• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pylab.array函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pylab.array函数的典型用法代码示例。如果您正苦于以下问题:Python array函数的具体用法?Python array怎么用?Python array使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了array函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: fitData2

def fitData2(fileName):
    '''
    Models predictions using Terman's law model (cubic fit) and 
    Hooks Law (linear fit).

    Hook's Law functions up to the point where the spring reaches 
    it's elastic limit - when it stops behaving as a spring but instead 
    as a rope, etc (doesn't get longer b/c hang more weight on it)
    '''
    xVals, yVals = getData(fileName)
    extX = pylab.array(xVals + [1.05, 1.1, 1.15, 1.2, 1.25])
    xVals = pylab.array(xVals)
    yVals = pylab.array(yVals)
    xVals = xVals*9.81  # convert mass to force (F = mg)
    extX = extX*9.81    # convert mass to force (F = mg)
    pylab.plot(xVals, yVals, 'bo', label = 'Measured displacements')
    pylab.title('Measured Displacement of Spring')
    pylab.xlabel('|Force| (Newtons)')
    pylab.ylabel('Distance (meters)')
    a,b = pylab.polyfit(xVals, yVals, 1)
    estYVals = a*extX + b
    pylab.plot(extX, estYVals, label = 'Linear fit')
    a,b,c,d = pylab.polyfit(xVals, yVals, 3)
    estYVals = a*(extX**3) + b*extX**2 + c*extX + d
    pylab.plot(extX, estYVals, label = 'Cubic fit')
    pylab.legend(loc = 'best')
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py


示例2: getCloneReplicates

    def getCloneReplicates(self, clone, source, condition, applyFilter=False):
        '''Retrieve all growth curves for a clone+source+condition'''
        # Check if any other replicates should be returned
        # retArray is a 2xN multidimensional numpy array
        retArray = py.array([])
        first = True
        for i in xrange(1, self.numReplicates[clone] + 1):
            # Get replicate
            filterMe = self.dataHash[clone][i][source][condition]['filter']
            currCurve = self.dataHash[clone][i][source][condition]['od']

            # Check if filter is enabled and curve should be filtered
            if applyFilter and filterMe:
                continue

            # Create multidimensional array if first
            elif first:
                retArray = py.array([currCurve])
                first = False

            # Append to multidimensional array if not first
            else:
                retArray = py.concatenate((retArray,
                                           py.array([currCurve])))

        return retArray
开发者ID:dacuevas,项目名称:phenotype_microarray,代码行数:26,代码来源:PMData.py


示例3: t

    def t(self, k, cosTheta, pk, c):
        """
        Raw trispectrum

        Not recently tested
        """
        pk = c.pkInterp(k)
        f2term = (
            self.tf21(0, 1, 2, k, cosTheta, pk, c)
            + self.tf21(1, 2, 0, k, cosTheta, pk, c)
            + self.tf21(2, 0, 1, k, cosTheta, pk, c)
            + self.tf21(1, 2, 3, k, cosTheta, pk, c)
            + self.tf21(2, 3, 1, k, cosTheta, pk, c)
            + self.tf21(3, 1, 2, k, cosTheta, pk, c)
            + self.tf21(2, 3, 0, k, cosTheta, pk, c)
            + self.tf21(3, 0, 2, k, cosTheta, pk, c)
            + self.tf21(0, 2, 3, k, cosTheta, pk, c)
            + self.tf21(3, 0, 1, k, cosTheta, pk, c)
            + self.tf21(0, 1, 3, k, cosTheta, pk, c)
            + self.tf21(1, 3, 0, k, cosTheta, pk, c)
        ) * 4.0

        f3term = (
            self.tf31(M.array([0, 1, 2]), k, cosTheta, pk)
            + self.tf31(M.array([1, 2, 3]), k, cosTheta, pk)
            + self.tf31(M.array([2, 3, 1]), k, cosTheta, pk)
            + self.tf31(M.array([3, 1, 2]), k, cosTheta, pk)
        ) * 6.0

        # print cosTheta,f2term, f3term, ft2term+f3term
        return f2term + f3term
开发者ID:jizhi,项目名称:project_TL,代码行数:31,代码来源:pt.py


示例4: main

def main():
    mu = pl.array([[0], [12], [24], [36]])
    Sigma = pl.array([[3.01602775,  1.02746769, -3.60224613, -2.08792829],
                      [1.02746769,  5.65146472, -3.98616664,  0.48723704],
                      [-3.60224613, -3.98616664, 13.04508284, -1.59255406],
                      [-2.08792829,  0.48723704, -1.59255406,  8.28742469]])

    # The data matrix is created for above mu and Sigma.
    d, U = pl.eig(Sigma)
    L = pl.diagflat(d)
    A = pl.dot(U, pl.sqrt(L))
    X = pl.randn(4, 1000)

    # Y is the data matrix of random samples.
    Y = pl.dot(A, X) + pl.tile(mu, 1000)

    pl.figure(1)
    pl.clf()
    pl.plot(X[0], Y[1], '+', color='#0000FF', label='i=0,j=1')
    pl.plot(X[0], Y[2], '+', color='#FF0000', label='i=0,j=2')
    pl.plot(X[0], Y[3], '+', color='#00FF00', label='i=0,j=3')
    pl.plot(X[1], Y[0], 'x', color='#FFFF00', label='i=1,j=0')
    pl.plot(X[1], Y[2], 'x', color='#00FFFF', label='i=1,j=2')
    pl.plot(X[1], Y[3], 'x', color='#444444', label='i=1,j=3')
    pl.plot(X[2], Y[0], '.', color='#774411', label='i=2,j=0')
    pl.plot(X[2], Y[1], '.', color='#222222', label='i=2,j=1')
    pl.plot(X[2], Y[3], '.', color='#AAAAAA', label='i=2,j=3')
    pl.plot(X[3], Y[0], '+', color='#FFAA22', label='i=3,j=0')
    pl.plot(X[3], Y[1], '+', color='#22AAFF', label='i=3,j=1')
    pl.plot(X[3], Y[2], '+', color='#FFDD00', label='i=3,j=2')
    pl.legend()
    pl.savefig('fig21.png')
开发者ID:Timvanz,项目名称:uva_statistisch_redeneren,代码行数:32,代码来源:lab_21.py


示例5: fitData3

def fitData3(fileName):

    # xVals is type 'numpy.ndarray'
    # xVals[0] will return the 1st item in array
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals[:-6])
    yVals = pylab.array(yVals[:-6])
    xVals = xVals*9.81  # convert mass to force (F = mg)

    observed_data_variance = calcVariance(xVals)

    # need to grab the Y values from somewhere ??? maybe estYVals
    # to compare with observed data Y values
    # to calculate the variance of errors
    # errors_variance = calcVariance(xVals)

    coefficient_determination = 0


    pylab.plot(xVals, yVals, 'bo', label = 'Measured points')
    pylab.title('Measured Displacement of Spring')
    pylab.xlabel('Force (Newtons)')
    pylab.ylabel('Distance (meters)')
    a,b = pylab.polyfit(xVals, yVals, 1)  # fix y = ax + b

    # use line equation to graph predicted values
    estYVals = a*xVals + b
    k = 1/a
    pylab.plot(xVals, estYVals, label = 'Linear fit, k = '
               + str(round(k, 5)))
    pylab.legend(loc = 'best')
开发者ID:jacindaz,项目名称:6.00.2x,代码行数:31,代码来源:L7_p4.py


示例6: compare_models

def compare_models(db, stoch="itn coverage", stat_func=None, plot_type="", **kwargs):
    if stat_func == None:
        stat_func = lambda x: x

    X = {}
    for k in sorted(db.keys()):
        c = k.split("_")[2]
        X[c] = []

    for k in sorted(db.keys()):
        c = k.split("_")[2]
        X[c].append([stat_func(x_ki) for x_ki in db[k].__getattribute__(stoch).gettrace()])

    x = pl.array([pl.mean(xc[0]) for xc in X.values()])
    xerr = pl.array([pl.std(xc[0]) for xc in X.values()])
    y = pl.array([pl.mean(xc[1]) for xc in X.values()])
    yerr = pl.array([pl.std(xc[1]) for xc in X.values()])

    if plot_type == "scatter":
        default_args = {"fmt": "o", "ms": 10}
        default_args.update(kwargs)
        for c in X.keys():
            pl.text(pl.mean(X[c][0]), pl.mean(X[c][1]), " %s" % c, fontsize=8, alpha=0.4, zorder=-1)
        pl.errorbar(x, y, xerr=xerr, yerr=yerr, **default_args)
        pl.xlabel("First Model")
        pl.ylabel("Second Model")
        pl.plot([0, 1], [0, 1], alpha=0.5, linestyle="--", color="k", linewidth=2)

    elif plot_type == "rel_diff":
        d1 = sorted(100 * (x - y) / x)
        d2 = sorted(100 * (xerr - yerr) / xerr)
        pl.subplot(2, 1, 1)
        pl.title("Percent Model 2 deviates from Model 1")

        pl.plot(d1, "o")
        pl.xlabel("Countries sorted by deviation in mean")
        pl.ylabel("deviation in mean (%)")

        pl.subplot(2, 1, 2)
        pl.plot(d2, "o")
        pl.xlabel("Countries sorted by deviation in std err")
        pl.ylabel("deviation in std err (%)")
    elif plot_type == "abs_diff":
        d1 = sorted(x - y)
        d2 = sorted(xerr - yerr)
        pl.subplot(2, 1, 1)
        pl.title("Percent Model 2 deviates from Model 1")

        pl.plot(d1, "o")
        pl.xlabel("Countries sorted by deviation in mean")
        pl.ylabel("deviation in mean")

        pl.subplot(2, 1, 2)
        pl.plot(d2, "o")
        pl.xlabel("Countries sorted by deviation in std err")
        pl.ylabel("deviation in std err")
    else:
        assert 0, "plot_type must be abs_diff, rel_diff, or scatter"

    return pl.array([x, y, xerr, yerr])
开发者ID:aflaxman,项目名称:bednet_stock_and_flow,代码行数:60,代码来源:explore.py


示例7: read_doscar

 def read_doscar(self, fname="DOSCAR"):
     """Read a VASP DOSCAR file."""
     f = open(fname)
     natoms = int(f.readline().split()[0])
     [f.readline() for n in range(4)]  # Skip next 4 lines.
     dos = []
     for na in xrange(natoms + 1):
         try:
             line = f.readline()
             if line == "":
                 raise Exception
         except Exception, e:
             errstr = (
                 "Failed reading "
                 + str(na)
                 + ":th DOS block, probably "
                 + "this DOSCAR is from some old version of VASP that "
                 + "doesn't "
                 + "first produce a block with integrated DOS. Inserting "
                 + "empty 0:th block."
             )
             sys.stderr.write(errstr)
             dos.insert(0, pl.zeros((ndos, dos[1].shape[1])))
             continue
         try:
             ndos = int(line.split()[2])
         except:
             print "Error, line is: " + line + "ENDLINE"
         line = f.readline().split()
         cdos = pl.zeros((ndos, len(line)))
         cdos[0] = pl.array(line)
         for nd in xrange(1, ndos):
             line = f.readline().split()
             cdos[nd] = pl.array(line)
         dos.append(cdos)
开发者ID:itamblyn,项目名称:analysis,代码行数:35,代码来源:dos.py


示例8: anim_update

def anim_update(i):
    """
    i: frame num
    """

    ## equivalent time = (i/tot)*(runtime/fct)
    t = (float(i)/float(tot_frames))*(anim_run_time/float(fct))
    # lnx, lny = line.get_data()
    # pos_x, pos_y = P.get_position(t)
    # head.set_data([pos_x], [pos_y])
    # lnx = pylab.array([k for k in lnx] + [pos_x])
    # lny = pylab.array([k for k in lny] + [pos_y])
    # line.set_data(lnx, lny)

    for i in range(len(Projs)):
        pos_x, pos_y = Projs[i].get_position(t)
        
        p_heads[i].set_data([pos_x], [pos_y])

        lnx, lny = p_lines[i].get_data()
        lnx = pylab.array([k for k in lnx] + [pos_x])
        lny = pylab.array([k for k in lny] + [pos_y])
        p_lines[i].set_data(lnx, lny)

    return p_lines + p_heads
开发者ID:abhikpal,项目名称:titrorps,代码行数:25,代码来源:projectile.py


示例9: rollingMeanScale

def rollingMeanScale(series, period, plotAxis=False):
    svr_rbf = SVR(kernel='rbf', C=1e4, gamma=.01, epsilon=.01)
    '''Fit Model to Data Series'''
    tS= numpy.array([series.index]).T
    y_rbf = svr_rbf.fit(tS, list(series))
    '''Up-sample to get rid of bias'''
    fFit = arange(series.index[0],series.index[-1]+.1,.25)
    trend = y_rbf.predict(numpy.array([fFit]).T)
    
    '''Take rolling mean over 1-day window'''
    shift = int(round(period/.5))
    rMean = pandas.rolling_mean(trend, shift*2)
    rMean = numpy.roll(rMean, -shift)
    rMean[:shift]=rMean[shift]
    rMean[-(shift+1):]=rMean[-(shift+1)]
    rMean = pandas.Series(rMean, index=fFit)
    
    '''Adjust Data Series by subtracting out trend'''
    series = series - array(rMean[array(series.index, dtype=float)])
    series = scaleMe(series)-.5
    
    if plotAxis:
        plotAxis.plot(fFit, trend, label='Series Trend')
        plotAxis.plot(fFit, rMean, label='Rolling Mean')
        plotAxis.set_title('Detrend the Data')
        plotAxis.legend(loc='lower left')

    return series
开发者ID:theandygross,项目名称:Luc,代码行数:28,代码来源:LuciferasePlots.py


示例10: main

def main():
    f = open("final_position.txt","r")
    data = pl.genfromtxt(f,comments = "L")
    
    # need to get every other
    x = pl.array([])
    y = pl.array([])
    for i,j in enumerate(data[:-7,2]):
        if i%4 == 0:
            x = pl.append(x,data[i,4])
            y = pl.append(y,j)
    
    print(x)
    print(y)
    fit = np.polyfit(x,y,2)

    print(fit)
    
    #fited = fit[0]+fit[1]*x + fit[2]*x**2
    fited = np.poly1d(fit)
    print(fited)

    #pl.plot(pl.append(x,[.262,.264,.266]),fited(pl.append(x,[.262,.264,.266])),color="black")
    pl.scatter(x,y,color = "black")
    pl.xlabel("$A$",fontsize="30")
    pl.ylabel("$x$",fontsize="30")
    pl.savefig("fin_pts.png",transparent=True,dpi=300)
    
    os.system("open fin_pts.png")
开发者ID:OvenO,项目名称:BlueDat,代码行数:29,代码来源:last_pos.py


示例11: rotate_molecule

def rotate_molecule(coords, rotp = m.array((0.,0.,0.)), phi = 0., \
        theta = 0., psi = 0.):
    """Rotate a molecule via Euler angles.

    See http://mathworld.wolfram.com/EulerAngles.html for definition.
    Input arguments:
    coords: Atom coordinates, as Nx3 2d pylab array.
    rotp: The point to rotate about, as a 1d 3-element pylab array
    phi: The 1st rotation angle around z axis.
    theta: Rotation around x axis.
    psi: 2nd rotation around z axis.

    """
# First move the molecule to the origin
# In contrast to MATLAB, numpy broadcasts the smaller array to the larger
# row-wise, so there is no need to play with the Kronecker product.
    rcoords = coords - rotp
# First Euler rotation about z in matrix form
    D = m.array(((m.cos(phi), m.sin(phi), 0.), (-m.sin(phi), m.cos(phi), 0.), \
            (0., 0., 1.)))
# Second Euler rotation about x:
    C = m.array(((1., 0., 0.), (0., m.cos(theta), m.sin(theta)), \
            (0., -m.sin(theta), m.cos(theta))))
# Third Euler rotation, 2nd rotation about z:
    B = m.array(((m.cos(psi), m.sin(psi), 0.), (-m.sin(psi), m.cos(psi), 0.), \
            (0., 0., 1.)))
# Total Euler rotation
    A = m.dot(B, m.dot(C, D))
# Do the rotation
    rcoords = m.dot(A, m.transpose(rcoords))
# Move back to the rotation point
    return m.transpose(rcoords) + rotp
开发者ID:itamblyn,项目名称:analysis,代码行数:32,代码来源:supercell.py


示例12: fitData

def fitData(fileName):
    '''
    Using Pylab's polyfit to find equations of the line to best fit the data from Hooks Law
    experiment.

    Hooks Law represented with equation - y = ax + b 

    y - Measured distance
    x - Force 
    '''
    xVals, yVals = getData(fileName)
    xVals = pylab.array(xVals)
    yVals = pylab.array(yVals)
    xVals = xVals*9.81  # convert mass to force (F = mg)
    pylab.plot(xVals, yVals, 'bo', label = 'Measured points')
    pylab.title('Measured Displacement of Spring')
    pylab.xlabel('Force (Newtons)')
    pylab.ylabel('Distance (meters)')
    a,b = pylab.polyfit(xVals, yVals, 1)  # fit y = ax + b
    # use line equation to graph predicted values
    estYVals = a*xVals + b
    k = 1/a
    pylab.plot(xVals, estYVals, label = 'Linear fit, k = '
               + str(round(k, 5)))
    pylab.legend(loc = 'best')
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:25,代码来源:lect7.py


示例13: tryFits1

def tryFits1(fName):
    '''
    Calculate the coefficient of determination (R**2) to determine how
    well the model fits the data and ergo could make predictions.
    '''
    distances, heights = getTrajectoryData(fName)
    distances = pylab.array(distances)*36
    totHeights = pylab.array([0]*len(distances))
    for h in heights:
        totHeights = totHeights + pylab.array(h)
    pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
    pylab.xlabel('Inches from Launch Point')
    pylab.ylabel('Inches Above Launch Point')
    meanHeights = totHeights/float(len(heights))
    pylab.plot(distances, meanHeights, 'bo')
    a,b = pylab.polyfit(distances, meanHeights, 1)
    altitudes = a*distances + b
    pylab.plot(distances, altitudes, 'r',
               label = 'Linear Fit' + ', R2 = '
               + str(round(rSquare(meanHeights, altitudes), 4)))
    a,b,c = pylab.polyfit(distances, meanHeights, 2)
    altitudes = a*(distances**2) + b*distances + c
    pylab.plot(distances, altitudes, 'g',
               label = 'Quadratic Fit' + ', R2 = '
               + str(round(rSquare(meanHeights, altitudes), 4)))
    pylab.legend()
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py


示例14: tryFits

def tryFits(fName):
    '''
    Linear fit does not fit the data. Not a logical assumption that the arrow
    flies in a straight line to the target.

    Quadratic fit mirrors a parabolic pathway.
    '''
    distances, heights = getTrajectoryData(fName)
    distances = pylab.array(distances)*36 # Convert yards to feet
    totHeights = pylab.array([0]*len(distances))
    for h in heights:
        totHeights = totHeights + pylab.array(h) # Get one avg measurement of height
    pylab.title('Trajectory of Projectile (Mean of 4 Trials)')
    pylab.xlabel('Inches from Launch Point')
    pylab.ylabel('Inches Above Launch Point')
    meanHeights = totHeights/float(len(heights))
    pylab.plot(distances, meanHeights, 'bo')
    a,b = pylab.polyfit(distances, meanHeights, 1)
    altitudes = a*distances + b
    pylab.plot(distances, altitudes, 'r',
               label = 'Linear Fit')
    a,b,c = pylab.polyfit(distances, meanHeights, 2)
    altitudes = a*(distances**2) + b*distances + c 
    pylab.plot(distances, altitudes, 'g',
               label = 'Quadratic Fit')
    pylab.legend()
开发者ID:abdulawwal,项目名称:intro-comp-thinking-data-sci,代码行数:26,代码来源:lect7.py


示例15: normal

def normal(name, pi, sigma, p, s):
    """ Generate PyMC objects for a normal model

    :Parameters:
      - `name` : str
      - `pi` : pymc.Node, expected values of rates
      - `sigma` : pymc.Node, dispersion parameters of rates
      - `p` : array, observed values of rates
      - `s` : array, standard error of rates

    :Results:
      - Returns dict of PyMC objects, including 'p_obs' and 'p_pred' the observed stochastic likelihood and data predicted stochastic

    """
    p = pl.array(p)
    s = pl.array(s)

    assert pl.all(s >= 0), "standard error must be non-negative"

    i_inf = pl.isinf(s)

    @mc.observed(name="p_obs_%s" % name)
    def p_obs(value=p, pi=pi, sigma=sigma, s=s):
        return mc.normal_like(value, pi, 1.0 / (sigma ** 2.0 + s ** 2.0))

    s_noninf = s.copy()
    s_noninf[i_inf] = 0.0

    @mc.deterministic(name="p_pred_%s" % name)
    def p_pred(pi=pi, sigma=sigma, s=s_noninf):
        return mc.rnormal(pi, 1.0 / (sigma ** 2.0 + s ** 2.0))

    return dict(p_obs=p_obs, p_pred=p_pred)
开发者ID:ngraetz,项目名称:dismod_mr,代码行数:33,代码来源:likelihood.py


示例16: meanVar

def meanVar(data,outMean=None):
    """
    each data[i] is a vector, return the average vector and the variance
    vector
 
    each vector is assumed to be the same length of course
 
    if a mean is available from outside, set outMean which is a vector
    of len(data[i]); then the mean returned is a residual
    """

    mean = []
    var = []
    n = len(data)
    print n,len(data[0])
    try:
        for i in range(n):
            data[i] -= outMean
    except TypeError:
        pass
    for i in range(len(data[0])):
        m = 0.0
        v = 0.0
        for j in range(n):
            m += data[j][i]
            v += data[j][i]*data[j][i]
        if outMean == None:
            v -= m*m/float(n)
        m /= float(n)
        v /= (n-1)
        mean.append(m)
        var.append(v)
    return (M.array(mean),M.array(var))
开发者ID:astrofanlee,项目名称:project_TL,代码行数:33,代码来源:utils.py


示例17: residuals

        def residuals(params,x,y,z):
            xo = params[0]
            xs = params[1]
            yo = params[2]
            ys = params[3]
            zo = params[4]
            zs = params[5]

            xc = empty(shape(x))
            for i in range(len(x)):
                xc[i] = (x[i] - xo) * xs

            yc = empty(shape(y))
            for i in range(len(y)):
                yc[i] = (y[i] - yo) * ys

            zc = empty(shape(z))
            for i in range(len(z)):
                zc[i] = (z[i] - zo) * zs

            res = []
            for i in range(len(xc)):
                norm = l2norm(array([xc[i],yc[i],zc[i]])) - 1.0
                res.append(norm)

            return array(res)
开发者ID:buguen,项目名称:minf,代码行数:26,代码来源:magCalibration.py


示例18: createExpData

def createExpData(f,xVals):
    '''假设f是只有一个参数的指数函数, xVals是一个数组,其中的值可以作为参数传入f
       返回一个数组,包含xVals中的元素传入f生成的结果'''
    yVals=[]
    for i in range(len(xVals)):
        yVals.append(f(xVals[i]))
    return pylab.array(xVals),pylab.array(yVals)
开发者ID:starschen,项目名称:learning,代码行数:7,代码来源:15_3拟合指数分布.py


示例19: getApices

def getApices(y):
    """ 
    returns the time (in frames) and position of initial and final apex
    height from a given trajectory y, which are obtained by fitting a cubic
    spline 
    
    ==========
    parameter:
    ==========
    y : *array* (1D)
        the trajectory. Should ideally start ~1 frame before an apex and end ~1
        frame behind an apex

    ========
    returns:
    ========

    [x0, xF], [y0, yF] : location (in frames) and value of the first and final
    apices

    """
    # the math behind here is: fitting a 2nd order polynomial and finding 
    # the root of its derivative. Here, only the results are applied, that's
    # why it appears like "magic" numbers
    c = dot(array([[.5, -1, .5], [-1.5, 2., -.5], [1., 0., 0.]]), y[:3])
    x0 = -1. * c[1] / (2. * c[0])
    y0 = polyval(c, x0)

    c = dot(array([[.5, -1, .5], [-1.5, 2., -.5], [1., 0., 0.]]), y[-3:])
    xF = -1. * c[1] / (2. * c[0])
    yF = polyval(c, xF)
    xF += len(y) - 3

    return [x0, xF], [y0, yF]
开发者ID:MMaus,项目名称:mutils,代码行数:34,代码来源:misc.py


示例20: findOrder

def findOrder(xVals, yVals, accuracy = 1.0e-1):
    X = pylab.array(xVals)
    Y = pylab.array(yVals)
    find = True
    n = 0
    while find:
        #n += 1
        Z = pylab.polyfit(xVals, yVals, n, None, True)
        '''
        est = 0.0
        estVal = []
        for x in xVals:
            for i in range(len(Z[0])):
                est += Z[0][i] * (x**(len(Z[0])-i-1))
            estVal.append(est)
        error = 0.0
        for j in range(len(yVals)):
            error += (estVal[j] - yVals[j]) ** 2
        if error <= accuracy:
            find = False
            print 'order ', n, 'is good enough'
        '''               
        if Z[1] <= accuracy:
            find = False
            print 'order ', n, 'is good enough'
        n += 1
    print (Z[0])
    return Z[0]
开发者ID:zoie0312,项目名称:learning-curve,代码行数:28,代码来源:pstest_exam_p8.py



注:本文中的pylab.array函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pylab.arrow函数代码示例发布时间:2022-05-25
下一篇:
Python pylab.arange函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap