• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyemd.emd函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyemd.emd函数的典型用法代码示例。如果您正苦于以下问题:Python emd函数的具体用法?Python emd怎么用?Python emd使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了emd函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_error_different_signature_lengths

 def test_error_different_signature_lengths(self):
     first_signature = np.array([6.0, 1.0, 9.0])
     second_signature = np.array([1.0, 7.0])
     distance_matrix = np.array([[0.0, 1.0],
                                 [1.0, 0.0]])
     with self.assertRaises(ValueError):
         emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py


示例2: test_emd_validate_larger_signatures_1

def test_emd_validate_larger_signatures_1():
    first_signature = np.array([0.0, 1.0, 2.0])
    second_signature = np.array([5.0, 3.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5],
                                [0.5, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py


示例3: test_error_wrong_distance_matrix_ndim

 def test_error_wrong_distance_matrix_ndim(self):
     first_signature = np.array([6.0, 1.0])
     second_signature = np.array([1.0, 7.0])
     distance_matrix = np.array([[[0.0, 1.0],
                                 [1.0, 0.0]]])
     with self.assertRaises(ValueError):
         emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py


示例4: test_symmetric_distance_matrix

def test_symmetric_distance_matrix():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5, 3.0],
                                [0.5, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:rlouf,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py


示例5: test_emd_validate_different_signature_dims

def test_emd_validate_different_signature_dims():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5, 0.0],
                                [0.5, 0.0, 0.0],
                                [0.5, 0.0, 0.0]])
    with pytest.raises(ValueError):
        emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:8,代码来源:test_pyemd.py


示例6: wordMoverDistance

def wordMoverDistance(d1, d2):
    ###d1 list
    ###d2 list
    # Rule out words that not in vocabulary
    d1 = " ".join([w for w in d1 if w in vocab_dict])
    d2 = " ".join([w for w in d2 if w in vocab_dict])
    #print d1
    #print d2
    vect = CountVectorizer().fit([d1,d2])
    feature_names = vect.get_feature_names()
    W_ = W[[vocab_dict[w] for w in vect.get_feature_names()]] #Word Matrix
    D_ = euclidean_distances(W_) # Distance Matrix
    D_ = D_.astype(np.double)
    #D_ /= D_.max()  # Normalize for comparison
    v_1, v_2 = vect.transform([d1, d2])
    v_1 = v_1.toarray().ravel()
    v_2 = v_2.toarray().ravel()
    ### EMD
    v_1 = v_1.astype(np.double)
    v_2 = v_2.astype(np.double)
    v_1 /= v_1.sum()
    v_2 /= v_2.sum()
    #print("d(doc_1, doc_2) = {:.2f}".format(emd(v_1, v_2, D_)))
    emd_d = emd(v_1, v_2, D_) ## WMD
    #print emd_d
    return emd_d
开发者ID:pkumusic,项目名称:HCE,代码行数:26,代码来源:loadWordEmbedding.py


示例7: score_word2vec_wmd

def score_word2vec_wmd(src, dst, wv):
	b1 = []
	b2 = []
	lines = 0
	with open(src) as p:
		for i, line in enumerate(p):
			s = line.split('\t')
			b1.append(s[0])
			b2.append(s[1][:-1]) #remove \n
			lines = i + 1

	vectorizer = CountVectorizer()
	vectors=vectorizer.fit_transform(b1 + b2)
	common = [word for word in vectorizer.get_feature_names() if word in wv]
	W_common = [wv[w] for w in common]
	vectorizer = CountVectorizer(vocabulary=common, dtype=np.double)
	b1_v = vectorizer.transform(b1)
	b2_v = vectorizer.transform(b2)

	D_ = sklearn.metrics.euclidean_distances(W_common)
	D_ = D_.astype(np.double)
	D_ /= D_.max()

	b1_vecs = b1_v.toarray()
	b2_vecs = b1_v.toarray()
	b1_vecs /= b1_v.sum()
	b2_vecs /= b2_v.sum()
	b1_vecs = b1_vecs.astype(np.double)
	b2_vecs = b2_vecs.astype(np.double)

	res = [round(emd(b1_vecs[i], b2_vecs[i], D_),2) for i in range(lines)]
	
	with open(dst, 'w') as thefile:
		thefile.write("\n".join(str(i) for i in res))
	print src + ' finished!'
开发者ID:wintor12,项目名称:SemEval2015,代码行数:35,代码来源:run.py


示例8: calc_wmd

def calc_wmd(d1, d2, dm, vob_index_dict):

    u1 = set(d1)
    u2 = set(d2)
    du = u1.union(u2)

    f1 = np.array(nBOW(d1, du))
    f2 = np.array(nBOW(d2, du))


    dul = len(du)
    dum = np.zeros((dul, dul), dtype=np.float)
    du_list = list(du)
    processed_list = []
    for i, t1 in enumerate(du_list):
        processed_list.append(i)

        for j, t2 in enumerate(du_list):
            if j in processed_list:
                continue

            dist_matrix_x = vob_index_dict[t1]
            dist_matrix_y = vob_index_dict[t2]
            dist = dm[dist_matrix_x, dist_matrix_y]

            dum[i][j] = dist
            dum[j][i] = dist

    return emd(f1, f2, dum)
开发者ID:zjc-enigma,项目名称:ml,代码行数:29,代码来源:calc_wmd_dist_matrix.py


示例9: test_emd_1

def test_emd_1():
    first_signature = np.array([0.0, 1.0])
    second_signature = np.array([5.0, 3.0])
    distance_matrix = np.array([[0.0, 0.5],
                                [0.5, 0.0]])
    emd_assert(
        emd(first_signature, second_signature, distance_matrix),
        3.5
    )
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py


示例10: test_emd_3

def test_emd_3():
    first_signature = np.array([6.0, 1.0])
    second_signature = np.array([1.0, 7.0])
    distance_matrix = np.array([[0.0, 0.0],
                                [0.0, 0.0]])
    emd_assert(
        emd(first_signature, second_signature, distance_matrix),
        0.0
    )
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py


示例11: _wh_ne_distance

    def _wh_ne_distance(self, other, w):
        c1 = getattr(self, w)
        c2 = getattr(other, w)
        
        if not len(c1) or not len(c2):
            # one of them has nothing to compare; distance is np.nan
            return np.nan

        s1 = sorted(c1.keys(), key=lambda k: c1[k], reverse=True)
        s2 = sorted(c2.keys(), key=lambda k: c2[k], reverse=True)

        if self.max_nes > 0:
            penalty = max(
                sum(
                    c1[w] 
                    for w in s1[self.max_nes:]
                ), sum(
                    c2[w]
                    for w in s2[self.max_nes:]
                )
            )

            s1 = s1[:self.max_nes]
            s2 = s2[:self.max_nes]
        else:
            penalty = 0

        # penalty will make up for those documents that have low-scoring
        # NEs, meaning they should not be compared with other news items
        # since this method would not have meaning with them

        matrix, nes = NE.matrix(set(s1).union(set(s2)))
        
        if not nes:
            # Not a single NE to compare; distance is np.nan
            return np.nan
        
        nes = [ne.lower() for ne in nes] # NE.matrix returns Titles
        v1 = np.array([ c1[ne] for ne in nes ])
        v2 = np.array([ c2[ne] for ne in nes ])

        # Make it sum 1
        s = v1.sum()
        if s > 0:
            v1 /= s

        s = v2.sum()
        if s > 0:
            v2 /= s

        # Now compute emd of the two vectors.
        # That distance is in [0, 1]
        # By multiplying per (1 - penalty) and adding penalty,
        # you ensure distance is in [penalty, 1],
        # penalty being the maximum uncertainty there is in each of the vectors.
        return (1 - penalty) * emd(v1, v2, matrix) + penalty
开发者ID:aparafita,项目名称:news-similarity,代码行数:56,代码来源:breakable_entry.py


示例12: dist_hist

def dist_hist(X,Y,distance_matrices) :
    start=0
    size=0
    l=[]
    for M in distance_matrices :
        size=M.shape[0]
        l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))

        start+=size
    return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py


示例13: hamming_emd

def hamming_emd(d1, d2):
    """Return the Earth Mover's Distance between two distributions (indexed
    by state, one dimension per node).

    Singleton dimensions are sqeezed out.
    """
    d1, d2 = d1.squeeze(), d2.squeeze()
    # Compute the EMD with Hamming distance between states as the
    # transportation cost function.
    return emd(d1.ravel(), d2.ravel(), _hamming_matrix(d1.ndim))
开发者ID:roijo,项目名称:pyphi,代码行数:10,代码来源:utils.py


示例14: hamming_emd

def hamming_emd(d1, d2):
    """Return the Earth Mover's Distance between two distributions (indexed
    by state, one dimension per node) using the Hamming distance between states
    as the transportation cost function.

    Singleton dimensions are sqeezed out.
    """
    N = d1.squeeze().ndim
    d1, d2 = flatten(d1), flatten(d2)
    return emd(d1, d2, _hamming_matrix(N))
开发者ID:wmayner,项目名称:pyphi,代码行数:10,代码来源:distance.py


示例15: dist_hist_withoutnullhist

def dist_hist_withoutnullhist(X,Y,distance_matrices) :
    start=0
    size=0
    l=[]
    for M in distance_matrices :
        size=M.shape[0]
        if sum(X[start:(start+size)]) != 0.0 and sum(Y[start:(start+size)]) != 0.0 :
            l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))
        start+=size
    return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py


示例16: _wmd

 def _wmd(self, i, row, X_train):
     """Compute the WMD between training sample i and given test row.
     
     Assumes that `row` and train samples are sparse BOW vectors summing to 1.
     """
     union_idx = np.union1d(X_train[i].indices, row.indices) - 1
     W_minimal = self.W_embed[union_idx]
     W_dist = euclidean_distances(W_minimal)
     bow_i = X_train[i, union_idx].A.ravel()
     bow_j = row[:, union_idx].A.ravel()
     return emd(bow_i, bow_j, W_dist)
开发者ID:JViolante,项目名称:sentence-classification,代码行数:11,代码来源:word_movers_knn.py


示例17: test_emd_extra_mass_penalty

def test_emd_extra_mass_penalty():
    first_signature = np.array([0.0, 2.0, 1.0, 2.0])
    second_signature = np.array([2.0, 1.0, 2.0, 1.0])
    distance_matrix = np.array([[0.0, 1.0, 1.0, 2.0],
                                [1.0, 0.0, 2.0, 1.0],
                                [1.0, 2.0, 0.0, 1.0],
                                [2.0, 1.0, 1.0, 0.0]])
    emd_assert(
        emd(first_signature, second_signature, distance_matrix,
            extra_mass_penalty=2.5),
        4.5
    )
开发者ID:wmayner,项目名称:pyemd,代码行数:12,代码来源:test_pyemd.py


示例18: hist_emd

def hist_emd(reference_hist_df, compare_hist_df, key, distance_matrix=None):
    #Merge the two columns on the union of delays
    merged_df = pd.merge(reference_hist_df, compare_hist_df, how='outer', left_index=True, right_index=True)
    merged_df.fillna(0., inplace=True) #Treat missing values as zero

    ref_merged_key = key + '_x'
    comp_merged_key = key + '_y'

    if distance_matrix == None:
        #Unspecified, calculate
        distance_matrix = calc_distance_matrix(merged_df.index, merged_df.index)

    return emd(merged_df[ref_merged_key].values, merged_df[comp_merged_key].values, distance_matrix)
开发者ID:kmurray,项目名称:esta,代码行数:13,代码来源:esta_qor.py


示例19: __sub__

 def __sub__(self, other):
     """
     Earth-mover's distance (EMD) between two histograms.
     Calculated for channels separately and summed up.
     """
     result = sum([
         emd(
             pair[0].astype(np.float),
             pair[1].astype(np.float),
             Histogram._L1_DISTANCE_MATRIX
         )
         for pair in zip(self.channels, other.channels)
     ])
     return result
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:14,代码来源:image.py


示例20: word_movers

def word_movers(doc1, doc2, metric='cosine'):
    """
    Measure the semantic similarity between two documents using Word Movers
    Distance.

    Args:
        doc1 (``textacy.Doc`` or ``spacy.Doc``)
        doc2 (``textacy.Doc`` or ``spacy.Doc``)
        metric ({'cosine', 'euclidean', 'l1', 'l2', 'manhattan'})

    Returns:
        float: similarity between `doc1` and `doc2` in the interval [0.0, 1.0],
            where larger values correspond to more similar documents

    References:
        Ofir Pele and Michael Werman, "A linear time histogram metric for improved
            SIFT matching," in Computer Vision - ECCV 2008, Marseille, France, 2008.
        Ofir Pele and Michael Werman, "Fast and robust earth mover's distances,"
            in Proc. 2009 IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 2009.
        Kusner, Matt J., et al. "From word embeddings to document distances."
            Proceedings of the 32nd International Conference on Machine Learning
            (ICML 2015). 2015. http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
    """
    stringstore = StringStore()

    n = 0
    word_vecs = []
    for word in itertoolz.concatv(extract.words(doc1), extract.words(doc2)):
        if word.has_vector:
            if stringstore[word.text] - 1 == n:  # stringstore[0] always empty space
                word_vecs.append(word.vector)
                n += 1
    distance_mat = pairwise_distances(np.array(word_vecs), metric=metric).astype(np.double)
    distance_mat /= distance_mat.max()

    vec1 = collections.Counter(
        stringstore[word.text] - 1
        for word in extract.words(doc1)
        if word.has_vector)
    vec1 = np.array([vec1[word_idx] for word_idx in range(len(stringstore))]).astype(np.double)
    vec1 /= vec1.sum()  # normalize word counts

    vec2 = collections.Counter(
        stringstore[word.text] - 1
        for word in extract.words(doc2)
        if word.has_vector)
    vec2 = np.array([vec2[word_idx] for word_idx in range(len(stringstore))]).astype(np.double)
    vec2 /= vec2.sum()  # normalize word counts

    return 1.0 - emd(vec1, vec2, distance_mat)
开发者ID:chartbeat-labs,项目名称:textacy,代码行数:50,代码来源:similarity.py



注:本文中的pyemd.emd函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python numeric.assert_allclose函数代码示例发布时间:2022-05-25
下一篇:
Python pyeloqua.Bulk类代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap