• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyeq2.dataConvertorService函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyeq2.dataConvertorService函数的典型用法代码示例。如果您正苦于以下问题:Python dataConvertorService函数的具体用法?Python dataConvertorService怎么用?Python dataConvertorService使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了dataConvertorService函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_SolveUsingSimplex_SSQREL_2D

 def test_SolveUsingSimplex_SSQREL_2D(self):
     coefficientsShouldBe = numpy.array([-6.74510573, 1.32459622])
     model = pyeq2.Models_2D.Polynomial.Linear("SSQREL")
     model.estimatedCoefficients = numpy.array([1.0, 1.0])  # starting values for the simplex solver
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_2D, model, False)
     coefficients = pyeq2.solverService().SolveUsingSimplex(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:7,代码来源:Test_SolverService.py


示例2: test_GenerationOf_CPP

    def test_GenerationOf_CPP(self):
        generatedShouldBe = """// To the best of my knowledge this code is correct.
// If you find any errors or problems please contact
// me directly using [email protected]
//
//      James


#include <math.h>

// Fitting target: lowest sum of squared absolute error
// Fitting target value = 0.223837322455

double Linear_model(double x_in)
{
	double temp;
	temp = 0.0;

	// coefficients
	double a = -8.01913564075E+00;
	double b = 1.52644729419E+00;

	temp += a + b * x_in;
	return temp;
}
"""
        equation = pyeq2.Models_2D.Polynomial.Linear("SSQABS")
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(
            DataForUnitTests.asciiDataInColumns_2D, equation, False
        )
        equation.Solve()
        generated = pyeq2.outputSourceCodeService().GetOutputSourceCodeCPP(equation, inDigitsOfPrecisionString="11")
        self.assertEqual(generated, generatedShouldBe)
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:33,代码来源:Test_OutputSourceCodeService.py


示例3: test_SolveUsingLevenbergMarquardt_2D

 def test_SolveUsingLevenbergMarquardt_2D(self):
     coefficientsShouldBe = numpy.array([-8.01913565, 1.5264473])
     model = pyeq2.Models_2D.Polynomial.Linear("SSQABS")
     model.estimatedCoefficients = numpy.array([-4.0, 2.0])  # starting values for the simplex solver
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_2D, model, False)
     coefficients = pyeq2.solverService().SolveUsingLevenbergMarquardt(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:7,代码来源:Test_SolverService.py


示例4: test_GenerationOf_VBA

    def test_GenerationOf_VBA(self):
        generatedShouldBe = """' To the best of my knowledge this code is correct.
' If you find any errors or problems please contact
' me directly using [email protected]
'
'      James

' Fitting target: lowest sum of squared absolute error
' Fitting target value = 0.223837322455

Public Function Linear_model(x_in)
\ttemp = 0.0

\t' coefficients
\tConst a = -8.01913564075E+00
\tConst b = 1.52644729419E+00

\ttemp = temp + a + b * x_in
\tLinear_model = temp
End Function
"""
        equation = pyeq2.Models_2D.Polynomial.Linear("SSQABS")
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(
            DataForUnitTests.asciiDataInColumns_2D, equation, False
        )
        equation.Solve()
        generated = pyeq2.outputSourceCodeService().GetOutputSourceCodeVBA(equation, inDigitsOfPrecisionString="11")
        self.assertEqual(generated, generatedShouldBe)
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:28,代码来源:Test_OutputSourceCodeService.py


示例5: test_SolveUsingODR_3D

 def test_SolveUsingODR_3D(self):
     coefficientsShouldBe = numpy.array([-0.04925, -0.90509, 1.28076])
     model = pyeq2.Models_3D.Polynomial.Linear("ODR")
     model.estimatedCoefficients = numpy.array([0.2, -1.0, 1.0])  # starting values for the ODR solver
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_3D, model, False)
     coefficients = pyeq2.solverService().SolveUsingODR(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-03, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:7,代码来源:Test_SolverService.py


示例6: test_GenerationOf_CSHARP

    def test_GenerationOf_CSHARP(self):
        generatedShouldBe = '''// To the best of my knowledge this code is correct.
// If you find any errors or problems please contact
// me directly using [email protected]
//
//      James


using System;

// Fitting target: lowest sum of squared absolute error
// Fitting target value = 0.223837322455

class Polynomial_Linear
{
\tdouble Polynomial_Linear_model(double x_in)
\t{
\t\tdouble temp;
\t\ttemp = 0.0;

