code,代码行数:26,代码来源:recipe-576556.py


示例10: fixation_box_samples

def fixation_box_samples(all_x, all_y, fix_w, dwell_times, f_samp = 200.0):
  """Collect all x and ys for all trials for when the eye is within the fixation
  box."""
  n_trials = len(all_x)
  in_fix_box_x = pylab.array([],dtype=float)
  in_fix_box_y = pylab.array([],dtype=float)
  for tr in range(n_trials):
    if dwell_times[tr,0] >= 0:
      # We got a fixation
      start_idx = int(f_samp * dwell_times[tr,0]/1000.0)
      end_idx = -1
      if dwell_times[tr,1] >= 0:
        end_idx = int(f_samp * dwell_times[tr,1]/1000.0) - 5
      in_fix_box_x = pylab.concatenate((in_fix_box_x, all_x[tr][start_idx:end_idx]))
      in_fix_box_y = pylab.concatenate((in_fix_box_y, all_y[tr][start_idx:end_idx]))
  return in_fix_box_x, in_fix_box_y    
开发者ID:kghose,项目名称:neurapy,代码行数:16,代码来源:eye.py


示例11: getCloneReplicates

    def getCloneReplicates(self, clone, w, applyFilter=False):
        '''Retrieve all growth curves for a clone+well'''
        # Check if any other replicates should be returned
        # retArray is a 2xN multidimensional numpy array
        retArray = py.array([])
        first = True
        for rep in self.replicates[clone]:
            # Get replicate
            filterMe = self.dataHash[clone][rep][w]['filter']
            currCurve = self.dataHash[clone][rep][w]['od']

            # Check if filter is enabled and curve should be filtered
            if applyFilter and filterMe:
                continue

            # Create multidimensional array if first
            elif first:
                retArray = py.array([currCurve])
                first = False

            # Append to multidimensional array if not first
            else:
                retArray = py.concatenate((retArray,
                                           py.array([currCurve])))

        return retArray
开发者ID:F1000Research,项目名称:PMAnalyzer,代码行数:26,代码来源:PMData.py


示例12: getCloneReplicates

    def getCloneReplicates(self, clone, source, condition, applyFilter=False):
        '''Retrieve all growth curves for a clone+source+condition'''
        # Check if any other replicates should be returned
        # retArray is a 2xN multidimensional numpy array
        retArray = py.array([])
        first = True
        for i in xrange(1, self.numReplicates[clone] + 1):
            # Get replicate
            filterMe = self.dataHash[clone][i][source][condition]['filter']
            currCurve = self.dataHash[clone][i][source][condition]['od']

            # Check if filter is enabled and curve should be filtered
            if applyFilter and filterMe:
                continue

            # Create multidimensional array if first
            elif first:
                retArray = py.array([currCurve])
                first = False

            # Append to multidimensional array if not first
            else:
                retArray = py.concatenate((retArray,
                                           py.array([currCurve])))

        return retArray
开发者ID:dacuevas,项目名称:phenotype_microarray,代码行数:26,代码来源:PMData.py


示例13: old_spike_psth

def old_spike_psth(data, t1_ms = -250., t2_ms = 0., bin_ms = 10):
  """Uses data format returned by get_spikes"""
  spike_time_ms = data['spike times ms']
  N_trials = data['trials']
  t2_ms = pylab.ceil((t2_ms - t1_ms) / bin_ms)*bin_ms + t1_ms
  N_bins = (t2_ms - t1_ms) / bin_ms
  
  if N_trials > 0:
    all_spikes_ms = pylab.array([],dtype=float)
    for trial in range(len(spike_time_ms)):
      if spike_time_ms[trial] is None:
        continue
      idx = pylab.find((spike_time_ms[trial] >= t1_ms) & 
                       (spike_time_ms[trial] <= t2_ms))
      all_spikes_ms = \
        pylab.concatenate((all_spikes_ms, spike_time_ms[trial][idx]))
    spike_n_bin, bin_edges = \
      pylab.histogram(all_spikes_ms, bins = N_bins, 
                      range = (t1_ms, t2_ms), new = True)

    spikes_per_trial_in_bin = spike_n_bin/float(N_trials) 
    spike_rate = 1000*spikes_per_trial_in_bin/bin_ms
  else:
    spike_rate = pylab.nan
  
  bin_center_ms = (bin_edges[1:] + bin_edges[:-1])/2.0

  return spike_rate, bin_center_ms
开发者ID:kghose,项目名称:neurapy,代码行数:28,代码来源:neural_utility.py


示例14: datagen

def datagen(N):
    """
    Produces N pairs of training data and desired output;
    each sample of training data contains -1 in its first position,
    this corresponds to the interpretation of the threshold as first
    element of the weight vector
    """

    fun1 = lambda x1,x2: -2*x1**3-x2+.5*x1**2
    fun2 = lambda x1,x2: x1**2*x2+2*x1*x2+1
    fun3 = lambda x1,x2: .5*x1*x2**2+x2**2-2*x1**2
    
    rarr1 = rand(1,N)
    rarr2 = rand(1,N)
    
    teacher = sign(rand(1,N)-.5)
    
    idplus  = (teacher<0)
    idminus = -idplus
    
    rarr1[idplus] = rarr1[idplus]-1
    
    y1=fun1(rarr1,rarr2)
    y2=fun2(rarr1,rarr2)
    y3=fun3(rarr1,rarr2)
    
    x=transpose(concatenate((-ones((1,N)),y1,y2)))
    
    return x, teacher[0]
开发者ID:albert4git,项目名称:aTest,代码行数:29,代码来源:datagen.py


示例15: px_smooth

def px_smooth(idx, e, x, idx_table, N_HE0, N_US, N_US_HE, WC):
    """Over sample, smooth and undersample photoionization cross-sections
    """
    i, nmin, ntot, m, l, p, pos = idx_table[idx]

    try:
        # case of TOPBASE data
        nmin.index(".")
        nmin = pl.nan
    except ValueError:
        nmin = int(nmin)

    # Keep sampling for high energy values where the variation follow Kramer's law
    if isinstance(int(ntot) - nmin, int):
        N_HE = int(ntot) - nmin
    else:
        N_HE = N_HE0

    if N_HE >= e.size:
        N_HE = -e.size
        print("Warning: N_HE is larger than photoionization table, select all the table.")

    e_sel = e[:-N_HE]
    e_sel_log = pl.log10(e_sel)
    x_sel = x[:-N_HE]

    # Interpolate and smooth data
    # e_i = pl.linspace(min(e_sel), max(e_sel), 10000)
    e_i_log = pl.linspace(min(e_sel_log), max(e_sel_log), 10000)
    e_i = 10 ** e_i_log
    x_i = pl.interp(e_i, e_sel, x_sel)
    x_is = smooth(x_i, WC)
    e_us = pl.concatenate([e_i[0:10], e_i[::N_US], e[int(ntot) - N_HE :: N_US_HE]])
    x_us = pl.concatenate([x_is[0:10], x_is[::N_US], x[int(ntot) - N_HE :: N_US_HE]])

    if x_us.any() == 0.0:
        print("x_us = 0")
        quit(1)

    # Conservation of area
    # area = pl.trapz( x_Mb, e_eV)   # total
    # area = pl.trapz( e_sel, x_sel) # selected
    area_i = pl.trapz(x_i, e_i)  # selected interpolated
    area_is = pl.trapz(x_is, e_i)  # selected interpolated and sampled
    # area_us = pl.trapz(x_us, e_us)

    return e_us, x_us, area_i, area_is
开发者ID:thibaultmerle,项目名称:formato,代码行数:47,代码来源:mart_bf.py


示例16: getmovingAveragedData

 def getmovingAveragedData(self,window_size_GHz=-1):
     #so far unelegant way of convolving the columns one by one
     #even not nice, improvement possible?
     if window_size_GHz<0.5e9:
         window_size=int(self.getEtalonSpacing()/self.getfbins())
     else:
         window_size=int(window_size_GHz/self.getfbins())
           
     window_size+=window_size%2+1
     window=py.ones(int(window_size))/float(window_size)
     
     dataabs=py.convolve(self.getFAbs(), window, 'valid')
     dataph=py.convolve(self.getFPh(), window, 'valid')
     one=py.ones((window_size-1)/2,)
     dataabs=py.concatenate((dataabs[0]*one,dataabs,dataabs[-1]*one))
     dataph=py.concatenate((dataph[0]*one,dataph,dataph[-1]*one))
     return py.column_stack((self.fdData[:,:3],dataabs,dataph,self.fdData[:,5:]))
开发者ID:DavidJahn86,项目名称:terapy,代码行数:17,代码来源:TeraData.py


示例17: eye_sample_insert_interval

def eye_sample_insert_interval(R):
  tt = R.data['Trials']['eyeXData']['Trial Time']  
  n_trials = len(tt)
  d_esii = pylab.array([],dtype=float)
  for tr in range(n_trials):
    d_esii = pylab.concatenate((d_esii,pylab.diff(tt[tr])))

  return d_esii
开发者ID:kghose,项目名称:neurapy,代码行数:8,代码来源:eye.py


示例18: __fake_boxplot_data

    def __fake_boxplot_data( self ):
        spread = pylab.rand(50) * 100
        center = pylab.ones(25) * 50
        flier_high = pylab.rand(10) * 100 + 100
        flier_low = pylab.rand(10) * -100
        data = pylab.concatenate( (spread, center, flier_high, flier_low), 0 )

        spread = pylab.rand(50) * 100
        center = pylab.ones(25) * 40
        flier_high = pylab.rand(10) * 100 + 100
        flier_low = pylab.rand(10) * -100
        d2 = pylab.concatenate( (spread, center, flier_high, flier_low), 0 )
        data.shape = (-1, 1)
        d2.shape = (-1, 1)
        data = [ data, d2, d2[::2,0] ]

        return data
开发者ID:darp,项目名称:plot-tools,代码行数:17,代码来源:BoxPlot.py


示例19: concatenateRT

def concatenateRT(data, axis=0):
    if data.ndim != 2:
        return
    if axis == 1:
        datatmp = data.swapaxes(0,1)
    else:
        datatmp = data
    return tuple([P.concatenate(tuple(datatmp[i,:])) for i in range(datatmp.shape[0]) ])
开发者ID:jorjuato,项目名称:IORstats,代码行数:8,代码来源:plot.py


示例20: sigma_vectors_weights

	def sigma_vectors_weights(self):

		"""
		generates  sigma vector weights

		Returns
		----------
		Wm_i : ndarray
			array of sigma points' weights 
		Wc_i : ndarray
			array of sigma points' weights 
		"""
		Wm0=[self.lamda/(self.lamda+self.L)]
		Wc0=[(self.lamda/(self.lamda+self.L))+1-self.alpha_sigma_points**2+self.beta_sigma_points]
		Wmc=[1./(2*(self.L+self.lamda))]
		Wm_i=pb.concatenate((Wm0,2*self.L*Wmc)) 
		Wc_i=pb.concatenate((Wc0,2*self.L*Wmc)) 
		return Wm_i,Wc_i
开发者ID:mikedewar,项目名称:BrainIDE,代码行数:18,代码来源:IDE.py



注:本文中的pylab.concatenate函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.connect函数代码示例发布时间:2022-05-25
下一篇:
Python pylab.colorbar函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap