本文整理汇总了Python中pyemd.emd函数的典型用法代码示例。如果您正苦于以下问题:Python emd函数的具体用法?Python emd怎么用?Python emd使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了emd函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: test_error_different_signature_lengths
def test_error_different_signature_lengths(self):
first_signature = np.array([6.0, 1.0, 9.0])
second_signature = np.array([1.0, 7.0])
distance_matrix = np.array([[0.0, 1.0],
[1.0, 0.0]])
with self.assertRaises(ValueError):
emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py
示例2: test_emd_validate_larger_signatures_1
def test_emd_validate_larger_signatures_1():
first_signature = np.array([0.0, 1.0, 2.0])
second_signature = np.array([5.0, 3.0, 3.0])
distance_matrix = np.array([[0.0, 0.5],
[0.5, 0.0]])
with pytest.raises(ValueError):
emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py
示例3: test_error_wrong_distance_matrix_ndim
def test_error_wrong_distance_matrix_ndim(self):
first_signature = np.array([6.0, 1.0])
second_signature = np.array([1.0, 7.0])
distance_matrix = np.array([[[0.0, 1.0],
[1.0, 0.0]]])
with self.assertRaises(ValueError):
emd(first_signature, second_signature, distance_matrix)
开发者ID:albertoHdzE,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py
示例4: test_symmetric_distance_matrix
def test_symmetric_distance_matrix():
first_signature = np.array([0.0, 1.0])
second_signature = np.array([5.0, 3.0])
distance_matrix = np.array([[0.0, 0.5, 3.0],
[0.5, 0.0]])
with pytest.raises(ValueError):
emd(first_signature, second_signature, distance_matrix)
开发者ID:rlouf,项目名称:pyemd,代码行数:7,代码来源:test_pyemd.py
示例5: test_emd_validate_different_signature_dims
def test_emd_validate_different_signature_dims():
first_signature = np.array([0.0, 1.0])
second_signature = np.array([5.0, 3.0, 3.0])
distance_matrix = np.array([[0.0, 0.5, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0]])
with pytest.raises(ValueError):
emd(first_signature, second_signature, distance_matrix)
开发者ID:wmayner,项目名称:pyemd,代码行数:8,代码来源:test_pyemd.py
示例6: wordMoverDistance
def wordMoverDistance(d1, d2):
###d1 list
###d2 list
# Rule out words that not in vocabulary
d1 = " ".join([w for w in d1 if w in vocab_dict])
d2 = " ".join([w for w in d2 if w in vocab_dict])
#print d1
#print d2
vect = CountVectorizer().fit([d1,d2])
feature_names = vect.get_feature_names()
W_ = W[[vocab_dict[w] for w in vect.get_feature_names()]] #Word Matrix
D_ = euclidean_distances(W_) # Distance Matrix
D_ = D_.astype(np.double)
#D_ /= D_.max() # Normalize for comparison
v_1, v_2 = vect.transform([d1, d2])
v_1 = v_1.toarray().ravel()
v_2 = v_2.toarray().ravel()
### EMD
v_1 = v_1.astype(np.double)
v_2 = v_2.astype(np.double)
v_1 /= v_1.sum()
v_2 /= v_2.sum()
#print("d(doc_1, doc_2) = {:.2f}".format(emd(v_1, v_2, D_)))
emd_d = emd(v_1, v_2, D_) ## WMD
#print emd_d
return emd_d
开发者ID:pkumusic,项目名称:HCE,代码行数:26,代码来源:loadWordEmbedding.py
示例7: score_word2vec_wmd
def score_word2vec_wmd(src, dst, wv):
b1 = []
b2 = []
lines = 0
with open(src) as p:
for i, line in enumerate(p):
s = line.split('\t')
b1.append(s[0])
b2.append(s[1][:-1]) #remove \n
lines = i + 1
vectorizer = CountVectorizer()
vectors=vectorizer.fit_transform(b1 + b2)
common = [word for word in vectorizer.get_feature_names() if word in wv]
W_common = [wv[w] for w in common]
vectorizer = CountVectorizer(vocabulary=common, dtype=np.double)
b1_v = vectorizer.transform(b1)
b2_v = vectorizer.transform(b2)
D_ = sklearn.metrics.euclidean_distances(W_common)
D_ = D_.astype(np.double)
D_ /= D_.max()
b1_vecs = b1_v.toarray()
b2_vecs = b1_v.toarray()
b1_vecs /= b1_v.sum()
b2_vecs /= b2_v.sum()
b1_vecs = b1_vecs.astype(np.double)
b2_vecs = b2_vecs.astype(np.double)
res = [round(emd(b1_vecs[i], b2_vecs[i], D_),2) for i in range(lines)]
with open(dst, 'w') as thefile:
thefile.write("\n".join(str(i) for i in res))
print src + ' finished!'
开发者ID:wintor12,项目名称:SemEval2015,代码行数:35,代码来源:run.py
示例8: calc_wmd
def calc_wmd(d1, d2, dm, vob_index_dict):
u1 = set(d1)
u2 = set(d2)
du = u1.union(u2)
f1 = np.array(nBOW(d1, du))
f2 = np.array(nBOW(d2, du))
dul = len(du)
dum = np.zeros((dul, dul), dtype=np.float)
du_list = list(du)
processed_list = []
for i, t1 in enumerate(du_list):
processed_list.append(i)
for j, t2 in enumerate(du_list):
if j in processed_list:
continue
dist_matrix_x = vob_index_dict[t1]
dist_matrix_y = vob_index_dict[t2]
dist = dm[dist_matrix_x, dist_matrix_y]
dum[i][j] = dist
dum[j][i] = dist
return emd(f1, f2, dum)
开发者ID:zjc-enigma,项目名称:ml,代码行数:29,代码来源:calc_wmd_dist_matrix.py
示例9: test_emd_1
def test_emd_1():
first_signature = np.array([0.0, 1.0])
second_signature = np.array([5.0, 3.0])
distance_matrix = np.array([[0.0, 0.5],
[0.5, 0.0]])
emd_assert(
emd(first_signature, second_signature, distance_matrix),
3.5
)
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py
示例10: test_emd_3
def test_emd_3():
first_signature = np.array([6.0, 1.0])
second_signature = np.array([1.0, 7.0])
distance_matrix = np.array([[0.0, 0.0],
[0.0, 0.0]])
emd_assert(
emd(first_signature, second_signature, distance_matrix),
0.0
)
开发者ID:wmayner,项目名称:pyemd,代码行数:9,代码来源:test_pyemd.py
示例11: _wh_ne_distance
def _wh_ne_distance(self, other, w):
c1 = getattr(self, w)
c2 = getattr(other, w)
if not len(c1) or not len(c2):
# one of them has nothing to compare; distance is np.nan
return np.nan
s1 = sorted(c1.keys(), key=lambda k: c1[k], reverse=True)
s2 = sorted(c2.keys(), key=lambda k: c2[k], reverse=True)
if self.max_nes > 0:
penalty = max(
sum(
c1[w]
for w in s1[self.max_nes:]
), sum(
c2[w]
for w in s2[self.max_nes:]
)
)
s1 = s1[:self.max_nes]
s2 = s2[:self.max_nes]
else:
penalty = 0
# penalty will make up for those documents that have low-scoring
# NEs, meaning they should not be compared with other news items
# since this method would not have meaning with them
matrix, nes = NE.matrix(set(s1).union(set(s2)))
if not nes:
# Not a single NE to compare; distance is np.nan
return np.nan
nes = [ne.lower() for ne in nes] # NE.matrix returns Titles
v1 = np.array([ c1[ne] for ne in nes ])
v2 = np.array([ c2[ne] for ne in nes ])
# Make it sum 1
s = v1.sum()
if s > 0:
v1 /= s
s = v2.sum()
if s > 0:
v2 /= s
# Now compute emd of the two vectors.
# That distance is in [0, 1]
# By multiplying per (1 - penalty) and adding penalty,
# you ensure distance is in [penalty, 1],
# penalty being the maximum uncertainty there is in each of the vectors.
return (1 - penalty) * emd(v1, v2, matrix) + penalty
开发者ID:aparafita,项目名称:news-similarity,代码行数:56,代码来源:breakable_entry.py
示例12: dist_hist
def dist_hist(X,Y,distance_matrices) :
start=0
size=0
l=[]
for M in distance_matrices :
size=M.shape[0]
l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))
start+=size
return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py
示例13: hamming_emd
def hamming_emd(d1, d2):
"""Return the Earth Mover's Distance between two distributions (indexed
by state, one dimension per node).
Singleton dimensions are sqeezed out.
"""
d1, d2 = d1.squeeze(), d2.squeeze()
# Compute the EMD with Hamming distance between states as the
# transportation cost function.
return emd(d1.ravel(), d2.ravel(), _hamming_matrix(d1.ndim))
开发者ID:roijo,项目名称:pyphi,代码行数:10,代码来源:utils.py
示例14: hamming_emd
def hamming_emd(d1, d2):
"""Return the Earth Mover's Distance between two distributions (indexed
by state, one dimension per node) using the Hamming distance between states
as the transportation cost function.
Singleton dimensions are sqeezed out.
"""
N = d1.squeeze().ndim
d1, d2 = flatten(d1), flatten(d2)
return emd(d1, d2, _hamming_matrix(N))
开发者ID:wmayner,项目名称:pyphi,代码行数:10,代码来源:distance.py
示例15: dist_hist_withoutnullhist
def dist_hist_withoutnullhist(X,Y,distance_matrices) :
start=0
size=0
l=[]
for M in distance_matrices :
size=M.shape[0]
if sum(X[start:(start+size)]) != 0.0 and sum(Y[start:(start+size)]) != 0.0 :
l.append(emd(X[start:(start+size)],Y[start:(start+size)],M))
start+=size
return np.linalg.norm(l)
开发者ID:mlmerile,项目名称:RainDataProject,代码行数:10,代码来源:histogram_util.py
示例16: _wmd
def _wmd(self, i, row, X_train):
"""Compute the WMD between training sample i and given test row.
Assumes that `row` and train samples are sparse BOW vectors summing to 1.
"""
union_idx = np.union1d(X_train[i].indices, row.indices) - 1
W_minimal = self.W_embed[union_idx]
W_dist = euclidean_distances(W_minimal)
bow_i = X_train[i, union_idx].A.ravel()
bow_j = row[:, union_idx].A.ravel()
return emd(bow_i, bow_j, W_dist)
开发者ID:JViolante,项目名称:sentence-classification,代码行数:11,代码来源:word_movers_knn.py
示例17: test_emd_extra_mass_penalty
def test_emd_extra_mass_penalty():
first_signature = np.array([0.0, 2.0, 1.0, 2.0])
second_signature = np.array([2.0, 1.0, 2.0, 1.0])
distance_matrix = np.array([[0.0, 1.0, 1.0, 2.0],
[1.0, 0.0, 2.0, 1.0],
[1.0, 2.0, 0.0, 1.0],
[2.0, 1.0, 1.0, 0.0]])
emd_assert(
emd(first_signature, second_signature, distance_matrix,
extra_mass_penalty=2.5),
4.5
)
开发者ID:wmayner,项目名称:pyemd,代码行数:12,代码来源:test_pyemd.py
示例18: hist_emd
def hist_emd(reference_hist_df, compare_hist_df, key, distance_matrix=None):
#Merge the two columns on the union of delays
merged_df = pd.merge(reference_hist_df, compare_hist_df, how='outer', left_index=True, right_index=True)
merged_df.fillna(0., inplace=True) #Treat missing values as zero
ref_merged_key = key + '_x'
comp_merged_key = key + '_y'
if distance_matrix == None:
#Unspecified, calculate
distance_matrix = calc_distance_matrix(merged_df.index, merged_df.index)
return emd(merged_df[ref_merged_key].values, merged_df[comp_merged_key].values, distance_matrix)
开发者ID:kmurray,项目名称:esta,代码行数:13,代码来源:esta_qor.py
示例19: __sub__
def __sub__(self, other):
"""
Earth-mover's distance (EMD) between two histograms.
Calculated for channels separately and summed up.
"""
result = sum([
emd(
pair[0].astype(np.float),
pair[1].astype(np.float),
Histogram._L1_DISTANCE_MATRIX
)
for pair in zip(self.channels, other.channels)
])
return result
开发者ID:tomasra,项目名称:ga_sandbox,代码行数:14,代码来源:image.py
示例20: word_movers
def word_movers(doc1, doc2, metric='cosine'):
"""
Measure the semantic similarity between two documents using Word Movers
Distance.
Args:
doc1 (``textacy.Doc`` or ``spacy.Doc``)
doc2 (``textacy.Doc`` or ``spacy.Doc``)
metric ({'cosine', 'euclidean', 'l1', 'l2', 'manhattan'})
Returns:
float: similarity between `doc1` and `doc2` in the interval [0.0, 1.0],
where larger values correspond to more similar documents
References:
Ofir Pele and Michael Werman, "A linear time histogram metric for improved
SIFT matching," in Computer Vision - ECCV 2008, Marseille, France, 2008.
Ofir Pele and Michael Werman, "Fast and robust earth mover's distances,"
in Proc. 2009 IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 2009.
Kusner, Matt J., et al. "From word embeddings to document distances."
Proceedings of the 32nd International Conference on Machine Learning
(ICML 2015). 2015. http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf
"""
stringstore = StringStore()
n = 0
word_vecs = []
for word in itertoolz.concatv(extract.words(doc1), extract.words(doc2)):
if word.has_vector:
if stringstore[word.text] - 1 == n: # stringstore[0] always empty space
word_vecs.append(word.vector)
n += 1
distance_mat = pairwise_distances(np.array(word_vecs), metric=metric).astype(np.double)
distance_mat /= distance_mat.max()
vec1 = collections.Counter(
stringstore[word.text] - 1
for word in extract.words(doc1)
if word.has_vector)
vec1 = np.array([vec1[word_idx] for word_idx in range(len(stringstore))]).astype(np.double)
vec1 /= vec1.sum() # normalize word counts
vec2 = collections.Counter(
stringstore[word.text] - 1
for word in extract.words(doc2)
if word.has_vector)
vec2 = np.array([vec2[word_idx] for word_idx in range(len(stringstore))]).astype(np.double)
vec2 /= vec2.sum() # normalize word counts
return 1.0 - emd(vec1, vec2, distance_mat)
开发者ID:chartbeat-labs,项目名称:textacy,代码行数:50,代码来源:similarity.py
注:本文中的pyemd.emd函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论