\t\t// coefficients
\t\tdouble a = -8.01913564075E+00;
\t\tdouble b = 1.52644729419E+00;

\t\ttemp += a + b * x_in;
\t\treturn temp;
\t}
}
'''
        equation = pyeq2.Models_2D.Polynomial.Linear('SSQABS')
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_2D, equation, False)
        equation.Solve()
        generated = pyeq2.outputSourceCodeService().GetOutputSourceCodeCSHARP(equation, inDigitsOfPrecisionString = '11')
        self.assertEqual(generated, generatedShouldBe)
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:34,代码来源:Test_OutputSourceCodeService.py


示例7: test_GenerationOf_MATLAB

    def test_GenerationOf_MATLAB(self):
        generatedShouldBe = '''% To the best of my knowledge this code is correct.
% If you find any errors or problems please contact
% me directly using [email protected]
%
%      James


% Fitting target: lowest sum of squared absolute error
% Fitting target value = 0.223837322455

function y = Polynomial_Linear_model(x_in)
\ttemp = 0.0;

\t% coefficients
\ta = -8.01913564075E+00;
\tb = 1.52644729419E+00;

\ttemp = temp + a + b .* x_in;

\ty = temp;
'''
        equation = pyeq2.Models_2D.Polynomial.Linear('SSQABS')
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_2D, equation, False)
        equation.Solve()
        generated = pyeq2.outputSourceCodeService().GetOutputSourceCodeMATLAB(equation, inDigitsOfPrecisionString = '11')
        self.assertEqual(generated, generatedShouldBe)
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:27,代码来源:Test_OutputSourceCodeService.py


示例8: test_SolveUsingDE_3D

 def test_SolveUsingDE_3D(self):
     coefficientsShouldBe = numpy.array([-2.05105972, -0.49194959,  1.77817475])
     model = pyeq2.Models_3D.UserDefinedFunction.UserDefinedFunction('SSQABS', 'Default', 'a + b*X + c*Y')
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_3D_small, model, False)
     coefficients = pyeq2.solverService().SolveUsingDE(model)
     fittingTarget = model.CalculateAllDataFittingTarget(coefficients)
     self.assertTrue(fittingTarget <= 0.1)
开发者ID:JMoravec,项目名称:RadNetWeb,代码行数:7,代码来源:Test_SolverService.py


示例9: test_GenerationOf_PYTHON

    def test_GenerationOf_PYTHON(self):
        generatedShouldBe = '''# To the best of my knowledge this code is correct.
# If you find any errors or problems please contact
# me directly using [email protected]
#
#      James


import math

# Fitting target: lowest sum of squared absolute error
# Fitting target value = 0.223837322455

def Polynomial_Linear_model(x_in):
    temp = 0.0

    # coefficients
    a = -8.01913564075E+00
    b = 1.52644729419E+00

    temp += a + b * x_in
    return temp
'''
        equation = pyeq2.Models_2D.Polynomial.Linear('SSQABS')
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_2D, equation, False)
        equation.Solve()
        generated = pyeq2.outputSourceCodeService().GetOutputSourceCodePYTHON(equation, inDigitsOfPrecisionString = '11')
        self.assertEqual(generated, generatedShouldBe)
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:28,代码来源:Test_OutputSourceCodeService.py


示例10: test_SolveUsingSpline_3D

    def test_SolveUsingSpline_3D(self):
        xKnotPointsShouldBe = numpy.array([0.607, 0.607, 0.607, 3.017, 3.017, 3.017])
        yKnotPointsShouldBe = numpy.array([1.984, 1.984, 1.984, 3.153, 3.153, 3.153])
        coefficientsShouldBe = numpy.array(
            [2.33418963, 1.80079612, 5.07902936, 0.54445029, 1.04110843, 2.14180324, 0.26992805, 0.39148852, 0.8177307]
        )
        testEvaluationShouldBe = numpy.array([0.76020577997])
        model = pyeq2.Models_3D.Spline.Spline(inSmoothingFactor=1.0, inXOrder=2, inYOrder=2)
        pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_3D, model, False)
        fittedParameters = pyeq2.solverService().SolveUsingSpline(model)

        # example of later using the saved spline knot points and coefficients
        unFittedSpline = scipy.interpolate.fitpack2.SmoothBivariateSpline(
            model.dataCache.allDataCacheDictionary["X"],
            model.dataCache.allDataCacheDictionary["Y"],
            model.dataCache.allDataCacheDictionary["DependentData"],
            s=model.smoothingFactor,
            kx=model.xOrder,
            ky=model.yOrder,
        )
        unFittedSpline.tck = fittedParameters
        testEvaluation = unFittedSpline.ev(2.5, 2.5)

        self.assertTrue(numpy.allclose(testEvaluation, testEvaluationShouldBe, rtol=1.0e-10, atol=1.0e-300))
        self.assertTrue(numpy.equal(fittedParameters[0], xKnotPointsShouldBe).all())
        self.assertTrue(numpy.equal(fittedParameters[1], yKnotPointsShouldBe).all())
        self.assertTrue(numpy.allclose(fittedParameters[2], coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:27,代码来源:Test_SolverService.py


示例11: fp_fit

def fp_fit(x, y):
	"""Given a list of x and y values, function fits a four parameter logistic 
	distribution to the data. The distribution being fit has bounds set on several of
	the parameters to keep the distribution in the proper orientation. These are:
	
	a	-0.25	0.25
	b	-inf	-0.1
	c	0		inf
	d	0.75	1.25
	
	The function returns a tuple of the parameters and the covariance of the fit:
	
	((a, b, c, d), cov)
	
	"""
	equation = pyeq2.Models_2D.Sigmoidal.FourParameterLogistic()

	data = "\n".join("{} {}".format(x1, y1) for x1, y1 in zip(x, y))
	
	equation.upperCoefficientBounds = [0.25, -0.1, None, 1.25]
	equation.lowerCoefficientBounds = [-0.25, None, 0, 0.75]
	
	pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(data, equation, False)
	equation.Solve()
	
	return equation.solvedCoefficients, equation.CalculateAllDataFittingTarget(equation.solvedCoefficients)
开发者ID:kenjsc,项目名称:CAMpping,代码行数:26,代码来源:biomap.py


示例12: SetParametersAndFit

def SetParametersAndFit(equationString, inFittingTargetString, inExtendedVersionString, inTextData):
    
    # individual cluster nodes must be able to import pyeq2
    import pyeq2

    exec('equation = ' + equationString +'("' + inFittingTargetString + '", "' + inExtendedVersionString + '")')
    pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(inTextData, equation, False)
 
    try:
        # check for number of coefficients > number of data points to be fitted
        if len(equation.GetCoefficientDesignators()) > len(equation.dataCache.allDataCacheDictionary['DependentData']):
            return None

        # check for functions requiring non-zero nor non-negative data such as 1/x, etc.
        if equation.ShouldDataBeRejected(equation):
            return None

        equation.Solve()

        fittedTarget = equation.CalculateAllDataFittingTarget(equation.solvedCoefficients)
        if fittedTarget > 1.0E290: # error too large
            return None
    except:
        return None

    return [fittedTarget, equation.GetDisplayName(), equation.solvedCoefficients, equationString, inExtendedVersionString]
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:26,代码来源:FitAllEquations_2D.py


示例13: test_SolveUsingSimplex_3D

 def test_SolveUsingSimplex_3D(self):
     coefficientsShouldBe = numpy.array([0.28658383, -0.90215775, 1.15483864])
     model = pyeq2.Models_3D.Polynomial.Linear("SSQABS")
     model.estimatedCoefficients = numpy.array([1.0, 1.0, 1.0])  # starting values for the simplex solver
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(DataForUnitTests.asciiDataInColumns_3D, model, False)
     coefficients = pyeq2.solverService().SolveUsingSimplex(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:7,代码来源:Test_SolverService.py


示例14: test_SolveUsingDE_3D

 def test_SolveUsingDE_3D(self):
     coefficientsShouldBe = numpy.array([-0.206068766376, -0.644872592849, 1.13361007134])
     model = pyeq2.Models_3D.UserDefinedFunction.UserDefinedFunction("SSQABS", "Default", "a + b*X + c*Y")
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(
         DataForUnitTests.asciiDataInColumns_3D_small, model, False
     )
     coefficients = pyeq2.solverService().SolveUsingDE(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:8,代码来源:Test_SolverService.py


示例15: test_SolveUsingDE_2D

 def test_SolveUsingDE_2D(self):
     coefficientsShouldBe = numpy.array([-6.15515504031, 1.21618173729])
     model = pyeq2.Models_2D.UserDefinedFunction.UserDefinedFunction("SSQABS", "Default", "m*X + b")
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(
         DataForUnitTests.asciiDataInColumns_2D_small, model, False
     )
     coefficients = pyeq2.solverService().SolveUsingDE(model)
     self.assertTrue(numpy.allclose(coefficients, coefficientsShouldBe, rtol=1.0e-06, atol=1.0e-300))
开发者ID:JMoravec,项目名称:unkRadnet,代码行数:8,代码来源:Test_SolverService.py


示例16: CalculateAndPrintResults

def CalculateAndPrintResults(equation, nistDataObject, inStartValues, inStartValuesString, inPrintFlag):

    if nistDataObject.RawDataIn_XY_Format != "": # 2D data
        rawData = nistDataObject.RawDataIn_XY_Format
    else: # 3D data
        rawData = nistDataObject.RawDataIn_XYZ_Format
    
    pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(rawData, equation, False)
    
    equation.estimatedCoefficients = inStartValues
    
    equation.Solve()
    
    ssq = equation.CalculateAllDataFittingTarget(equation.solvedCoefficients)
    
    #
    # See the NIST note at the top of this file regarding dignificant digits.
    # NIST files truncate SSQ to 10 decimal places.  First check if 8 decimal
    # places (to allow for machine precision, rounding, etc) in Python
    # gives the same result as NIST, then compare actual values if that fails
    # as it is possible though very, very unlikely that pyeq2 fits better than NIST.
    ssqString = "%-.11E" % (ssq)
    if (ssqString[:10] + ssqString[-4:]) == (nistDataObject.ResidualSumOfSquaresString[:10] + nistDataObject.ResidualSumOfSquaresString[-4:]):
        compareString = '- equal to NIST'
        betterThanOrEqualToNIST = True
    else:
        deltaSSQ = nistDataObject.ResidualSumOfSquaresValue - ssq
        if deltaSSQ > 0.0: # NIST gives values to 10 decimal places
            compareString = '- better than NIST'
            betterThanOrEqualToNIST = True
        elif deltaSSQ < 0.0:
            compareString = '- worse than NIST'
            betterThanOrEqualToNIST = False
        else:
            compareString = '- equal to NIST'
            betterThanOrEqualToNIST = True
    
    
    if inPrintFlag:
        print(equation.GetDisplayName(), str(equation.GetDimensionality()) + "D", '- using "' + inStartValuesString + '" values')
        print(equation.fittingTargetDictionary[equation.fittingTarget], '=',)
        print(ssqString + ', should be',)
        print(nistDataObject.ResidualSumOfSquaresValue, compareString)
        
        print("Parameters:")
        for i in range(len(equation.solvedCoefficients)):
            spacer = ' '
            if equation.solvedCoefficients[i] < 0.0:
                spacer = ''
            print("    %s = %s%-.10E" % (equation.GetCoefficientDesignators()[i], spacer, equation.solvedCoefficients[i]),)
            print('(NIST Cert. %s%-.10E, NIST est. %s%-.5E' % (spacer, nistDataObject.CertifiedValues[i], spacer, inStartValues[i]))
        
        print()
    
    return betterThanOrEqualToNIST
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:55,代码来源:NIST_TestingUtilities.py


示例17: test_SplineSolve_2D

 def test_SplineSolve_2D(self):
     resultShouldBe = (numpy.array([5.357, 5.357, 5.357, 5.357, 9.861, 9.861, 9.861, 9.861]),
                       numpy.array([0.38297001, 1.95535226, 4.59605664, 7.16162379, 0.0, 0.0, 0.0, 0.0]),
                       3
                      )
     model = pyeq2.Models_2D.Spline.Spline(inSmoothingFactor = 1.0, inXOrder = 3)
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(model.exampleData, model, False)
     result = model.Solve()
     self.assertTrue(numpy.allclose(result[0], resultShouldBe[0], rtol=1.0E-06, atol=1.0E-300))
     self.assertTrue(numpy.allclose(result[1], resultShouldBe[1], rtol=1.0E-06, atol=1.0E-300))
     self.assertEqual(result[2], resultShouldBe[2])
开发者ID:JMoravec,项目名称:RadNetWeb,代码行数:11,代码来源:Test_ModelSolveMethods.py


示例18: test_SplineSolve_3D

 def test_SplineSolve_3D(self):
     resultShouldBe = (numpy.array([0.607, 0.607, 0.607, 3.017, 3.017, 3.017]),
                       numpy.array([1.984, 1.984, 1.984, 3.153, 3.153, 3.153]),
                       numpy.array([2.33418963, 1.80079612, 5.07902936, 0.54445029, 1.04110843, 2.14180324, 0.26992805, 0.39148852, 0.8177307])
                      )
     model = pyeq2.Models_3D.Spline.Spline(inSmoothingFactor = 1.0, inXOrder = 2, inYOrder = 2)
     pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(model.exampleData, model, False)
     result = model.Solve()
     self.assertTrue(numpy.allclose(result[0], resultShouldBe[0], rtol=1.0E-06, atol=1.0E-300))
     self.assertTrue(numpy.allclose(result[1], resultShouldBe[1], rtol=1.0E-06, atol=1.0E-300))
     self.assertTrue(numpy.allclose(result[2], resultShouldBe[2], rtol=1.0E-06, atol=1.0E-300))
开发者ID:JMoravec,项目名称:RadNetWeb,代码行数:11,代码来源:Test_ModelSolveMethods.py


示例19: fitEquationUsingDispyCluster

def fitEquationUsingDispyCluster(inEquationString, inFittingTargetString, inExtendedVersionString, inTextData):
	
    # individual cluster nodes must be able to import pyeq2
    import pyeq2

    exec('equation = ' + inEquationString +'("' + inFittingTargetString + '", "' + inExtendedVersionString + '")')
    pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(inTextData, equation, False)
    equation.Solve()
    fittedTarget = equation.CalculateAllDataFittingTarget(equation.solvedCoefficients)
   
    # this result list allows easy sorting of multiple results later
    return [fittedTarget, inEquationString, equation.solvedCoefficients]
开发者ID:HerobrinesArmy,项目名称:pyeq2,代码行数:12,代码来源:Test_Parallel_Fit.py


示例20: OnFit3D

    def OnFit3D(self, evt):
        textData = str(self.text_3D.GetValue())
        equationSelection = self.rbEqChoice_3D.GetStringSelection()
        fittingTargetSelection = self.rbFittingTargetChoice_3D.GetStringSelection()

        # the GUI's fitting target string contains what we need - extract it
        fittingTarget = fittingTargetSelection.split("(")[1].split(")")[0]

        if equationSelection == "Linear Polynomial":
            self.equation = pyeq2.Models_3D.Polynomial.Linear(fittingTarget)
        if equationSelection == "Full Quadratic Polynomial":
            self.equation = pyeq2.Models_3D.Polynomial.FullQuadratic(fittingTarget)
        if equationSelection == "Full Cubic Polynomial":
            self.equation = pyeq2.Models_3D.Polynomial.FullCubic(fittingTarget)
        if equationSelection == "Monkey Saddle A":
            self.equation = pyeq2.Models_3D.Miscellaneous.MonkeySaddleA(fittingTarget)
        if equationSelection == "Gaussian Curvature Of Whitneys Umbrella A":
            self.equation = pyeq2.Models_3D.Miscellaneous.GaussianCurvatureOfWhitneysUmbrellaA(fittingTarget)
        if equationSelection == "NIST Nelson Autolog":
            self.equation = pyeq2.Models_3D.NIST.NIST_NelsonAutolog(fittingTarget)
        if equationSelection == "Custom Polynomial One":
            self.equation = pyeq2.Models_3D.Polynomial.UserSelectablePolynomial(fittingTarget, "Default", 3, 1)

        # convert text to numeric data checking for log of negative numbers, etc.
        try:
            pyeq2.dataConvertorService().ConvertAndSortColumnarASCII(textData, self.equation, False)
        except:
            wx.MessageBox(self.equation.reasonWhyDataRejected, "Error")
            return

        # check for number of coefficients > number of data points to be fitted
        coeffCount = len(self.equation.GetCoefficientDesignators())
        dataCount = len(self.equation.dataCache.allDataCacheDictionary["DependentData"])
        if coeffCount > dataCount:
            wx.MessageBox(
                "This equation requires a minimum of "
                + str(coeffCount)
                + " data points, you have supplied "
                + repr(dataCount)
                + ".",
                "Error",
            )
            return

        # Now the status dialog is used. Disable fitting buttons until thread completes
        self.btnFit2D.Disable()
        self.btnFit3D.Disable()
        self.statusBox.text.SetValue("")
        self.statusBox.Show()  # hidden by OnThreadStatus() when thread completes

        # thread will automatically start to run
        self.fittingWorkerThread = CustomThreads.FittingThread(self, self.equation)
开发者ID:agulbronson,项目名称:pyeq2,代码行数:52,代码来源:wxPythonFit.py



注:本文中的pyeq2.dataConvertorService函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pyeq2.outputSourceCodeService函数代码示例发布时间:2022-05-25
下一篇:
Python numeric.assert_allclose函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap