• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.barh函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pylab.barh函数的典型用法代码示例。如果您正苦于以下问题:Python barh函数的具体用法?Python barh怎么用?Python barh使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了barh函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: barh

def barh(x, y=None, title='', xlabel='', ylabel=''):
    import pylab as P
    import numpy as np
    L = (tuple, list, np.ndarray)

    # separate arrays
    if isinstance(x,L) and isinstance(y,L):
        xylist = zip(x,y)
    # list of two-tuples
    elif isinstance(x, L) and isinstance(x[0], L) and len(x[0]) == 2:
        xylist = x
    else:
        raise TypeError

    P.figure(figsize=(10, 5)) # image dimensions
    P.title(title, size='medium')
    P.xlabel(xlabel)
    P.ylabel(ylabel)

    # add bars
    for i, item in enumerate(xylist):
        P.barh(i + 0.25 , item[1])

    # set ylim
    width = np.max(zip(*xylist)[1])
    P.xlim(0, width*1.1)

    # axis setup
    P.yticks(np.arange(0.65, len(xylist)),  ['%s' % x for x,y in xylist], size='medium')
开发者ID:huyng,项目名称:showdata,代码行数:29,代码来源:hbar_chart.py


示例2: build_model

def build_model():
    #df = get_training_data()
    df = get_sampling_training()

    targets = np.array(df['success'])
    del df['success']
    del df['name']
    
    columns = df.columns

    data = np.array(df)
    model = randomforest(data, targets, tree_num=200)
    pickle.dump(model, open("data/rf.model", "w"))

    # feature importance 
    feature_importance = model.feature_importances_
    # make importances relative to max importance
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    pl.subplot(1, 2, 2)
    pl.barh(pos, feature_importance[sorted_idx], align='center')
    pl.yticks(pos, columns[sorted_idx])
    pl.xlabel('Relative Importance')
    pl.title('Variable Importance')
    pl.savefig('plots/feature_imp.jpg')
开发者ID:Pthinker,项目名称:Startup_Sniffer,代码行数:26,代码来源:predict.py


示例3: length_stats_chart

def length_stats_chart(path, prefixes, sortby=1):
  stats = []
  for prefix in prefixes:
    med, m,s = length_stats(prefix)
    stats.append((prefix,med,m,s))

  stats.sort(key=operator.itemgetter(sortby))
  prefixes, med_list, mean_list, std_list = zip(*stats)

  blockSize = 8 
  ind = p.arange(0, blockSize*len(prefixes), blockSize) # y location for groups
  height = 3 # bar height 

  p3 = p.barh(ind, std_list, 2   * height, color = 'b', linewidth = 0)
  p2 = p.barh(ind, med_list, height, color = 'g', linewidth = 0)
  p1 = p.barh(ind+height, mean_list, height, color = 'r', linewidth = 0)
  
  p.ylim(-height, len(prefixes) * blockSize)
  yfontprop = FontProperties(size=4)
  xfontprop = FontProperties(size='smaller')
  p.xlabel('Unicode Codepoints')
  p.ylabel('Language Code')
  p.title('Descriptive Statistics for Document Lengths')
  p.gca().yaxis.tick_left()
  p.yticks(ind+height, prefixes, fontproperties = yfontprop)
  xmin, xmax = p.xlim()
  p.xticks( p.arange(xmin,xmax,1000),fontproperties = xfontprop)
  p.gca().xaxis.grid(linestyle = '-', linewidth=0.15)
  p.legend((p1[0], p2[0], p3[0]), ('Mean','Median','Standard Deviation'), prop = xfontprop, loc = 'lower right' )

  p.savefig(path, dpi=300)
  p.close()
  p.clf()
开发者ID:adamar,项目名称:wikidump,代码行数:33,代码来源:analysis.py


示例4: plot

 def plot(self, gs):
     unit_len = self.show_len * 1. / 5.
     if self.s.now - self.show_len < 0:
         return 
         
     price = self.price[0][self.s.now - self.show_len : self.s.now]
     profile_range = [price.min(), price.max() + 1]
     floor, ceil = profile_range[0] - 1, profile_range[1] + 1
         
     d = self.output(3, profile_range)
     
     ax = plt.subplot(gs)
     plt.plot(price)
     day_begin = np.where(self.s.history['time_in_ticks'][self.s.now - self.show_len : self.s.now] == 0)[0]
     for x in day_begin:
         plt.axvline(x, color='r', linestyle=':')
     y = self.smoothed_pivot_profile[floor : ceil]
     plt.barh(np.arange(floor, ceil) - 0.5, y * unit_len, 1.0, label=self.name,
              alpha=0.2, color='r', edgecolor='none')
     
     last_price = int(get(self.price))
     support = last_price + int(round((d['S_offset']) * self.volatility))
     resistance = last_price + int(round((d['R_offset']) * self.volatility))
     highlighted = [support, resistance]
     plt.barh(np.array(highlighted) - 0.5, self.smoothed_pivot_profile[highlighted] * unit_len, 1.0,
              alpha=1.0, color='r', edgecolor='none')
     ax.set_xticks(np.arange(0, self.show_len * 1.22, unit_len))
     ax.xaxis.grid(b=True, linestyle='--')
     ax.yaxis.grid(b=False)
     plt.legend(loc='upper right')
     return ax
开发者ID:xiaoda99,项目名称:pivotrader,代码行数:31,代码来源:pivot_ind_old.py


示例5: plot_predictions

    def plot_predictions(self):
        data = self.get_next_batch(train=False)[2] # get a test batch
        num_classes = self.test_data_provider.get_num_classes()
        NUM_ROWS = 2
        NUM_COLS = 4
        NUM_IMGS = NUM_ROWS * NUM_COLS
        NUM_TOP_CLASSES = min(num_classes, 4) # show this many top labels

        label_names = self.test_data_provider.batch_meta['label_names']
        if self.only_errors:
            preds = n.zeros((data[0].shape[1], num_classes), dtype=n.single)
        else:
            preds = n.zeros((NUM_IMGS, num_classes), dtype=n.single)
            rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS)
            print rand_idx
            data[0] = n.require(data[0][:,rand_idx], requirements='C')
            data[1] = n.require(data[1][:,rand_idx], requirements='C')
        data += [preds]
        temp = data[0]
        print data
        print temp.ndim,temp.shape,temp.size
        # Run the model
        self.libmodel.startFeatureWriter(data, self.sotmax_idx)
        self.finish_batch()

        fig = pl.figure(3)
        fig.text(.4, .95, '%s test case predictions' % ('Mistaken' if self.only_errors else 'Random'))
        if self.only_errors:
            err_idx = nr.permutation(n.where(preds.argmax(axis=1) != data[1][0,:])[0])[:NUM_IMGS] # what the net got wrong
            data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:]

        data[0] = self.test_data_provider.get_plottable_data(data[0])
        for r in xrange(NUM_ROWS):
            for c in xrange(NUM_COLS):
                img_idx = r * NUM_COLS + c
                if data[0].shape[0] <= img_idx:
                    break
                pl.subplot(NUM_ROWS*2, NUM_COLS, r * 2 * NUM_COLS + c + 1)
                pl.xticks([])
                pl.yticks([])
                try:
                    img = data[0][img_idx,:,:,:]
                except IndexError:
                    # maybe greyscale?
                    img = data[0][img_idx,:,:]
                pl.imshow(img, interpolation='nearest')
                true_label = int(data[1][0,img_idx])

                img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:]
                pl.subplot(NUM_ROWS*2, NUM_COLS, (r * 2 + 1) * NUM_COLS + c + 1, aspect='equal')

                ylocs = n.array(range(NUM_TOP_CLASSES)) + 0.5
                height = 0.5
                width = max(ylocs)
                pl.barh(ylocs, [l[0]*width for l in img_labels], height=height, \
                        color=['r' if l[1] == label_names[true_label] else 'b' for l in img_labels])
                pl.title(label_names[true_label])
                pl.yticks(ylocs + height/2, [l[1] for l in img_labels])
                pl.xticks([width/2.0, width], ['50%', ''])
                pl.ylim(0, ylocs[-1] + height*2)
开发者ID:wells-chen,项目名称:Based-on-Machine-learning-for-Door-recongnition,代码行数:60,代码来源:shownet.py


示例6: plot_variable_importance

def plot_variable_importance(feature_importance, names_cols, save_name, save):
    """Show Variable importance graph."""    

    # scale by max importance first 20 variables in column names
    feature_importance = feature_importance / feature_importance.max()
    sorted_idx = np.argsort(feature_importance)[::-1][:20]
    barPos = np.arange(sorted_idx.shape[0]) + .8
    barPos = barPos[::-1]
    
    #plot.figure(num=None, facecolor='w', edgecolor='r') 
    plot.figure(num=None, facecolor='w') 
    plot.barh(barPos, feature_importance[sorted_idx]*100, align='center')
    plot.yticks(barPos, names_cols[sorted_idx])
    plot.xticks(np.arange(0, 120, 20), \
      ['0 %', '20 %', '40 %', '60 %', '80 %', '100 %'])    
    plot.margins(0.02)
    plot.subplots_adjust(bottom=0.15)
    
    plot.title('Variable Importance')
    
    if save:
	plot.savefig(save_name, bbox_inches='tight', dpi = 300)
	plot.close("all")
    else:
	plot.show()    
开发者ID:ondrej-tucek,项目名称:Machine-Learning-HAR,代码行数:25,代码来源:plot_visualization.py


示例7: test_feature

def test_feature(train_path):
    data = np.genfromtxt(train_path, delimiter = ',')
    y = data[:,0]
    X = data[:,1:]
    sample_size = len(y)
    train_size = int(sample_size * .95)

    params = {'n_estimators': 100, 'max_depth': 2, 'random_state': 1,
                       'min_samples_split': 5}
    params.update({'learn_rate': 0.02, 'subsample': 1.0})
    clf = ensemble.GradientBoostingClassifier(**params)
    clf.fit(X, y)

    pl.figure()
    feature_names = np.array(['type', 'type', 'type', 'main', 'log_main', 'evi', 'log_evi', 'df1', 'log_df1', 'dfu8', 'log_dfu8', 'dfband', 'log_dfband'])

    feature_importance = clf.feature_importances_
# make importances relative to max importance
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)[-8:]
    pos = np.arange(sorted_idx.shape[0]) + .5
    pl.barh(pos, feature_importance[sorted_idx], align='center')
    pl.yticks(pos, feature_names[sorted_idx])
    pl.xlabel('Relative Importance')
    pl.title('Variable Importance')
    pl.show()
开发者ID:Big-Data,项目名称:hunter-gatherer,代码行数:26,代码来源:candidate_train.py


示例8: plotNogazeDuration

def plotNogazeDuration():
    plt.figure(figsize=(12,12))
    for vp in range(100,120):
        print vp
        plt.subplot(5,4,vp-99)
        plt.ion()
        data=readTobii(vp,0,ETDATAPATH);
        datT=[];datF=[]
        for trl in data:
            trl.extractBasicEvents()
            miss=np.int32(np.logical_and(np.isnan(trl.gaze[:,7]),
                    np.isnan(trl.gaze[:,8])))
            miss=removeShortEvs(miss,2*60)
            miss=1-removeShortEvs(1-miss,1*60)
            datT+=map(lambda x: (x[1]-x[0])/60.,tseries2eventlist(miss))
            datF+=map(lambda x: (x[1]-x[0])/60.,tseries2eventlist(1-miss))
        
        x=np.linspace(0,10,21);h=x[-1]/float(x.size-1)
        a=np.histogram(datT,bins=x, normed=True)
        plt.barh(x[:-1],-a[0],ec='k',fc='k',height=h,lw=0)
        a=np.histogram(datF,bins=x, normed=True)
        plt.barh(x[:-1],a[0],ec='g',fc='g',height=h,lw=0)
        plt.xlim([-0.7,0.7]);
        plt.gca().set_yticks(range(0,10,2))
        plt.ylim([0,10]);
        #plt.grid(False,axis='y')
        if vp==10:plt.legend(['blikn','gaze'])
开发者ID:simkovic,项目名称:GazeContingentChaseBaby,代码行数:27,代码来源:AnalysisBaby.py


示例9: arbolesRegresion

def arbolesRegresion(caract):
    
    clf = DecisionTreeRegressor(min_samples_leaf=10, min_samples_split=15, max_depth=13, compute_importances=True)
    
    importancias = [0,0,0,0,0,0,0,0,0,0,0,0,0]    
    mae=mse=r2=0
    
    kf = KFold(len(boston_Y), n_folds=10, indices=True)
    for train, test in kf:
        trainX, testX, trainY, testY=boston_X[train], boston_X[test], boston_Y[train], boston_Y[test]
            
        nCar=len(caract)
        train=np.zeros((len(trainX), nCar))
        test=np.zeros((len(testX), nCar))
        trainYNuevo=trainY
        
        for i in range(nCar):
            for j in range(len(trainX)):
                train[j][i]=trainX[j][caract[i]]
                
            for k in range(len(testX)):
                test[k][i]=testX[k][caract[i]]
        
        trainYNuevo=np.reshape(trainYNuevo, (len(trainY), -1))
        
        clf.fit(train, trainYNuevo)
        prediccion=clf.predict(test)            
        
#        clf.fit(trainX, trainY)
#        prediccion=clf.predict(testX)
            
        mae+=metrics.mean_absolute_error(testY, prediccion)
        mse+=metrics.mean_squared_error(testY, prediccion)
        r2+=metrics.r2_score(testY, prediccion)
        
        feature_importance = clf.feature_importances_
        feature_importance = 100.0 * (feature_importance / feature_importance.max())
        for i in range(13):
            importancias[i] = importancias[i] + feature_importance[i]
        
    print 'Error abs: ', mae/len(kf), 'Error cuadratico: ', mse/len(kf), 'R cuadrado: ', r2/len(kf)
    
    for i in range(13):
        importancias[i] = importancias[i]/10
        
    sorted_idx = np.argsort(importancias)
    pos = np.arange(sorted_idx.shape[0]) + .5
    importancias = np.reshape(importancias, (len(importancias), -1))

    boston = datasets.load_boston()
    pl.barh(pos, importancias[sorted_idx], align='center')
    pl.yticks(pos, boston.feature_names[sorted_idx])
    pl.xlabel('Importancia relativa')
    pl.show()    
    
    import StringIO, pydot 
    dot_data = StringIO.StringIO() 
    tree.export_graphviz(clf, out_file=dot_data) 
    graph = pydot.graph_from_dot_data(dot_data.getvalue()) 
    graph.write_pdf("bostonTree.pdf") 
开发者ID:albertoqa,项目名称:housingRegression,代码行数:60,代码来源:proyecto.py


示例10: do_scaplots

def do_scaplots(distance_dict, after_dict, before_dict, bins, xtext, option=0):
    for count, name,ylims in ((0,'m_diff', (-0.5,0.5)),(1,'n diff', (-1,0.5)),(2,'r diff', (-0.5,0.5)),(3, 'ba diff', (-0.05,0.05))): 
        pl.subplot(2,2,count+1)
        if 0:#count ==2:
            ns = np.array([after_dict[a][count]/np.max([before_dict[a][count],0.0000001])-1.0 for a in before_dict.keys()]).T
        else:
            ns = np.array([after_dict[a][count]-before_dict[a][count] for a in before_dict.keys()]).T
        bars, edges=np.histogram(ns, bins=100,range=ylims)
        bars = bars/float(ns.size)
        print ns
        #pl.step(bars, edges, *args, **kwargs)
        pl.barh((edges[0:-1]+edges[1:])/2, bars, align='center', height = (edges[1:]-edges[0:-1]),alpha=0.4)
        #pl.scatter(ns[0,:], ns[1,:], s =3, edgecolor='none', zorder = -900)
        nstats = bin_stats.bin_stats(0.25*np.ones_like(ns), ns, (0.0,0.5), -1000.0, 1000.0)
        nstats.lay_bounds(color='r', sigma_choice = [68,95])
        nstats.plot_ebar('median','med95ci',color='r',ecolor='r',
                         marker='s', markersize=3, lw=2, linestyle='none')
        pl.xlabel(xtext)
        pl.ylabel(name)
        pl.ylim(ylims)
        pl.xlim(0,0.5)


    #ax = pl.subplot(2,2,3)
    #pl.ylim(-10,10)
    pl.subplots_adjust(wspace=0.4, hspace=0.4)
    return
开发者ID:ameert,项目名称:astro_image_processing,代码行数:27,代码来源:sample_hist.py


示例11: plot_occs_by_motif

def plot_occs_by_motif(by_motif):
    """Plot # occurrences for each motif.
    """
    sizes = [
        (len(occs), sum(occ.Z for occ in occs), name)
        for name, occs in by_motif.iteritems()]
    # expected = [(len(occs), name) for name, occs in by_motif.iteritems()]
    sizes.sort()
    bar_positions = numpy.arange(len(sizes))
    num_occs = numpy.asarray([s for s, e, n in sizes])
    total_Z = numpy.asarray([e for s, e, n in sizes])
    pylab.barh(
        bar_positions,
        num_occs,
        # left=total_Z,
        height=.8,
        align='center',
        label='Sites',
        color='blue',
    )
    pylab.barh(
        bar_positions,
        total_Z,
        height=.8,
        align='center',
        label='Total Z',
        color='blue',
        edgecolor='white',
        hatch='/',
    )
    pylab.yticks(bar_positions, [n for x, e, n in sizes])
    pylab.ylim(ymin=-.5, ymax=len(sizes) - .5)
    pylab.xlabel('occurrences')
    pylab.legend(loc='lower right')
开发者ID:JohnReid,项目名称:STEME,代码行数:34,代码来源:scan.py


示例12: wiki_sizes_chart

def wiki_sizes_chart(path, prefixes, upperlimit = None ):
  prefixes, sizes = zip(*sorted( [(pr, dumpSize(pr)) for pr in prefixes]
                               , key = operator.itemgetter(1)
                               )
                       )

  blockSize = 5 
  ind = p.arange(0, blockSize*len(prefixes), blockSize) # y location for groups
  height = 4 # bar height 

  #colors = ['g','r','c','m','y']
  colors = html_colors

  thresholds = [5000, 2000,1000,500,200,100,50,20,10]
  #colors = [str(float(i+1) / (len(thresholds)+1)) for i in xrange(len(thresholds))]
  #colors.reverse()

  overall = p.barh( ind 
                  , sizes
                  , height
                  , color = 'b'
                  , linewidth = 0
                  , align='center'
                  )
  subbars = []
  for i, thresh in enumerate(thresholds) :
    subbars.append( p.barh( ind
                          , [ docs_under_thresh(pr, thresh) for pr in prefixes]
                          , height
                          , color = colors[ i % len(colors) ] 
                          , linewidth = 0
                          , align='center'
                          )
                  )
  
  p.ylim(-height, len(prefixes) * blockSize)
  if upperlimit:
    p.xlim(0, upperlimit)
  yfontprop = FontProperties(size=4)
  xfontprop = FontProperties(size=4)
  p.xlabel('Documents')
  p.ylabel('Language Code')
  p.title('Number of Documents Under Threshold')
  p.yticks(ind, prefixes, fontproperties = yfontprop)
  xmin, xmax = p.xlim()
  xtick_interval         = rounded_interval(xmin, xmax, 20, 2) 
  p.xticks( p.arange(xmin,xmax,xtick_interval),fontproperties = xfontprop)
  p.gca().xaxis.grid(linestyle = '-', linewidth=0.15)
  p.gca().yaxis.tick_left()
  p.legend( [ b[0] for b in subbars]
          , map(str,thresholds)
          , prop = xfontprop
          , loc = 'lower right' 
          )


  p.savefig(path, dpi=300)
  p.close()
  p.clf()
开发者ID:adamar,项目名称:wikidump,代码行数:59,代码来源:analysis.py


示例13: histogram

def histogram(c, plot_name="test", plot_title="", plot_xlabel=""):
    import pylab
    pylab.figure(1)
    pos = pylab.arange(len(c))+.5
    pylab.barh(pos, c, align='center')
    pylab.yticks(pos, range(1, len(c)+1))
    pylab.xlabel(plot_xlabel)
    pylab.title(plot_title)
    pylab.grid(True)
    pylab.savefig(plot_name+".png")
开发者ID:syhw,项目名称:toying_with_BNP,代码行数:10,代码来源:crp.py


示例14: plot_feature_importance

def plot_feature_importance(feature_importance, feature_names):
    # make importances relative to max importance
    feature_importance = 100.0 * (feature_importance / feature_importance.max())
    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    pl.subplot(1, 2, 2)
    pl.barh(pos, feature_importance[sorted_idx], align='center')
    pl.yticks(pos, feature_names[sorted_idx])
    pl.xlabel('Relative Importance')
    pl.title('Variable Importance')
    pl.show()
开发者ID:patyoon,项目名称:predict_applied,代码行数:11,代码来源:run_regression_journal.py


示例15: essay_char

def essay_char(essay):

    from pylab import xlabel, ylabel, show, savefig, title,\
         yticks, xlim, ylim, xticks, arange, figure, barh, grid, rcParams
    from string import ascii_letters

    global config

    cnt = { x:0 for x in ascii_letters }

    for c in essay:
        if cnt.has_key(c):
            cnt[c] += 1

    titlestr = "Essay Char"
    figure(figsize=(max(cnt.values())/4, 15), dpi=60)

    rcParams['font.size'] = 17
    rcParams['text.color'] = 'c'
    rcParams['xtick.color'] = 'r'
    rcParams['ytick.color'] = 'y'
    rcParams['figure.facecolor'] = 'k'
    rcParams['figure.edgecolor'] = 'b'
    rcParams['savefig.facecolor'] = rcParams['figure.facecolor']
    rcParams['savefig.edgecolor'] = rcParams['figure.edgecolor']
    rcParams['savefig.dpi'] = rcParams['figure.dpi']

    xlim(0, max(cnt.values()*2))
    ylim(0, len(cnt)*2)

    kbuf = cnt.keys()
    kbuf.sort()

    xticks(xrange(int(xlim()[0]), int(xlim()[1]), 2), rotation=45)
    yticks(xrange(int(ylim()[0]), int(ylim()[1]), 2), kbuf, rotation=-45)

    vbuf = [cnt[c] for c in kbuf]
    grid()

    for n, w in zip(xrange(len(vbuf)+1), vbuf):
        barh(n*2, w, height=1.5, left=0, align='center')

    """
    bar(xrange(1, len(vbuf)+1), height=vbuf,
            width=[1]*len(vbuf), bottom=[0]*len(vbuf), align='center')
#            orientation='horizontal')
#    hist(vbuf, bins=range(1, len(vbuf)+1), #rwidth=1, bottom=0,
#        align='mid', orientation='horizontal', alpha=0.7)
    """
    title(titlestr)
    xlabel('Characters Count')
    ylabel('Essay Characters')
#    show()
    savefig(config['/img']['tools.staticdir.dir'] + '/' + titlestr.replace(' ', '-').lower(), bbox_inches='tight', pad_inches=0)
开发者ID:Zex,项目名称:StarterCherry,代码行数:54,代码来源:plotting.py


示例16: plot_importance

def plot_importance(clf, train_df, features):
    feature_importance = clf.feature_importances_
    feature_importance = 100.0 * (feature_importance / feature_importance.max())

    sorted_idx = np.argsort(feature_importance)
    pos = np.arange(sorted_idx.shape[0]) + .5
    pl.subplot(1, 2, 2)
    pl.barh(pos, feature_importance[sorted_idx], align='center')
    pl.yticks(pos, train_df[features].columns[sorted_idx])
    pl.xlabel('Relative Importance')
    pl.title('Variable Importance')
    pl.show()
开发者ID:rauanmaemirov,项目名称:kaggle-titanic101,代码行数:12,代码来源:model.py


示例17: question_a

def question_a():
    logger.info("EXECUTING: QUESTION A")
    logger.info("Plotting histogram of the number of documents per topic (Training Dataset)")

    count_train = {}
    count_test = {}

    # count the number of documents for each topic name in training dataset
    for record in xrange(len(train_dataset.target)):
        if train_dataset.target_names[train_dataset.target[record]] in count_train:
            count_train[train_dataset.target_names[train_dataset.target[record]]] += 1
        else:
            count_train[train_dataset.target_names[train_dataset.target[record]]]= 1

    # count the number of documents for each topic name in testing dataset
    for record in xrange(len(test_dataset.target)):
        if test_dataset.target_names[test_dataset.target[record]] in count_test:
            count_test[test_dataset.target_names[test_dataset.target[record]]] += 1
        else:
            count_test[test_dataset.target_names[test_dataset.target[record]]]= 1

    logger.info("Histogram plotted")

    # plot histogram for number of documents vs. topic name
    pl.figure(1)
    pl.ylabel('Topic Name')
    jet = pl.get_cmap('jet')
    pl.xlabel('Number of Topics')
    pos = pl.arange(len(count_train.keys())) + 0.5
    pl.title('Histogram of Number of Documents Per Topic')
    pl.yticks(pos, count_train.keys())
    pl.barh(pos, count_train.values(), align='center', color=jet(np.linspace(0, 1.0, len(count_train))))

    # count number of documents in CT and RA classes
    train_CT, train_RA, test_CT, test_RA = 0,0,0,0

    for i,j in zip(category_CT,category_RA):
        train_CT += count_train[i]
        train_RA += count_train[j]

        test_CT += count_test[i]
        test_RA += count_test[j]

    logger.info("TRAINING DATASET")
    logger.info("Number of Documents in Computer Technology : {}".format(train_CT))
    logger.info("Number of Documents in Recreational Activity : {}".format(train_RA))

    logger.info("TESTING DATASET")
    logger.info("Number of Documents in Computer Technology : {}".format(test_CT))
    logger.info("Number of Documents in Recreational Activity : {}".format(test_RA))

    pl.show()
开发者ID:RonakSumbaly,项目名称:EE239AS-Signal-and-Systems,代码行数:52,代码来源:execute.py


示例18: summary_xyplot

def summary_xyplot(df,var):
    #random forest
    features=np.array(df.ix[:, df.columns != var].describe().keys())
    clf = RandomForestClassifier()
    clf.fit(df[features], df[var])
    importances = clf.feature_importances_
    sorted_idx = np.argsort(importances)
    padding = np.arange(len(features)) + 0.5
    pl.barh(padding, importances[sorted_idx], align='center')
    pl.yticks(padding, features[sorted_idx])
    pl.xlabel("Relative Importance")
    pl.title("Variable Importance")
    return pl.show()
开发者ID:yuxiaosun,项目名称:capp-455136,代码行数:13,代码来源:describe.py


示例19: rfparameters

def rfparameters(df,label,clf):
    features=np.array(df.ix[:, df.columns != label].describe().keys())
    print('Running RF')
    clf.fit(df[features], df[label])
    print('Plotting and Recording')
    importances = clf.feature_importances_
    sorted_idx = np.argsort(importances)[:10]
    padding = np.arange(10) + 0.5
    pl.barh(padding, importances[sorted_idx], align='center')
    pl.yticks(padding, features[sorted_idx])
    pl.xlabel("Relative Importance")
    pl.title("Variable Importance")
    best_features = features[sorted_idx][::-1]
    ddf=pd.DataFrame(data={'Top Features by RF': best_features})
    return pl.savefig('importanceRF.png'), ddf.to_csv('importanceRF.txt',sep='\t')
开发者ID:yuxiaosun,项目名称:USngomission,代码行数:15,代码来源:importance.py


示例20: __init__

    def __init__(self, tree):
        import pylab
        import numpy as np

        costs = []
        items = sorted(tree.walk(), key=lambda item: item.cost)

        costs = [x.cost for x in items]
        names = [x.name for x in items]

        pos = np.arange(0, len(costs)) + 0.5
        pylab.barh(pos, costs, align="center")
        pylab.yticks(pos, names)
        pylab.subplots_adjust(left=0.5)
        pylab.show()
开发者ID:PeterJCLaw,项目名称:tools,代码行数:15,代码来源:budget_query.py



注:本文中的pylab.barh函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.boxplot函数代码示例发布时间:2022-05-25
下一篇:
Python pylab.bar函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap