本文整理汇总了Python中pyfann.libfann.training_data函数的典型用法代码示例。如果您正苦于以下问题:Python training_data函数的具体用法?Python training_data怎么用?Python training_data使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了training_data函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test
def test(self, ann_file, test_file):
"""Test an artificial neural network."""
if not os.path.isfile(ann_file):
raise IOError("Cannot open %s (no such file)" % ann_file)
if not os.path.isfile(test_file):
raise IOError("Cannot open %s (no such file)" % test_file)
# Get the prefix for the classification columns.
try:
dependent_prefix = self.config.data.dependent_prefix
except:
dependent_prefix = OUTPUT_PREFIX
self.ann = libfann.neural_net()
self.ann.create_from_file(ann_file)
self.test_data = TrainData()
try:
self.test_data.read_from_file(test_file, dependent_prefix)
except IOError as e:
logging.error("Failed to process the test data: %s" % e)
exit(1)
logging.info("Testing the neural network...")
fann_test_data = libfann.training_data()
fann_test_data.set_train_data(self.test_data.get_input(),
self.test_data.get_output())
self.ann.test_data(fann_test_data)
mse = self.ann.get_MSE()
logging.info("Mean Square Error on test data: %f" % mse)
开发者ID:xieyanfu,项目名称:nbclassify,代码行数:32,代码来源:training.py
示例2: main
def main():
# setting the prediction parameters
known_days = 7
predict_days = 1
verify_days = 30
# setting up the parameters of the network
connection_rate = 1
learning_rate = 0.1
num_input = known_days * 2
num_hidden = 60
num_output = predict_days
# setting up the parameters of the network, continued
desired_error = 0.000040
max_iterations = 10000
iteration_between_reports = 100
# setting up the network
net = libfann.neural_net()
net.create_sparse_array(connection_rate, (num_input, num_hidden, num_output))
net.set_learning_rate(learning_rate)
net.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
# read the input file and format data
fin = open("cw3.in")
lines = fin.readlines()
fin.close()
rawdata = list(map(float, lines))[-1000:]
datain0 = rawdata[0::2]
datain1 = rawdata[1::2]
n0 = max(datain0) * 1.4
n1 = max(datain1) * 1.4
datain0 = list(map(lambda x: x / n0, datain0))
datain1 = list(map(lambda x: x / n1, datain1))
# train the network
data = libfann.training_data()
drange = range(len(datain0) - known_days - verify_days)
data.set_train_data(
map(lambda x: datain0[x:][:known_days] + datain1[x:][:known_days], drange),
map(lambda x: datain0[x + known_days:][:predict_days], drange)
)
net.train_on_data(data, max_iterations, iteration_between_reports, desired_error)
#
result = []
for i in range(verify_days):
dtest = datain0[-known_days - verify_days + i:][:known_days] + datain1[-known_days - verify_days + i:][:known_days]
result += [net.run(dtest)[0] * n0]
plot.plot(list(map(lambda x: x * n0, datain0[-verify_days: -verify_days])) + result, "r")
plot.plot(map(lambda x: x * n0, datain0[-verify_days:]), "b")
#plot.plot(list(map(lambda x: x * n0, datain0[-verify_days * 2: -verify_days])) + result, "r")
#plot.plot(map(lambda x: x * n0, datain0[-verify_days * 2:]), "b")
plot.show()
# net.train_on_file("cw3.in", max_iterations, iteration_between_reports, desired_error)
#print(net.run([1,1]))
print("hehe")
return
开发者ID:starrify,项目名称:CW2013,代码行数:60,代码来源:2013AI_cw3.py
示例3: train
def train(self, inputs, outputs, params):
self.p = inputs.shape[1] #number of input features
self.n_r = outputs.shape[1] #size of output grid in rows
self.n_c = outputs.shape[2] #size of output grid in cols
self.out_min = outputs.min()
self.out_max = outputs.max()
d = self.out_max - self.out_min
self.out_min -= d / 98
self.out_max -= d / 98
outputs = (outputs - self.out_min) / (self.out_max - self.out_min)
assert inputs.shape[0] == outputs.shape[0]
nn = libfann.neural_net()
#nn.create_standard_array((self.p, 50, 50, self.n_r*self.n_c))
nn.create_shortcut_array((self.p, self.n_r*self.n_c))
nn.set_learning_rate(.7)
nn.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
nn.set_activation_function_output(libfann.SIGMOID)
data = libfann.training_data()
data.set_train_data(inputs, outputs.reshape((-1, self.n_r*self.n_c)))
#nn.train_on_data(data, 500, 10, .001)
nn.cascadetrain_on_data(data, 15, 1, .001)
nn.save('nn.net')
nn.destroy()
开发者ID:bhumbers,项目名称:745approx,代码行数:31,代码来源:neural_approx.py
示例4: __init__
def __init__(self,
datafile,
desired_error = 0.0000000001,
iterations_between_reports = 1000):
self.datafile = datafile
self.desired_error = desired_error
self.iterations_between_reports = iterations_between_reports
f = open(datafile+".train", 'r')
firstline = f.readline()
f.close
l = string.split(firstline)
self.num_input = int(l[1])
self.num_output = int(l[2])
self.breeding = False
self.stage = 0
self.netsTried = 0
self.maxMutations = 18
self.populationSize = 12
self.trainingData = libfann.training_data()
self.trainingData.read_train_from_file(datafile+".train")
self.testData = libfann.training_data()
self.testData.read_train_from_file(datafile+".test")
self.flist = [libfann.FANN_LINEAR,libfann.FANN_SIGMOID,libfann.FANN_SIGMOID_STEPWISE,libfann.FANN_SIGMOID_SYMMETRIC,libfann.FANN_SIGMOID_SYMMETRIC_STEPWISE,
libfann.FANN_GAUSSIAN,libfann.FANN_GAUSSIAN_SYMMETRIC,libfann.FANN_ELLIOT,libfann.FANN_ELLIOT_SYMMETRIC,libfann.FANN_LINEAR_PIECE,
libfann.FANN_LINEAR_PIECE_SYMMETRIC,libfann.FANN_SIN_SYMMETRIC,libfann.FANN_COS_SYMMETRIC]
self.mutationlist = ["change_connection_rate",
"change_learning_rate",
"change_num_neurons_hidden",
"change_num_layers_hidden",
"change_max_iterations",
"change_training_algorithm",
"change_activation_function_hidden",
"change_activation_function_output",
"change_learning_momentum",
"change_activation_steepness_hidden",
"change_activation_steepness_output",
"change_training_param"]
self.trmutlist = ["change_connection_type",
"change_quickprop_decay",
"change_quickprop_mu",
"change_rprop_increase_factor",
"change_rprop_decrease_factor",
"change_rprop_delta_min",
"change_rprop_delta_max",
# "change_rprop_delta_zero"
]
开发者ID:Buggaboo,项目名称:Triathlon,代码行数:46,代码来源:Triathlon-Breeder.py
示例5: testNet
def testNet():
data = libfann.training_data()
data.read_train_from_file(test_file);
ann = libfann.neural_net()
ann.create_from_file(nn_file)
ann.reset_MSE()
ann.test_data(data)
print("Mean square error: {0}".format(ann.get_MSE()));
开发者ID:jeffames-cs,项目名称:nnot,代码行数:10,代码来源:ann.py
示例6: load_data_prefix
def load_data_prefix(prefix):
inp = numpy.loadtxt(prefix + "_i.txt")
inp = check_matrix(inp)
out = numpy.loadtxt(prefix + "_o.txt")
out = check_matrix(out)
data = fann.training_data()
data.set_train_data(inp,out)
return data
开发者ID:Verderey,项目名称:Classification_Attemption,代码行数:10,代码来源:demo_1.py
示例7: load_data
def load_data(filename, in_outs):
a = numpy.loadtxt(filename)
inp = numpy.compress(numpy.ones(in_outs[0]), a, axis=1)
inp = check_matrix(inp)
out = numpy.compress(numpy.concatenate([numpy.zeros(in_outs[0]), numpy.ones(in_outs[1])]), a, axis=1)
out = check_matrix(out)
data = fann.training_data()
data.set_train_data(inp,out)
return data
开发者ID:Verderey,项目名称:Classification_Attemption,代码行数:11,代码来源:demo_1.py
示例8: test
def test(self):
print "Creating network."
train_data = libfann.training_data()
train_data.read_train_from_file(tfile)
ann = libfann.neural_net()
ann.create_sparse_array(
connection_rate, (len(train_data.get_input()[0]), num_neurons_hidden, len(train_data.get_output()[0]))
)
ann.set_learning_rate(learning_rate)
ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
ann.set_activation_function_output(libfann.SIGMOID_STEPWISE)
ann.set_training_algorithm(libfann.TRAIN_INCREMENTAL)
ann.train_on_data(train_data, max_iterations, iterations_between_reports, desired_error)
print "Testing network"
test_data = libfann.training_data()
test_data.read_train_from_file(test_file)
ann.reset_MSE()
ann.test_data(test_data)
print "MSE error on test data: %f" % ann.get_MSE()
开发者ID:psiddarth,项目名称:Neuron,代码行数:20,代码来源:test.py
示例9: load_data
def load_data(self, data_file,val_file=None):
# create training data, and ann object
print "Loading data"
self.train_data = libfann.training_data()
self.train_data.read_train_from_file(data_file)
self.dim_input=self.train_data.num_input_train_data()
self.dim_output=self.train_data.num_output_train_data()
input=self.train_data.get_input()
target=self.train_data.get_output()
data_lo_hi=[0,0]
for i in range(len(input)):
if target[i][0]<0.5:
data_lo_hi[0]+=1
elif target[i][0]>0.5:
data_lo_hi[1]+=1
print "\t Train data is %d low and %d high" % tuple(data_lo_hi)
if (val_file and os.path.exists(val_file)):
print "Loading validation data"
self.do_validation=True
self.val_data=libfann.training_data()
self.val_data.read_train_from_file(val_file)
input=self.val_data.get_input()
target=self.val_data.get_output()
data_lo_hi=[0,0]
for i in range(len(input)):
if target[i][0]<0.5:
data_lo_hi[0]+=1
elif target[i][0]>0.5:
data_lo_hi[1]+=1
print "\t Validation data is %d low and %d high" % tuple(data_lo_hi)
else:
self.val_data=self.train_data
self.do_validation=False
开发者ID:DontLookAtMe,项目名称:fann-mrnn,代码行数:38,代码来源:fann_trainer.py
示例10: mainLoop
def mainLoop():
n_iter = 0
last_save = 0
min_test_MSE = 1.0
max_iters_after_save = 50
try:
while True:
n_iter += 1
print "Iteration: %5d " % (n_iter),
seg_copy = map(lambda (c, seg): (c, cv.CloneImage(seg)), segments)
seg_copy = map(lambda (c, seg): (c, spoil(seg)), seg_copy)
shuffle(seg_copy)
f = open(train_file, "w")
f.write("%d %d %d\n" % (len(segments), num_input, num_output))
for c, image in seg_copy:
image = adjustSize(image, (segW, segH))
for y in range(image.height):
for x in range(image.width):
n = image[y, x] / 159.375 - 0.8
f.write("%f " % n)
f.write("\n")
n = charset.index(c)
f.write("-1 " * n + "1" + " -1" * (num_output - n - 1) + "\n")
f.close()
train = libfann.training_data()
train.read_train_from_file(train_file)
ann.train_epoch(train)
train.destroy_train()
print "Train MSE: %f " % (ann.get_MSE()),
print "Train bit fail: %5d " % (ann.get_bit_fail()),
ann.test_data(test)
mse = ann.get_MSE()
print "Test MSE: %f " % (mse),
print "Test bit fail: %5d " % (ann.get_bit_fail()),
if mse < min_test_MSE:
min_test_MSE = mse
ann.save(ann_file)
last_save = n_iter
print "saved",
if n_iter - last_save > max_iters_after_save: break
print
except KeyboardInterrupt: print "Interrupted by user."
开发者ID:woto,项目名称:EPC,代码行数:47,代码来源:train.py
示例11: train_my_net
def train_my_net(data_file, net=None):
desired_error = 0.01
max_iter = 100000
report_time = 100
if net is None:
network = new_net()
else:
network = net
data = libfann.training_data()
data.read_train_from_file(data_file)
network.train_on_data(data, max_iter, report_time, desired_error)
return network
开发者ID:the-mandarine,项目名称:esiea-school-projects,代码行数:17,代码来源:test_cancer_valid.py
示例12: initNet
def initNet():
learning_rate = 0.3
num_neurons_hidden = num_input / 3
#desired_error = 0.015
#max_iterations = 10000
#iterations_between_reports = 10
global ann
ann = libfann.neural_net()
ann.create_standard_array((num_input, num_neurons_hidden, num_output))
ann.set_learning_rate(learning_rate)
ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
train = libfann.training_data()
train.read_train_from_file(train_file)
ann.init_weights(train)
train.destroy_train()
开发者ID:woto,项目名称:EPC,代码行数:19,代码来源:train.py
示例13: TestOnData
def TestOnData(nn, testdata):
ann = libfann.neural_net()
ann.create_from_file(nn)
testData = libfann.training_data()
testData.read_train_from_file(testdata)
ann.reset_MSE()
if args.full:
inputs = testData.get_input()
outputs = testData.get_output()
missed_goodbuys = 0
missed_badbuys = 0
correct_goodbuys = 0
correct_badbuys = 0
print "#Row\tCorrect\tCalc\tFail"
for i in xrange(len(inputs)):
nn_out = ann.run(inputs[i])[0]
c_out = outputs[i][0]
s = ' '
if c_out == 1.0 and nn_out < 0.8:
s = 'B'
missed_badbuys += 1
if c_out == 0.0 and nn_out >= 0.8:
s = 'G'
missed_goodbuys += 1
if c_out == 1.0 and nn_out >= 0.8:
correct_badbuys += 1
if c_out == 0.0 and nn_out < 0.8:
correct_goodbuys += 1
print "%5u\t%1.3f\t%1.3f\t%s" % (i+1, outputs[i][0], ann.run(inputs[i])[0], s)
print "Missed %u bad buys of %u (%2.1f%%)" % (missed_badbuys, correct_badbuys+missed_badbuys,
float(missed_badbuys)/(correct_badbuys+missed_badbuys)*100)
print "Missed %u good buys of %u (%2.1f%%)" % (missed_goodbuys, correct_goodbuys+missed_goodbuys,
float(missed_goodbuys)/(correct_goodbuys+missed_goodbuys)*100)
else:
ann.test_data(testData)
print "Bit Fail: " + str(ann.get_bit_fail())
print "Mean Squared Error: " + str(ann.get_MSE())
开发者ID:malthejorgensen,项目名称:DontGetKicked,代码行数:43,代码来源:train.py
示例14: XY_to_fann_train_data
def XY_to_fann_train_data(X, Y):
if len(X) != len(Y):
raise ValueError("X and Y must have the same number of lines.")
train_data = libfann.training_data()
if len(X):
dim_X, dim_Y = len(X[0]), len(Y[0])
tmp = tempfile.NamedTemporaryFile(delete=False)
with tmp:
tmp.write("%d %d %d\n"%(len(X), dim_X, dim_Y))
for i in xrange(len(X)):
for line in [ X[i], Y[i] ]:
tmp.write("%s\n"% ' '.join( str(float(val)) for val in line ))
train_data.read_train_from_file(tmp.name)
tmp.unlink(tmp.name)
return train_data
开发者ID:jmoudrik,项目名称:orange-hacks,代码行数:20,代码来源:fann_neural.py
示例15: __init__
def __init__(self,xdat,ydat,idxs):
if shape(xdat)[0] != shape(ydat)[0]:
raise Exception('dimension mismatch b/w x, y')
nt = len(xdat)
ny = shape(ydat)[1]
nx = shape(xdat)[1]
num_input = nx;
num_output = ny;
num_layers = 3;
num_neurons_hidden = 3;
desired_error = 0.2;
max_epochs =2000;
epochs_between_reports = 1000;
net = fann.neural_net()
net.create_standard_array([num_layers, num_input, num_neurons_hidden, num_output]);
net.set_activation_function_hidden( fann.SIGMOID_SYMMETRIC);
net.set_activation_function_output( fann.SIGMOID_SYMMETRIC);
t = fann.training_data()
t.set_train_data(xdat,ydat)
nt = net.train_on_data(t,max_epochs,epochs_between_reports,desired_error)
out = net.save( "xor_float.net");
print net.get_training_algorithm()
raise Exception()
fann.train_on_file( "xor.data", max_epochs, epochs_between_reports, desired_error);
out = net.save( "xor_float.net");
net.destroy();
开发者ID:bh0085,项目名称:compbio,代码行数:37,代码来源:backup_gagd.py
示例16:
if opts.output_activation == "SIGMOID_SYMMETRIC_STEPWISE":
ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
elif opts.output_activation == "GAUSSIAN":
ann.set_activation_function_output(libfann.GAUSSIAN)
elif opts.output_activation == "GAUSSIAN_SYMMETRIC":
ann.set_activation_function_output(libfann.GAUSSIAN_SYMMETRIC)
elif opts.output_activation == "SIGMOID":
ann.set_activation_function_output(libfann.SIGMOID)
else:
ann.set_activation_function_output(libfann.SIGMOID_STEPWISE)
ann.set_activation_steepness_output(opts.steep_out)
########## Import training data #####################
print "Getting training data : %s" % opts.training_file
train_data = libfann.training_data()
train_data.read_train_from_file(opts.training_file.replace(".pat",".ann"))
#train_data.scale_train_data(0.0,1.0)
########## GA Training #####################
print "Setting GA training parameters"
genome = G1DConnections.G1DConnections()
genome.evaluator.set(GAnnEvaluators.evaluateMSE)
genome.setParams(rangemin=opts.range_min, rangemax=opts.range_max, layers=layers, bias=bias, gauss_mu=opts.gauss_mu, gauss_sigma=opts.gauss_sigma)
#genome.mutator.set(GAnnMutators.G1DConnMutateNodes)
ga = GAnnGA.GAnnGA(genome, ann, train_data)
ga.setMutationRate(opts.mutation_rate)
ga.setPopulationSize(opts.population)
ga.setGenerations(opts.generations)
print "Start running GA"
开发者ID:chiewoo,项目名称:GANNCode,代码行数:31,代码来源:GAnnTrainFile.py
示例17: test_ann
def test_ann(ann_path, test_data_path, output_path=None, conf_path=None, error=0.01):
"""Test an artificial neural network."""
for path in (ann_path, test_data_path, conf_path):
if path and not os.path.exists(path):
logging.error("Cannot open %s (no such file or directory)" % path)
return 1
if output_path and not conf_path:
raise ValueError("Argument `conf_path` must be set when `output_path` is set")
if conf_path:
yml = open_yaml(conf_path)
if not yml:
return 1
if 'classes' not in yml:
logging.error("Classes are not set in the YAML file. Missing object 'classes'.")
return 1
# Get the prefix for the classification columns.
dependent_prefix = "OUT:"
if 'data' in yml:
dependent_prefix = getattr(yml.data, 'dependent_prefix', dependent_prefix)
ann = libfann.neural_net()
ann.create_from_file(ann_path)
test_data = common.TrainData()
try:
test_data.read_from_file(test_data_path, dependent_prefix)
except ValueError as e:
logging.error("Failed to process the test data: %s" % e)
exit(1)
logging.info("Testing the neural network...")
fann_test_data = libfann.training_data()
fann_test_data.set_train_data(test_data.get_input(), test_data.get_output())
ann.test_data(fann_test_data)
mse = ann.get_MSE()
logging.info("Mean Square Error on test data: %f" % mse)
if not output_path:
return
out_file = open(output_path, 'w')
out_file.write( "%s\n" % "\t".join(['ID','Class','Classification','Match']) )
# Get codeword for each class.
codewords = get_codewords(yml.classes)
total = 0
correct = 0
for label, input, output in test_data:
total += 1
row = []
if label:
row.append(label)
else:
row.append("")
if len(codewords) != len(output):
logging.error("Codeword length (%d) does not match the number of classes. "
"Please make sure the correct classes are set in %s" % (len(output), conf_path))
exit(1)
class_e = get_classification(codewords, output, error)
assert len(class_e) == 1, "The codeword for a class can only have one positive value"
row.append(class_e[0])
codeword = ann.run(input)
try:
class_f = get_classification(codewords, codeword, error)
except ValueError as e:
logging.error("Classification failed: %s" % e)
return 1
row.append(", ".join(class_f))
# Check if the first items of the classifications match.
if len(class_f) > 0 and class_f[0] == class_e[0]:
row.append("+")
correct += 1
else:
row.append("-")
out_file.write( "%s\n" % "\t".join(row) )
fraction = float(correct) / total
out_file.write( "%s\n" % "\t".join(['','','',"%.3f" % fraction]) )
out_file.close()
logging.info("Correctly classified: %.1f%%" % (fraction*100))
logging.info("Testing results written to %s" % output_path)
开发者ID:naturalis,项目名称:imgpheno,代码行数:94,代码来源:train.py
示例18: exists
if not exists(output_dir):
os.makedirs(output_dir)
states_files = args.states_files
if len(states_files) == 1:
states_files = glob(states_files[0])
# Convert the files and move them to the build path
if args.fast:
n_max = 200
else:
n_max = inf
convert_two_particle_hdf5_to_fann(states_files, output_dir, train_ratio=0.85, n_max=n_max, min_distance=args.min_distance, max_distance=args.max_distance)
# Load data
train_data = libfann.training_data()
validate_data = libfann.training_data()
test_data = libfann.training_data()
train_data_filename = str(join(output_dir, "train.fann"))
validate_data_filename = str(join(output_dir, "validate.fann"))
test_data_filename = str(join(output_dir, "test.fann"))
print "Loading data:\n", train_data_filename, "\n", validate_data_filename, "\n", test_data_filename
train_data.read_train_from_file(train_data_filename)
validate_data.read_train_from_file(validate_data_filename)
test_data.read_train_from_file(test_data_filename)
# Create and train networks
best_test_result = inf
开发者ID:dragly,项目名称:fann-md,代码行数:31,代码来源:fann_train_two_particles.py
示例19: get_training_data
def get_training_data(data_file):
data = libfann.training_data()
data.read_train_from_file(data_file)
return data
开发者ID:the-mandarine,项目名称:esiea-school-projects,代码行数:4,代码来源:test_cancer_valid.py
示例20: run_fann
def run_fann( num_hidden = 4, fname = "ann_ws496.net", fname_data_prefix = '', n_iter = 100, disp = True, graph = True):
print "num_hidden =", num_hidden
fname_data_train = fname_data_prefix + "train_in.data"
fname_data_test = fname_data_prefix + "test_in.data"
connection_rate = 1
learning_rate = 0.7
num_input = 1024
#num_hidden = 40
num_output = 1
desired_error = 0.0001
max_iterations = 1
iterations_between_reports = 1
ann = libfann.neural_net()
ann.create_sparse_array(connection_rate, (num_input, num_hidden, num_output))
ann.set_learning_rate(learning_rate)
ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
ann.set_activation_function_output(libfann.LINEAR)
# train_data is loaded
train_data = libfann.training_data()
train_data.read_train_from_file( fname_data_train)
# test_data is loaded
test_data = libfann.training_data()
test_data.read_train_from_file( fname_data_test)
train_mse = list()
test_mse = list()
for ii in range(n_iter):
# Training is performed with training data
ann.reset_MSE()
ann.train_on_data(train_data, max_iterations, iterations_between_reports, desired_error)
# Testing is performed with test data
ann.reset_MSE()
ann.test_data(train_data)
mse_train = ann.get_MSE(); train_mse.append( mse_train)
# Testing is performed with test data
ann.reset_MSE()
ann.test_data(test_data)
mse_test = ann.get_MSE(); test_mse.append( mse_test)
if disp:
print ii, "MSE of train, test", mse_train, mse_test
ann.save( fname)
# We show the results of ANN training with validation.
if graph:
plot( train_mse, label = 'train')
plot( test_mse, label = 'test')
legend( loc = 1)
xlabel('iteration')
ylabel('MSE')
grid()
show()
return train_mse, test_mse
开发者ID:jskDr,项目名称:jamespy_py3,代码行数:62,代码来源:jann.py
注:本文中的pyfann.libfann.training_data函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论