本文整理汇总了Python中pycuda.driver.Context类的典型用法代码示例。如果您正苦于以下问题:Python Context类的具体用法?Python Context怎么用?Python Context使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Context类的19个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: calcV
def calcV(I_shape, I_cu, V_cu):
#Ifull = I
Ci = I_shape[0]
iH = I_shape[1]
iW = I_shape[2]
N = I_shape[3]
tiles = iW // 4
oH = iH
oW = iW
padH = 1
padW = 1
# adapted from winograd_conv.py
#if N == 1:
# shlN = 0
#elif N < 32:
# shlN = len(bin(N-1))-2
#else:
# shlN = 5
shlN = 5
shlY, shlX, maskY, shrY, maskX, shrX, maskN, supY, supX = {
0 : (4, 5, 0x18, 3, 0x07, 0, 0x00, 0x203, 0x300), # 4x8 yyxxx
1 : (4, 4, 0x18, 3, 0x06, 1, 0x01, 0x203, 0x201), # 4x4 yyxxn
2 : (3, 4, 0x10, 4, 0x0c, 2, 0x03, 0x104, 0x202), # 2x4 yxxnn
3 : (2, 4, 0x00, 0, 0x18, 3, 0x07, 0x000, 0x203), # 1x4 xxnnn
4 : (2, 3, 0x00, 0, 0x10, 4, 0x0f, 0x000, 0x104), # 1x2 xnnnn
5 : (2, 2, 0x00, 0, 0x00, 0, 0x1f, 0x000, 0x000), # 1x1 nnnnn
}.get(shlN)
GYS = ceil_div(oH, 1 << shlY)
GXS = ceil_div(oW, 1 << shlX)
GN = ceil_div(N, 1 << shlN)
# GK = ceil_div(Co, 32)
GYS2 = GYS // 2
GXS2 = GXS * 2
div_GXS2 = get_div_mul_shift_32(GXS * GYS, GXS2)
div_GXS = get_div_mul_shift_32(GXS * GYS, GXS)
image_size = 1152*Ci*GXS*GYS*GN
print('div_GXS', div_GXS)
print('GYS', GYS, 'GXS', GXS, 'GN', GN, 'Ci', Ci, 'GY_GX', GXS * GYS)
grid = (GN, GYS*GXS, Ci)
block = (32, 1, 1)
call_cu_kernel(
k_calcV,
grid, block,
V_cu, I_cu,
iH, iW, N, padH, padW,
GXS, GYS2, GXS2, div_GXS2[0], div_GXS2[1], div_GXS[0], div_GXS[1],
shlY, shlX, maskY, shrY, maskX, shrX, shlN, maskN,
iH * iW * N, iW * N, GYS*GXS*Ci*1152, GXS * Ci * 1152, Ci * 1152,
GXS, GXS * GYS, GN, Ci)
Context.synchronize()
timecheck('calced V_cu')
开发者ID:hughperkins,项目名称:neonCl-underconstruction,代码行数:60,代码来源:winograd_cuda.py
示例2: init_the_device_if_needed
def init_the_device_if_needed(do_it_anyway=False):
if do_it_anyway:
print 'import pycuda.autoinit'
import pycuda.autoinit
return
try:
Context.get_device()
except:
# Presumably, the line above failed because of something like that:
# "LogicError: cuCtxGetDevice failed: not initialized"
# -- initialize the device
print 'import pycuda.autoinit'
import pycuda.autoinit
开发者ID:freifeld,项目名称:fastSCSP,代码行数:13,代码来源:init_the_device_if_needed.py
示例3: mem_alloc
def mem_alloc(nbytes):
"""Allocates device memory of given size from memory pool.
This function chooses memory pool corresponding to the current device.
Args:
nbytes (int): The size of memory in bytes.
Returns:
pycuda.tools.PooledDeviceAllocation: Allocated memory with additional
``device`` attribute. This attribute is used to determine on which GPU
the memory resides.
"""
global _pools
device = Context.get_device()
pool = _pools.get(device, None)
if pool is None:
pool = drv.DeviceMemoryPool()
_pools[device] = pool
allocation = pool.allocate(nbytes)
setattr(allocation, 'device', device)
return allocation
开发者ID:ALEXGUOQ,项目名称:chainer,代码行数:26,代码来源:cuda.py
示例4: get_device
def get_device(arg=None):
"""Gets the device from ID ''arg'' or given chainer's
:class:`~pycuda.gpuarray.GPUArray`.
Args:
arg: Value to specify a GPU device.
Returns:
Device object specified by given ``arg``.
The rule of device selection is following.
==================================== =====================================
Type of ``arg`` Return value
==================================== =====================================
``None`` Current device
``int`` Device of ID ``arg``
:class:`~pycuda.driver.Device` ``arg``
:class:`~pycuda.gpuarray.GPUArray` Device given array was allocated on
:class:`~numpy.ndarray` ``None``
==================================== =====================================
"""
if arg is None:
return Context.get_device()
elif isinstance(arg, Device):
return arg
elif isinstance(arg, numpy.ndarray):
return None
elif isinstance(arg, GPUArray):
while not hasattr(arg.gpudata, 'device'):
arg = arg.base
return arg.gpudata.device
return drv.Device(arg)
开发者ID:ALEXGUOQ,项目名称:chainer,代码行数:34,代码来源:cuda.py
示例5: compile
def compile(source, nvcc="nvcc", options=None, keep=False,
no_extern_c=False, arch=None, code=None, cache_dir=None,
include_dirs=[], target="cubin"):
assert target in ["cubin", "ptx", "fatbin"]
if not no_extern_c:
source = 'extern "C" {\n%s\n}\n' % source
if options is None:
options = DEFAULT_NVCC_FLAGS
options = options[:]
if arch is None:
from pycuda.driver import Error
try:
from pycuda.driver import Context
arch = "sm_%d%d" % Context.get_device().compute_capability()
except Error:
pass
from pycuda.driver import CUDA_DEBUGGING
if CUDA_DEBUGGING:
cache_dir = False
keep = True
options.extend(["-g", "-G"])
if cache_dir is None:
from os.path import join
import appdirs
cache_dir = os.path.join(appdirs.user_cache_dir("pycuda", "pycuda"),
"compiler-cache-v1")
from os import makedirs
try:
makedirs(cache_dir)
except OSError as e:
from errno import EEXIST
if e.errno != EEXIST:
raise
if arch is not None:
options.extend(["-arch", arch])
if code is not None:
options.extend(["-code", code])
if 'darwin' in sys.platform and sys.maxint == 9223372036854775807:
options.append('-m64')
elif 'win32' in sys.platform and sys.maxsize == 9223372036854775807:
options.append('-m64')
elif 'win32' in sys.platform and sys.maxsize == 2147483647:
options.append('-m32')
include_dirs = include_dirs + [_find_pycuda_include_path()]
for i in include_dirs:
options.append("-I"+i)
return compile_plain(source, options, keep, nvcc, cache_dir, target)
开发者ID:drufat,项目名称:pycuda,代码行数:60,代码来源:compiler.py
示例6: compile
def compile(source, nvcc="nvcc", options=[], keep=False,
no_extern_c=False, arch=None, code=None, cache_dir=None,
include_dirs=[]):
if not no_extern_c:
source = 'extern "C" {\n%s\n}\n' % source
options = options[:]
if arch is None:
try:
from pycuda.driver import Context
arch = "sm_%d%d" % Context.get_device().compute_capability()
except RuntimeError:
pass
from pycuda.driver import CUDA_DEBUGGING
if CUDA_DEBUGGING:
cache_dir = False
keep = True
options.extend(["-g", "-G"])
if cache_dir is None:
from os.path import join
from tempfile import gettempdir
cache_dir = join(gettempdir(),
"pycuda-compiler-cache-v1-%s" % _get_per_user_string())
from os import mkdir
try:
mkdir(cache_dir)
except OSError, e:
from errno import EEXIST
if e.errno != EEXIST:
raise
开发者ID:bryancatanzaro,项目名称:catanzaro.pycuda,代码行数:34,代码来源:compiler.py
示例7: calcO
def calcO(O_cu, M_shape, M_cu):
GK = M_shape[2]
GN = M_shape[0]
tiles = M_shape[4]
num_xinu_tiles = GK * 32 * GN * 32 * tiles * tiles
grid = (ceil_div(num_xinu_tiles, 32), 1, 1)
block = (32, 1, 1)
call_cu_kernel(
k_calcO,
grid, block,
O_cu, M_cu,
num_xinu_tiles
)
Context.synchronize()
timecheck('calced O_cu')
开发者ID:hughperkins,项目名称:neonCl-underconstruction,代码行数:17,代码来源:winograd_cuda.py
示例8: calcM
def calcM(N, Co, M_cu, U_shape, U_cu, V_shape, V_cu):
Co = (U_shape[2] - 1) * 32 + U_shape[4]
Ci = U_shape[3]
GK = ceil_div(Co, 32)
tiles = V_shape[4]
GN = V_shape[2]
print('GK', GK, 'GN', GN, 'tiles', tiles, 'Co', Co, 'Ci', Ci, 'N', N)
grid = (tiles * tiles,1,1) # b
block = (32, 16, 1) # 16 for intel...
call_cu_kernel(
k_calcM,
grid, block,
M_cu, U_cu, V_cu,
Ci, 1, tiles, GN, GK) #,
# cl.LocalMemory(32 * 32 * 4), cl.LocalMemory(32 * 32 * 4))
Context.synchronize()
timecheck('calced M_cu')
开发者ID:hughperkins,项目名称:neonCl-underconstruction,代码行数:20,代码来源:winograd_cuda.py
示例9: ensure_pycuda_context
def ensure_pycuda_context():
global pycuda_context, pycuda_initialized
if not pycuda_initialized:
if Context is None:
raise RuntimeError("PyCUDA not found or too old.")
else:
pycuda_context = Context.attach()
import atexit
atexit.register(pycuda_context.detach)
pycuda_initialized = True
return pycuda_context
开发者ID:Ambier,项目名称:Theano,代码行数:11,代码来源:pycuda_helper.py
示例10: _check_arch
def _check_arch(self, arch):
if arch is None: return
try:
from pycuda.driver import Context
capability = Context.get_device().compute_capability()
if tuple(map(int, tuple(arch.split("_")[1]))) > capability:
from warnings import warn
warn("trying to compile for a compute capability "
"higher than selected GPU")
except:
pass
开发者ID:bryancatanzaro,项目名称:catanzaro.pycuda,代码行数:11,代码来源:compiler.py
示例11: init
def init(device=None):
"""Initializes CUDA global state.
Chainer maintains CUDA context, CUBLAS context, random number generator and
device memory pool for each GPU device and for each process (the main
process or a process forked by :mod:`multiprocessing`) as global states. When
called for the first time on the process, this function initializes these global states.
.. warning::
This function also initializes PyCUDA and scikits.cuda. Since these
packages do not support forking after initialization, do not call this
function before forking the process.
This function also registers :func:`shutdown` to :mod:`atexit` slot.
It also initializes random number generator. User can set fixed seed with
``CHAINER_SEED`` environment variable.
Args:
device (``int`` or :class:`~pycuda.driver.Device` or ``None``): Device
ID to initialize on.
"""
global _contexts, _cublas_handles, _generators, _pid, _pools
if not available:
global _import_error
raise RuntimeError(
'CUDA environment is not correctly set up. ' +
'The original import error said: ' + str(_import_error))
pid = os.getpid()
if _pid == pid: # already initialized
return
drv.init()
if device is None: # use default device
context = cutools.make_default_context()
device = Context.get_device()
else:
device = Device(device)
context = device.make_context()
_contexts = {device: context}
_generators = {}
_pools = {}
_cublas_handles = {}
cumisc.init(mem_alloc)
seed(os.environ.get('CHAINER_SEED'))
_pid = pid # mark as initialized
atexit.register(shutdown)
开发者ID:ALEXGUOQ,项目名称:chainer,代码行数:54,代码来源:cuda.py
示例12: calcU
def calcU(W_shape, W_cu, U_cu):
Ci = W_shape[0]
kH = W_shape[1]
kW = W_shape[2]
Co = W_shape[3]
# this is adapted from neon's winograd_conv.py:
GK = ceil_div(Co, 32)
filter_size = 1152*Ci*GK
grid = (GK, Ci, 1)
block = (32, 1, 1)
call_cu_kernel(
k_calcU,
grid, block,
U_cu, W_cu,
kH * kW * Co, kW * Co, kW * Co * 2, Co, Ci * 1152,
Ci, GK)
Context.synchronize()
timecheck('calced U_cu')
开发者ID:hughperkins,项目名称:neonCl-underconstruction,代码行数:21,代码来源:winograd_cuda.py
示例13: get_cublas_handle
def get_cublas_handle():
"""Gets CUBLAS handle for the current device.
Returns:
CUBLAS handle.
"""
global _cublas_handles
device = Context.get_device()
if device in _cublas_handles:
return _cublas_handles[device]
handle = cublas.cublasCreate()
_cublas_handles[device] = handle
return handle
开发者ID:ALEXGUOQ,项目名称:chainer,代码行数:16,代码来源:cuda.py
示例14: __init__
def __init__(self, nvcc='nvcc', link_options=None, keep=False,
no_extern_c=False, arch=None, code=None, cache_dir=None,
include_dirs=[], message_handler=None, log_verbose=False,
cuda_libdir=None):
from pycuda.driver import Context
compute_capability = Context.get_device().compute_capability()
if compute_capability < (3,5):
raise Exception('Minimum compute capability for dynamic parallelism is 3.5 (found: %u.%u)!' %
(compute_capability[0], compute_capability[1]))
else:
from pycuda.driver import Linker
self.linker = Linker(message_handler, link_options, log_verbose)
self._check_arch(arch)
self.nvcc = nvcc
self.keep = keep
self.no_extern_c = no_extern_c
self.arch = arch
self.code = code
self.cache_dir = cache_dir
self.include_dirs = include_dirs
self.cuda_libdir = cuda_libdir
self.libdir, self.libptn = None, None
self.module = None
开发者ID:chunggi,项目名称:pycuda,代码行数:23,代码来源:compiler.py
示例15: compile
def compile(source, nvcc="nvcc", options=None, keep=False,
no_extern_c=False, arch=None, code=None, cache_dir=None,
include_dirs=[]):
if not no_extern_c:
source = 'extern "C" {\n%s\n}\n' % source
if options is None:
options = DEFAULT_NVCC_FLAGS
options = options[:]
if arch is None:
try:
from pycuda.driver import Context
arch = "sm_%d%d" % Context.get_device().compute_capability()
except RuntimeError:
pass
from pycuda.driver import CUDA_DEBUGGING
if CUDA_DEBUGGING:
cache_dir = False
keep = True
options.extend(["-g", "-G"])
if cache_dir is None:
from os.path import join
import appdirs
cache_dir = os.path.join(appdirs.user_cache_dir("pycuda", "pycuda"),
"compiler-cache-v1")
from os import makedirs
try:
makedirs(cache_dir)
except OSError, e:
from errno import EEXIST
if e.errno != EEXIST:
raise
开发者ID:allansnielsen,项目名称:pycuda,代码行数:37,代码来源:compiler.py
示例16: process
def process(iH, iW, N, Ci, Co, kH=3, kW=3):
inittime()
np.random.seed(123)
oH = iH
oW = iW
tiles = iW // 4
shlN = 5
shlY, shlX, maskY, shrY, maskX, shrX, maskN, supY, supX = {
0 : (4, 5, 0x18, 3, 0x07, 0, 0x00, 0x203, 0x300), # 4x8 yyxxx
1 : (4, 4, 0x18, 3, 0x06, 1, 0x01, 0x203, 0x201), # 4x4 yyxxn
2 : (3, 4, 0x10, 4, 0x0c, 2, 0x03, 0x104, 0x202), # 2x4 yxxnn
3 : (2, 4, 0x00, 0, 0x18, 3, 0x07, 0x000, 0x203), # 1x4 xxnnn
4 : (2, 3, 0x00, 0, 0x10, 4, 0x0f, 0x000, 0x104), # 1x2 xnnnn
5 : (2, 2, 0x00, 0, 0x00, 0, 0x1f, 0x000, 0x000), # 1x1 nnnnn
}.get(shlN)
GYS = ceil_div(oH, 1 << shlY)
GXS = ceil_div(oW, 1 << shlX)
GN = ceil_div(N, 1 << shlN)
# GK = ceil_div(Co, 32)
GYS2 = GYS // 2
GXS2 = GXS * 2
GK = ceil_div(Co, 32)
W = np.random.randn(Ci,kH,kW,Co).astype(np.float32)
I = np.zeros((Ci,iH, iW,N), dtype=np.float32)
I[:] = np.random.randn(*I.shape)
print('Co', Co, 'iH', iH, 'iW', iW, 'N', N, 'tiles', tiles)
W_cu = gpuarray.to_gpu(W)
I_cu = gpuarray.to_gpu(I)
U = np.zeros((6, 6, GK, Ci, 32,), dtype=np.float32)
U_cu = gpuarray.to_gpu(U)
V = np.zeros((6, 6, GN,GXS, GYS, Ci, 32), dtype=np.float32)
V_cu = gpuarray.to_gpu(V)
M = np.zeros((GN, 32, GK, 32, tiles, tiles, 6, 6,), dtype=np.float32)
M_cu = gpuarray.to_gpu(M)
O = np.zeros((GN, 32, GK, 32, tiles, tiles, 4, 4,), dtype=np.float32)
O_cu = gpuarray.to_gpu(O)
Context.synchronize()
print('allocated buffers')
start = time.time()
for it in range(3):
calcU(U_cu=U_cu, W_shape=W.shape, W_cu=W_cu)
calcV(V_cu=V_cu, I_shape=I.shape, I_cu=I_cu)
calcM(N=N, Co=Co, M_cu=M_cu, U_shape=U.shape, U_cu=U_cu, V_shape=V.shape, V_cu=V_cu)
calcO(O_cu=O_cu, M_shape=M.shape, M_cu=M_cu)
Context.synchronize()
end = time.time()
print('calcs done')
print('time for all calcs:', end - start)
start = time.time()
O = O_cu.get()
# cl.enqueue_copy(q, O, O_cu)
O = O.transpose(2,3, 4,6, 5,7, 0,1).reshape(
GK * 32, tiles * 4, tiles * 4, GN * 32)
print('O.shape', O.shape)
W_from_cu = np.zeros((Ci, 3, 3, Co), dtype=np.float32)
W_from_cu = W_cu.get()
U_from_cpu = winograd_cpu.calcU(W=W)
U_from_cu = np.zeros((6, 6, GK, Ci, 32), dtype=np.float32)
U_from_cu = U_cu.get()
U_from_cu_ = U_from_cu.transpose(
0, 1, 2, 4, 3).reshape(6, 6, GK * 32, Ci)[:, :, :Co]
assert np.allclose(U_from_cu_, U_from_cpu, atol=1e-4)
V_from_cpu = winograd_cpu.calcV(I=I)
V_from_cu = np.copy(V)
V_from_cu = V_cu.get()
print('tiles', tiles)
# 0 1 2 3 4 5 6
# 6, 6, GN,GXS, GYS, Ci, 32
V_from_cu_ = V_from_cu.transpose(
2,6,0,1,5,3,4).reshape(
GN * 32, 6, 6, Ci, tiles, tiles)[:N]
assert np.allclose(V_from_cu_, V_from_cpu, atol=1e-3)
# 0 1 2 3 4 5 6 7
# [n//32][n % 32][co // 32][co % 32][th][tw][xi][nu]
M_from_cpu = winograd_cpu.calcM(U=U_from_cu, V=V_from_cu, N=N, Co=Co)
#.........这里部分代码省略.........
开发者ID:hughperkins,项目名称:neonCl-underconstruction,代码行数:101,代码来源:winograd_cuda.py
示例17: has_double_support
def has_double_support():
from pycuda.driver import Context
return Context.get_device().compute_capability() >= (1, 3)
开发者ID:FreddieWitherden,项目名称:pycuda,代码行数:3,代码来源:characterize.py
示例18: has_stack
def has_stack():
from pycuda.driver import Context
return Context.get_device().compute_capability() >= (2, 0)
开发者ID:FreddieWitherden,项目名称:pycuda,代码行数:3,代码来源:characterize.py
示例19: KernelThinWrapper
#!/usr/bin/env python
"""
Created on Wed Sep 3 11:08:37 2014
Author: Oren Freifeld
Email: [email protected]
"""
from pycuda.compiler import SourceModule
from pycuda.driver import Context
try:
Context.get_device()
except:
import pycuda.autoinit
class KernelThinWrapper(object):
def __init__(self, gpu_kernel, include_dirs=[]):
self._gpu_kernel = gpu_kernel
self._src_module = SourceModule(gpu_kernel, include_dirs=include_dirs)
def _get_function_from_src_module(self, func_name):
self.__dict__["_gpu_" + func_name] = self._src_module.get_function(func_name)
def __call__(self, *args, **kwargs):
msg = """
You need to customize this method in the derived class.
The customized method will usually have 3 parts:
开发者ID:odiofan,项目名称:fastSCSP,代码行数:31,代码来源:KernelThinWrapper.py
注:本文中的pycuda.driver.Context类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论