• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python gpuarray.zeros_like函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pycuda.gpuarray.zeros_like函数的典型用法代码示例。如果您正苦于以下问题:Python zeros_like函数的具体用法?Python zeros_like怎么用?Python zeros_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了zeros_like函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

  def __init__(self, name, input_shape, n_out, epsW=0.001, epsB=0.002, initW = 0.01, initB = 0.0, weight =
      None, bias = None):
    Layer.__init__(self, name, 'fc')
    self.epsW = epsW
    self.epsB = epsB
    self.initW = initW
    self.initB = initB
    
    self.inputShape = input_shape
    self.inputSize, self.batchSize = input_shape
    
    self.outputSize = n_out

    self.weightShape = (self.outputSize, self.inputSize)
    if weight is None:
      self.weight = gpuarray.to_gpu(np.random.randn(*self.weightShape) *
          self.initW).astype(np.float32)
    else:
      self.weight = gpuarray.to_gpu(weight).astype(np.float32)

    if bias is None:
      self.bias = gpuarray.to_gpu(np.random.randn(self.outputSize, 1) *
          self.initB).astype(np.float32)
    else:
      self.bias = gpuarray.to_gpu(bias).astype(np.float32)
    self.weightGrad = gpuarray.zeros_like(self.weight)
    self.biasGrad = gpuarray.zeros_like(self.bias)
开发者ID:smessing,项目名称:striate,代码行数:27,代码来源:layer.py


示例2: add_cld

    def add_cld(
        self,
        name,
        proj_mats,
        offset_mats,
        cloud_xyz,
        kernel,
        scale_params,
        r_traj,
        r_traj_K,
        l_traj,
        l_traj_K,
        update_ptrs=False,
    ):
        """
        does the normal add, but also adds the trajectories
        """
        # don't update ptrs there, do it after this
        GPUContext.add_cld(self, name, proj_mats, offset_mats, cloud_xyz, kernel, scale_params, update_ptrs=False)
        self.r_traj.append(gpu_pad(r_traj, (MAX_TRAJ_LEN, DATA_DIM)))
        self.r_traj_K.append(gpu_pad(r_traj_K, (MAX_TRAJ_LEN, MAX_CLD_SIZE)))
        self.l_traj.append(gpu_pad(l_traj, (MAX_TRAJ_LEN, DATA_DIM)))
        self.l_traj_K.append(gpu_pad(l_traj_K, (MAX_TRAJ_LEN, MAX_CLD_SIZE)))

        self.r_traj_w.append(gpuarray.zeros_like(self.r_traj[-1]))
        self.l_traj_w.append(gpuarray.zeros_like(self.l_traj[-1]))

        self.l_traj_dims.append(l_traj.shape[0])
        self.r_traj_dims.append(r_traj.shape[0])

        if update_ptrs:
            self.update_ptrs()
开发者ID:rll,项目名称:lfd,代码行数:32,代码来源:batchtps.py


示例3: __init__

 def __init__(self, bend_coefs, N, QN, NON, NR, x_nd, K_nn, rot_coef, 
              QN_gpu = None, WQN_gpu = None, NON_gpu = None, NHN_gpu = None):
     for b in bend_coefs:
         assert b in NON, 'no solver found for bending coefficient {}'.format(b)
     self.rot_coef = rot_coef
     self.n, self.d  = x_nd.shape
     self.bend_coefs = bend_coefs
     self.N          = N
     self.QN         = QN        
     self.NON        = NON
     self.NR         = NR
     self.x_nd       = x_nd
     self.K_nn       = K_nn
     ## set up GPU memory
     if QN_gpu is None:
         self.QN_gpu = gpuarray.to_gpu(self.QN)
     else:
         self.QN_gpu = QN_gpu
     if WQN_gpu is None:            
         self.WQN_gpu = gpuarray.zeros_like(self.QN_gpu)
     else:
         self.WQN_gpu = WQN_gpu
     if NON_gpu is None:            
         self.NON_gpu = {}
         for b in bend_coefs:
             self.NON_gpu[b] = gpuarray.to_gpu(self.NON[b])
     else:
         self.NON_gpu = NON_gpu
     if NHN_gpu is None:            
         self.NHN_gpu = gpuarray.zeros_like(self.NON_gpu[bend_coefs[0]])
     else:
         self.NHN_gpu = NHN_gpu
     self.valid = True
开发者ID:antingshen,项目名称:lfd,代码行数:33,代码来源:transformations.py


示例4: _init_weights

  def _init_weights(self, weight_shape, bias_shape):
    if self.weight is None:
      if self.name == 'noise':
        assert(weight_shape[0] == weight_shape[1])
        self.weight = gpuarray.to_gpu(np.eye(weight_shape[0], dtype = np.float32))
      else:
        self.weight = gpuarray.to_gpu(randn(weight_shape, np.float32) * self.initW)

    if self.bias is None:
      if self.initB > 0.0:
        self.bias = gpuarray.to_gpu((np.ones(bias_shape, dtype=np.float32) * self.initB))
      else:
        self.bias = gpuarray.zeros(bias_shape, dtype=np.float32)

    Assert.eq(self.weight.shape, weight_shape) 
    Assert.eq(self.bias.shape, bias_shape) 
    
    self.weightGrad = gpuarray.zeros_like(self.weight)
    self.biasGrad = gpuarray.zeros_like(self.bias)
    
    if self.momW > 0.0:
      if self.weightIncr is None:
        self.weightIncr = gpuarray.zeros_like(self.weight)
      if self.biasIncr is None:
        self.biasIncr = gpuarray.zeros_like(self.bias)
      
      Assert.eq(self.weightIncr.shape, weight_shape) 
      Assert.eq(self.biasIncr.shape, bias_shape)
开发者ID:tesatory,项目名称:fastnet-noisy,代码行数:28,代码来源:layer.py


示例5: rfftn

 def rfftn(self):
     # it seems that we can just take half of the original fft
     # in both arr, arrC so that we match what was here originally
     zeros = gpuarray.zeros_like(self.arr) 
     arr = gpuarray.zeros_like(self.arr) 
     arrC = gpuarray.zeros_like(self.arr) 
     self.plan.execute(self.arr, zeros, data_out_re=arr, data_out_im=arrC)
     return CUDAArray(arr, arrC)
开发者ID:mattbierbaum,项目名称:cuda-plasticity,代码行数:8,代码来源:CUDAGridArray.py


示例6: same_reduce_multiview

def same_reduce_multiview(target, vec, num_view):
  block = (target.size, 1, 1)
  grid = (1, 1)
  tmp = gpuarray.zeros_like(target)
  ids = gpuarray.zeros_like(target)
  _same_reduce_multiview_(target, vec, tmp, ids, I(num_view), block = block , grid = grid)
  tmp = tmp.reshape((1, tmp.size))
  res = gpuarray.to_gpu(np.zeros((1, 1)).astype(np.float32))
  add_row_sum_to_vec(res, tmp)

  return res.get()[0, 0]
开发者ID:rjpower,项目名称:fastnet,代码行数:11,代码来源:cuda_kernel.py


示例7: __init__

    def __init__(self, gpu_detector, ndaq=1):
        self.earliest_time_gpu = ga.empty(gpu_detector.nchannels*ndaq, dtype=np.float32)
        self.earliest_time_int_gpu = ga.empty(gpu_detector.nchannels*ndaq, dtype=np.uint32)
        self.channel_history_gpu = ga.zeros_like(self.earliest_time_int_gpu)
        self.channel_q_int_gpu = ga.zeros_like(self.earliest_time_int_gpu)
        self.channel_q_gpu = ga.zeros(len(self.earliest_time_int_gpu), dtype=np.float32)
        self.detector_gpu = gpu_detector.detector_gpu
        self.solid_id_map_gpu = gpu_detector.solid_id_map
        self.solid_id_to_channel_index_gpu = gpu_detector.solid_id_to_channel_index_gpu

        self.module = get_cu_module('daq.cu', options=cuda_options, 
                                    include_source_directory=True)
        self.gpu_funcs = GPUFuncs(self.module)
        self.ndaq = ndaq
        self.stride = gpu_detector.nchannels
开发者ID:BenLand100,项目名称:chroma,代码行数:15,代码来源:daq.py


示例8: ewsum

def ewsum(d_a, d_w):
    """
    YORI NOTES

    This method is faster than CPU if num_w is large, and non_width is small:
        When num_w is large, the for loop is small
        When non_width is large, there are more threads necessary
    """
    width = d_a.shape[0]
    total_dim = d_a.size
    num_w = d_w.shape[0]
    d_tmp_out = gpuarray.zeros_like(d_a)
    
    thread_size = min(d_a.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_a.size / float(thread_size))), 1)
    ewsum_kernel(d_a, d_w, d_tmp_out,
            numpy.int32(num_w), numpy.int32(width), numpy.int32(total_dim),
            block=(thread_size,1,1), grid=(block_size,1,1))

    # TODO: There HAS to be a better way to do this
    x = width / num_w
    d_out = gpuarray.zeros((x,) + d_a.shape[1:], numpy.float32)
    thread_size = min(d_out.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_out.size / float(thread_size))), 1)
    ewsum_sum_kernel(d_tmp_out, d_out,
            numpy.int32(num_w), numpy.int32(width), numpy.int32(total_dim),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:28,代码来源:misc.py


示例9: test_cublasDcopy

 def test_cublasDcopy(self):
     x = np.random.rand(5).astype(np.float64)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.zeros_like(x_gpu)
     cublas.cublasDcopy(self.cublas_handle, x_gpu.size, x_gpu.gpudata, 1,
                        y_gpu.gpudata, 1)
     assert np.allclose(y_gpu.get(), x_gpu.get())
开发者ID:Brainiarc7,项目名称:scikit-cuda,代码行数:7,代码来源:test_cublas.py


示例10: execute

    def execute(self):
        resulting_image = None
        nda = None
        f_first = True

        img_cnt = 0

        for itr_img in self.images_iterator:
            img_cnt += 1

            if f_first:
                nda = np.ndarray(shape=itr_img.image.shape,
                                 dtype=itr_img.image.dtype)

                nda[:] = itr_img.image[:]

                self.resulting_image = itr_img
                resulting_image = gpuarray.to_gpu(nda)

                current_image = gpuarray.zeros_like(resulting_image)
                f_first = False
                shape = itr_img.shape
                continue

            if shape != itr_img.shape:
                img_cnt -= 1
                continue

            current_image.set(itr_img.image)

            resulting_image += current_image

        resulting_image /= img_cnt

        self.resulting_image.image[:] = resulting_image.get()
开发者ID:simon-r,项目名称:SerialPhotoMerge,代码行数:35,代码来源:mergeAverageImage.py


示例11: softmax_back

def softmax_back(d_a, d_error, s):
    d_out = gpuarray.zeros_like(d_a)
    thread_size = min(d_out.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_out.size / float(thread_size))), 1)
    softmax_back_kernel(d_a, d_error, d_out, numpy.float32(s), numpy.int32(d_out.size),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:7,代码来源:misc.py


示例12: map_elementwise_max

    def map_elementwise_max(self, op, field_expr):
        field = self.rec(field_expr)
        field_out = gpuarray.zeros_like(field)

        func_rec = self.executor.get_elwise_max_kernel(field.dtype)

        func_rec.func.prepared_call((func_rec.grid_dim, 1),
            field.gpudata, field_out.gpudata, func_rec.mb_count)

        return field_out
开发者ID:felipeh,项目名称:hedge,代码行数:10,代码来源:execute.py


示例13: rectify_back

def rectify_back(d_a, d_error, inplace=False):
    if inplace:
        d_out = d_a
    else:
        d_out = gpuarray.zeros_like(d_a)
    thread_size = min(d_out.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_out.size / float(thread_size))), 1)
    rectify_back_kernel(d_a, d_error, d_out, numpy.int32(d_out.size),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:10,代码来源:misc.py


示例14: exp

def exp(d_a, mode=MathModes.ACC):
    if mode == MathModes.ACC:
        return cumath.exp(d_a)

    d_out = gpuarray.zeros_like(d_a)
    thread_size = min(d_a.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_a.size / float(thread_size))), 1)
    exp_fast_kernel(d_a, d_out, numpy.int32(d_a.size),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:10,代码来源:expit.py


示例15: __init__

  def __init__(self, name, type, epsW, epsB, initW, initB, momW, momB, wc, weight, bias,
      weightIncr , biasIncr, weightShape, biasShape):
    Layer.__init__(self, name, type)

    self.epsW = F(epsW)
    self.epsB = F(epsB)
    self.initW = initW
    self.initB = initB
    self.momW = F(momW)
    self.momB = F(momB)
    self.wc = F(wc)

    if weight is None:
      self.weight = gpuarray.to_gpu(randn(weightShape, np.float32) * self.initW)
    else:
      print >> sys.stderr,  'init weight from disk'
      self.weight = gpuarray.to_gpu(weight)#.astype(np.float32)

    if bias is None:
      if self.initB > 0.0:
        self.bias = gpuarray.to_gpu((np.ones(biasShape, dtype=np.float32) * self.initB))
      else:
        self.bias = gpuarray.zeros(biasShape, dtype=np.float32)
    else:
      print >> sys.stderr,  'init bias from disk'
      self.bias = gpuarray.to_gpu(bias).astype(np.float32)

    self.weightGrad = gpuarray.zeros_like(self.weight)
    self.biasGrad = gpuarray.zeros_like(self.bias)
    if self.momW > 0.0:
      if weightIncr is None:
        self.weightIncr = gpuarray.zeros_like(self.weight)
      else:
        print >> sys.stderr,  'init weightIncr from disk'
        #weightIncr = np.require(weightIncr, dtype = np.float, requirements = 'C')
        self.weightIncr = gpuarray.to_gpu(weightIncr)
    if self.momW > 0.0:
      if biasIncr is None:
        self.biasIncr = gpuarray.zeros_like(self.bias)
      else:
        print >> sys.stderr,  'init biasIncr from disk'
        #biasIncr = np.require(biasIncr, dtype = np.float, requirements = 'C')
        self.biasIncr = gpuarray.to_gpu(biasIncr)
开发者ID:phecy,项目名称:striate,代码行数:43,代码来源:layer.py


示例16: test_2d_fp_surfaces

    def test_2d_fp_surfaces(self):
        orden = "C"
        npoints = 32

        for prec in [np.int16,np.float32,np.float64,np.complex64,np.complex128]:
            prec_str = dtype_to_ctype(prec)
            if prec == np.complex64: fpName_str = 'fp_tex_cfloat'
            elif prec == np.complex128: fpName_str = 'fp_tex_cdouble'
            elif prec == np.float64: fpName_str = 'fp_tex_double'
            else: fpName_str = prec_str
            A_cpu = np.zeros([npoints,npoints],order=orden,dtype=prec)
            A_cpu[:] = np.random.rand(npoints,npoints)[:]
            A_gpu = gpuarray.to_gpu(A_cpu) # Array randomized

            myKernRW = '''
            #include <pycuda-helpers.hpp>

            surface<void, cudaSurfaceType2DLayered> mtx_tex;

            __global__ void copy_texture(cuPres *dest, int rw)
            {
              int row   = blockIdx.x*blockDim.x + threadIdx.x;
              int col   = blockIdx.y*blockDim.y + threadIdx.y;
              int layer = 1;
              int tid = row + col*blockDim.x*gridDim.x ;
              if (rw==0){
              cuPres aux = dest[tid];
              fp_surf2DLayeredwrite(aux, mtx_tex, row, col, layer,cudaBoundaryModeClamp);}
              else {
              cuPres aux = 0;
              fp_surf2DLayeredread(&aux, mtx_tex, col, row, layer, cudaBoundaryModeClamp);
              dest[tid] = aux;
              }
            }
            '''
            myKernRW = myKernRW.replace('fpName',fpName_str)
            myKernRW = myKernRW.replace('cuPres',prec_str)
            modW = SourceModule(myKernRW)

            copy_texture = modW.get_function("copy_texture")
            mtx_tex = modW.get_surfref("mtx_tex")
            cuBlock = (8,8,1)
            if cuBlock[0]>npoints:
                cuBlock = (npoints,npoints,1)
            cuGrid   = (npoints//cuBlock[0]+1*(npoints % cuBlock[0] != 0 ),npoints//cuBlock[1]+1*(npoints % cuBlock[1] != 0 ),1)
            copy_texture.prepare('Pi')#,texrefs=[mtx_tex])
            A_gpu2 = gpuarray.zeros_like(A_gpu) # To initialize surface with zeros
            cudaArray = drv.gpuarray_to_array(A_gpu2,orden,allowSurfaceBind=True)
            A_cpu = A_gpu.get() # To remember original array
            mtx_tex.set_array(cudaArray)
            copy_texture.prepared_call(cuGrid,cuBlock,A_gpu.gpudata, np.int32(0)) # Write random array
            copy_texture.prepared_call(cuGrid,cuBlock,A_gpu.gpudata, np.int32(1)) # Read, but transposed
            assert np.sum(np.abs(A_gpu.get()-np.transpose(A_cpu))) == np.array(0,dtype=prec)
            A_gpu.gpudata.free()
开发者ID:FreddieWitherden,项目名称:pycuda,代码行数:54,代码来源:test_driver.py


示例17: expit_back

def expit_back(d_a, d_error):
    """Implments the following function

    out = in * (1 - in) * error
    """
    d_out = gpuarray.zeros_like(d_a)
    thread_size = min(d_a.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_a.size / float(thread_size))), 1)
    expit_back_kernel(d_a, d_error, d_out, numpy.int32(d_a.size),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:11,代码来源:expit.py


示例18: robust_pca

def robust_pca(D):
    """ 
    Parrallel RPCA using ALM, adapted from https://github.com/nwbirnie/rpca.
    Takes and returns numpy arrays
    """
    M = gpuarray.to_gpu(D)
    L = gpuarray.zeros_like(M)
    S = gpuarray.zeros_like(M)    
    Y = gpuarray.zeros_like(M)
    print M.shape

    mu = (M.shape[0] * M.shape[1]) / (4.0 * L1Norm(M))
    lamb = max(M.shape) ** -0.5

    while not converged(M, L, S):
        L = svd_shrink(M - S - (mu**-1) * Y, mu)
        S = shrink(M - L + (mu**-1) * Y, lamb * mu)
        Y = Y + mu * (M - L - S)

    return L.get(), S.get()
开发者ID:cs205-surveillance,项目名称:cs205-surveillance,代码行数:20,代码来源:rpca_cuda.py


示例19: expit

def expit(d_a, mode=MathModes.ACC):
    """Implements the expit function (aka sigmoid)

    expit(x) = 1 / (1 + exp(-x))
    """
    d_out = gpuarray.zeros_like(d_a)
    thread_size = min(d_a.size, MAX_BLOCK_SIZE)
    block_size = max(int(math.ceil(d_a.size / float(thread_size))), 1)
    kernel = expit_fast_kernel if mode == MathModes.FAST else expit_kernel
    kernel(d_a, d_out, numpy.int32(d_a.size),
            block=(thread_size,1,1), grid=(block_size,1,1))
    return d_out
开发者ID:Captricity,项目名称:sciguppy,代码行数:12,代码来源:expit.py


示例20: __init__

    def __init__(self, mesh, context=None):
        '''
        Args:
            mesh The mesh on which the solver will operate. The dimensionality
                 is deducted from mesh.dimension
        '''
        # create the mesh grid and compute the greens function on it
        self.mesh = mesh
        self._context = context
        mesh_shape = self.mesh.shape # nz, ny, (nx)
        mesh_shape2 = [2*n for n in mesh_shape] # 2*nz, 2*ny, (2*nx)
        mesh_distances = list(reversed(self.mesh.distances)) #dz, dy, dx
        self.fgreentr = gpuarray.empty(mesh_shape2,
                        dtype=np.complex128)
        self.tmpspace = gpuarray.zeros_like(self.fgreentr)
        sizeof_complex = np.dtype(np.complex128).itemsize

        # dimensionality function dispatch
        dim = self.mesh.dimension
        self._fgreen = getattr(self, '_fgreen' + str(dim) + 'd')
        self._mirror = getattr(self, '_mirror' + str(dim) + 'd')
        copy_fn = {'3d' : get_Memcpy3D_d2d, '2d': get_Memcpy2D_d2d}
        memcpy_nd = copy_fn[str(dim) + 'd']
        dim_args = self.mesh.shape
        self._cpyrho2tmp = memcpy_nd(
            src=None, dst=self.tmpspace, # None because src(rho) not yet known
            src_pitch=self.mesh.nx*sizeof_complex,
            dst_pitch=2*self.mesh.nx*sizeof_complex,
            dim_args=dim_args,
            itemsize=np.dtype(np.complex128).itemsize,
            src_height=self.mesh.ny,
            dst_height=2*self.mesh.ny)
        self._cpytmp2rho = memcpy_nd(
            src=self.tmpspace, dst=None, # None because dst(rho) not yet know
            src_pitch=2*self.mesh.nx*sizeof_complex,
            dst_pitch=self.mesh.nx*sizeof_complex,
            dim_args=dim_args,
            itemsize=np.dtype(np.complex128).itemsize,
            src_height=2*self.mesh.ny,
            dst_height=self.mesh.ny)
        mesh_arr = [-mesh_distances[i]/2 + np.arange(mesh_shape[i]+1)
                                            * mesh_distances[i]
                    for i in xrange(self.mesh.dimension)
                   ]
        # mesh_arr is [mz, my, mx]
        mesh_grids = np.meshgrid(*mesh_arr, indexing='ij')
        fgreen = self._fgreen(*mesh_grids)
        fgreen = self._mirror(fgreen)
        self.plan_forward = cu_fft.Plan(self.tmpspace.shape, in_dtype=np.complex128,
                                        out_dtype=np.complex128)
        self.plan_backward = cu_fft.Plan(self.tmpspace.shape, in_dtype=np.complex128,
                                         out_dtype=np.complex128)
        cu_fft.fft(gpuarray.to_gpu(fgreen), self.fgreentr, plan=self.plan_forward)
开发者ID:giadarol,项目名称:PyPIC,代码行数:53,代码来源:FFT_solver.py



注:本文中的pycuda.gpuarray.zeros_like函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tools.dtype_to_ctype函数代码示例发布时间:2022-05-25
下一篇:
Python gpuarray.zeros函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap