• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python trainers.BackpropTrainer类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pybrain.supervised.trainers.BackpropTrainer的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer类的具体用法?Python BackpropTrainer怎么用?Python BackpropTrainer使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了BackpropTrainer类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: train

    def train(self):
        trainer = BackpropTrainer(self.network, self.data_set)

        trainer.trainUntilConvergence(
            verbose=False, validationProportion=0.15, maxEpochs=1000, continueEpochs=10)

        return trainer
开发者ID:TheSimoms,项目名称:TDT4137,代码行数:7,代码来源:feed_forward.py


示例2: train

 def train(self, data, LRATE, MOMENTUM, ITERATIONS):
     trainer = BackpropTrainer(module=self.net, dataset=data, learningrate=LRATE,
                               momentum=MOMENTUM, lrdecay=0.99999, verbose=True)
     # for i in xrange(0, self.initialization_periods):
     #     self.net.activate(data.getSequence(i)[0])
     print "Training..."
     return trainer.trainUntilConvergence(maxEpochs=ITERATIONS)
开发者ID:thearrow,项目名称:ai-financialANN,代码行数:7,代码来源:nethandler.py


示例3: move_function

def move_function(board):
    global net  
    best_max_move = None 
    max_value = -1000
    best_min_move = None
    min_value = 1000

    #value is the chance of black winning
    for m in board.get_moves():
        nextboard = board.peek_move(m)
        value = net.activate(board_to_input(nextboard))
        if value > max_value: 
            max_value = value
            best_max_move = m 
        if value < min_value:
            min_value = value
            best_min_move = m

    ds = SupervisedDataSet(97, 1)
    best_move = None 

    #active player
    if board.active == BLACK:
        ds.addSample(board_to_input(board), max_value)
        best_move = best_max_move
    elif board.active == WHITE: 
        ds.addSample(board_to_input(board), min_value)
        best_move = best_min_move

    trainer = BackpropTrainer(net, ds)
    trainer.train()
    NetworkWriter.writeToFile(net, 'CheckersMini/synapsemon_random_black_mini_140.xml')
    NetworkWriter.writeToFile(net, 'SynapsemonPie/synapsemon_random_black_mini_140_copy.xml') 
    return best_move 
开发者ID:johnny-zheng,项目名称:SynapsemonPy,代码行数:34,代码来源:synapsemon_random_black_mini_140.py


示例4: train

def train(data):
	"""
	See http://www.pybrain.org/docs/tutorial/fnn.html

	Returns a neural network trained on the test data.

	Parameters:
	  data - A ClassificationDataSet for training.
	         Should not include the test data.
	"""
	network = buildNetwork(
		# This is where we specify the architecture of
		# the network.  We can play around with different
		# parameters here.
		# http://www.pybrain.org/docs/api/tools.html
		data.indim, 5, data.outdim,
		hiddenclass=SigmoidLayer,
		outclass=SoftmaxLayer
	)

	# We can fiddle around with this guy's options as well.
	# http://www.pybrain.org/docs/api/supervised/trainers.html
	trainer = BackpropTrainer(network, dataset=data)
	trainer.trainUntilConvergence(maxEpochs=20)

	return network
开发者ID:IPPETAD,项目名称:ProjectSmiley,代码行数:26,代码来源:neural_net_learner.py


示例5: measuredLearning

def measuredLearning(ds):

    trndata,tstdata = splitData(ds,.025)

    #build network


    ###
    # This network has no hidden layters, you might need to add some
    ###
    fnn = buildNetwork( trndata.indim, 22, trndata.outdim, outclass=SoftmaxLayer )
    trainer = BackpropTrainer( fnn, verbose=True,dataset=trndata)
                               
    ####
    #   Alter this to figure out how many runs you want.  Best to start small and be sure that you see learning.
    #   Before you ramp it up.
    ###
    for i in range(150):
        trainer.trainEpochs(5)
   
        
        trnresult = percentError(trainer.testOnClassData(),trndata['class'] )

        
        tstresult = percentError( trainer.testOnClassData(
           dataset=tstdata ), tstdata['class'] )

        print "epoch: %4d" % trainer.totalepochs, \
            "  train error: %5.2f%%" % trnresult, \
            "  test error: %5.2f%%" % tstresult
        if(trnresult<.5): 
            return
开发者ID:DanSGraham,项目名称:School-Projects,代码行数:32,代码来源:learner.py


示例6: nnTest

def nnTest(tx, ty, rx, ry, iterations):
    print "NN start"
    print strftime("%a, %d %b %Y %H:%M:%S", localtime())

    resultst = []
    resultsr = []
    positions = range(iterations)
    network = buildNetwork(16, 16, 1, bias=True)
    ds = ClassificationDataSet(16, 1, class_labels=["1", "0"])
    for i in xrange(len(tx)):
        ds.addSample(tx[i], [ty[i]])
    trainer = BackpropTrainer(network, ds, learningrate=0.05)
    validator = CrossValidator(trainer, ds, n_folds=10)
    print validator.validate()
    for i in positions:
        print trainer.train()
        resultst.append(sum((np.array([round(network.activate(test)) for test in tx]) - ty)**2)/float(len(ty)))
        resultsr.append(sum((np.array([round(network.activate(test)) for test in rx]) - ry)**2)/float(len(ry)))
        print i, resultst[i], resultsr[i]
    plt.plot(positions, resultst, 'g-', positions, resultsr, 'r-')
    plt.axis([0, iterations, 0, 1])
    plt.ylabel("Percent Error")
    plt.xlabel("Network Epoch")
    plt.title("Neural Network Error")
    plt.savefig('nn.png', dpi=500)
    print "NN end"
    print strftime("%a, %d %b %Y %H:%M:%S", localtime())
开发者ID:mmanguno,项目名称:machine-learning,代码行数:27,代码来源:bank.py


示例7: run

    def run(self, fold, X_train, y_train, X_test, y_test):
        DS_train, DS_test = ClassificationData.convert_to_DS(
            X_train,
            y_train,
            X_test,
            y_test)

        NHiddenUnits = self.__get_best_hu(DS_train)
        fnn = buildNetwork(
            DS_train.indim,
            NHiddenUnits,
            DS_train.outdim,
            outclass=SoftmaxLayer,
            bias=True)

        trainer = BackpropTrainer(
            fnn,
            dataset=DS_train,
            momentum=0.1,
            verbose=False,
            weightdecay=0.01)

        trainer.trainEpochs(self.epochs)
        tstresult = percentError(
            trainer.testOnClassData(dataset=DS_test),
            DS_test['class'])

        print "NN fold: %4d" % fold, "; test error: %5.2f%%" % tstresult
        return tstresult / 100.0
开发者ID:dzitkowskik,项目名称:Introduction-To-Machine-Learning-And-Data-Mining,代码行数:29,代码来源:PyBrainNN.py


示例8: train

 def train(self):
     '''
     Perform batch regression
     '''
     self.getTrainingData2()
     trainer = BackpropTrainer(self.net, self.ds)
     trainer.train()
开发者ID:osigaud,项目名称:ArmModelPython,代码行数:7,代码来源:NeuralNet.py


示例9: run

    def run(self, ds_train, ds_test):
        """
        This function both trains the ANN and evaluates the ANN using a specified training and testing set
        Args:
        :param ds_train (TweetClassificationDatasetFactory): the training dataset the neural network is trained with.
        :param ds_test (TweetClassificationDatasetFactory): the test dataset evaluated.
        :returns: error (float): the percent error of the test dataset, tested on the neural network.
        """
        ds_train._convertToOneOfMany()
        ds_test._convertToOneOfMany()

        trainer = BackpropTrainer(
            self.network,
            dataset=ds_train,
            momentum=0.1,
            verbose=True,
            weightdecay=0.01)

        trainer.trainUntilConvergence(
            dataset=ds_train,
            maxEpochs=self.max_epochs,
            continueEpochs=self.con_epochs)
        result = trainer.testOnClassData(dataset=ds_test)
        error = percentError(result, ds_test['class'])

        return error
开发者ID:dtu-02819-projects-fall2014,项目名称:Introduction-to-Data-Mining-DTU,代码行数:26,代码来源:ai.py


示例10: big_training

def big_training(np_data, num_nets=1, num_epoch=20, net_builder=net_full, train_size=.1, testing=False):
    sss = cross_validation.StratifiedShuffleSplit(np_data[:,:1].ravel(), n_iter=num_nets , test_size=1-train_size, random_state=3476)
    nets=[None for net_ind in range(num_nets)]
    trainaccu=[[0 for i in range(num_epoch)] for net_ind in range(num_nets)]
    testaccu=[[0 for i in range(num_epoch)] for net_ind in range(num_nets)]
    net_ind=0
    for train_index, test_index in sss:
        print ('%s Building %d. network.' %(time.ctime(), net_ind+1))
        #print("TRAIN:", len(train_index), "TEST:", len(test_index))
        trainset = ClassificationDataSet(np_data.shape[1] - 1, 1)
        trainset.setField('input', np_data[train_index,1:]/100-.6)
        trainset.setField('target', np_data[train_index,:1])
        trainset._convertToOneOfMany( )
        trainlabels = trainset['class'].ravel().tolist()
        if testing:
            testset = ClassificationDataSet(np_data.shape[1] - 1, 1)
            testset.setField('input', np_data[test_index,1:]/100-.6)
            testset.setField('target', np_data[test_index,:1])
            testset._convertToOneOfMany( )
            testlabels = testset['class'].ravel().tolist()
        nets[net_ind] = net_builder()
        trainer = BackpropTrainer(nets[net_ind], trainset)
        for i in range(num_epoch):
            for ii in range(3):
                err = trainer.train()
            print ('%s Epoch %d: Network trained with error %f.' %(time.ctime(), i+1, err))
            trainaccu[net_ind][i]=accuracy_score(trainlabels,trainer.testOnClassData())
            print ('%s Epoch %d: Train accuracy is %f' %(time.ctime(), i+1, trainaccu[net_ind][i]))
            print ([sum([trainaccu[y][i]>tres for y in range(net_ind+1)]) for tres in [0,.1,.2,.3,.4,.5,.6]])
            if testing:
                testaccu[net_ind][i]=accuracy_score(testlabels,trainer.testOnClassData(testset))
                print ('%s Epoch %d: Test accuracy is %f' %(time.ctime(), i+1, testaccu[net_ind][i]))
        NetworkWriter.writeToFile(nets[net_ind], 'nets/'+net_builder.__name__+str(net_ind)+'.xml')
        net_ind +=1
    return [nets, trainaccu, testaccu]
开发者ID:1va,项目名称:pybrain_digits,代码行数:35,代码来源:pybrain_mnist.py


示例11: computeModel

	def computeModel(self, path, user):
		# Create a supervised dataset for training.
		trndata = SupervisedDataSet(24, 1)
		tstdata = SupervisedDataSet(24, 1)
		
		#Fill the dataset.
		for number in range(0,10):
			for variation in range(0,7):
				# Pass all the features as inputs.
				trndata.addSample(self.getSample(user, number, variation),(user.key,))
				
			for variation in range(7,10):
				# Pass all the features as inputs.
				tstdata.addSample(self.getSample(user, number, variation),(user.key,))
				
		# Build the LSTM.
		n = buildNetwork(24, 50, 1, hiddenclass=LSTMLayer, recurrent=True, bias=True)

		# define a training method
		trainer = BackpropTrainer(n, dataset = trndata, momentum=0.99, learningrate=0.00002)

		# carry out the training
		trainer.trainOnDataset(trndata, 2000)
		valueA = trainer.testOnData(tstdata)
		print '\tMSE -> {0:.2f}'.format(valueA)
		self.saveModel(n, '.\NeuralNets\SavedNet_%d' %(user.key))
		
		return n
开发者ID:ThomasRouvinez,项目名称:UserRecognizer,代码行数:28,代码来源:PyBrain.py


示例12: Classifier

class Classifier():
    def __init__(self, testing = False):
        self.training_set, self.test_set = split_samples(0.5 if testing else 1.0)
        self.net = buildNetwork( self.training_set.indim, self.training_set.outdim, outclass=SoftmaxLayer )
        self.trainer = BackpropTrainer( self.net, dataset=self.training_set, momentum=0.1, verbose=True, weightdecay=0.01)
        self.train()

    def train(self):
        self.trainer.trainEpochs( EPOCHS )
        trnresult = percentError( self.trainer.testOnClassData(),
                                  self.training_set['class'] )
        print "  train error: %5.2f%%" % trnresult

    def classify(self, file):
        strengths = self.net.activate(process_sample(*load_sample(file)))
        print strengths
        best_match = None
        strength = 0.0
        for i,s in enumerate(strengths):
            if s > strength:
                best_match = i
                strength = s
        return SOUNDS[best_match]

    def test(self):
        tstresult = percentError( self.trainer.testOnClassData(
               dataset=self.test_set ), self.test_set['class'] )

        print "  test error: %5.2f%%" % tstresult
开发者ID:joesarre,项目名称:web-audio-hack-day,代码行数:29,代码来源:classify_beat.py


示例13: trainNetwork

def trainNetwork(epochs, rate, trndata, tstdata, network=None):
    '''
    epochs: number of iterations to run on dataset
    trndata: pybrain ClassificationDataSet
    tstdat: pybrain ClassificationDataSet
    network: filename of saved pybrain network, or None
    '''
    if network is None:
        net = buildNetwork(400, 25, 25, 9, bias=True, hiddenclass=SigmoidLayer, outclass=SigmoidLayer)
    else:
        net = NetworkReader.readFrom(network)

    print "Number of training patterns: ", len(trndata)
    print "Input and output dimensions: ", trndata.indim, trndata.outdim
    print "First sample input:"
    print trndata['input'][0]
    print ""
    print "First sample target:", trndata['target'][0]
    print "First sample class:", trndata.getClass(int(trndata['class'][0]))
    print ""

    trainer = BackpropTrainer(net, dataset=trndata, learningrate=rate)
    for i in range(epochs):
        trainer.trainEpochs(1)
        trnresult = percentError(trainer.testOnClassData(), trndata['class'])
        tstresult = percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
        print "epoch: %4d" % trainer.totalepochs, "  train error: %5.2f%%" % trnresult, "  test error: %5.2f%%" % tstresult

    return net
开发者ID:kdelaney711,项目名称:sudokusolver,代码行数:29,代码来源:network.py


示例14: train_neural_network

def train_neural_network():
    start = time.clock()
    ds = get_ds()

    # split main data to train and test parts
    train, test = ds.splitWithProportion(0.75)

    # build nn with 10 inputs, 3 hidden layers, 1 output neuron
    net = buildNetwork(10,3,1, bias=True)

    # use backpropagation algorithm
    trainer = BackpropTrainer(net, train, momentum = 0.1, weightdecay = 0.01)

    # plot error
    trnError, valError = trainer.trainUntilConvergence(dataset = train, maxEpochs = 50)

    plot_error(trnError, valError)

    print "train the model..."
    trainer.trainOnDataset(train, 500)
    print "Total epochs: %s" % trainer.totalepochs

    print "activate..."
    out = net.activateOnDataset(test).argmax(axis = 1)
    percent = 100 - percentError(out, test['target'])
    print "%s" % percent

    end = time.clock()
    print "Time: %s" % str(end-start)
开发者ID:zhzhussupovkz,项目名称:forest-cover-type-prediction,代码行数:29,代码来源:forest_cover_type_neural_network.py


示例15: __init__

class Brain:
	def __init__(self, hiddenNodes = 30):
		# construct neural network 
		self.myClassifierNet = buildNetwork(12, hiddenNodes, 1, bias=True, hiddenclass=TanhLayer) #parameters to buildNetwork are inputs, hidden, output
		# set up dataset
		self.myDataset = SupervisedDataSet(12, 1)
		self.myClassifierTrainer = BackpropTrainer(self.myClassifierNet, self.myDataset)

	def addSampleImageFromFile(self, imageFile, groupId):
		"adds a data sample from an image file, including needed processing"
		myImage = Image.open(imageFile)
		self.myDataset.addSample(twelveToneParallel(myImage), (groupId,))

	def train(self):
		#myClassifierTrainer.trainUntilConvergence() #this will take forever (possibly literally in the pathological case)
		for i in range(0, 15):
			self.myClassifierTrainer.train() #this may result in an inferior network, but in practice seems to work fine

	def save(self, saveFileName="recognizernet.brain"):
		saveFile = open(saveFileName, 'w')
		pickle.dump(self.myClassifierNet, saveFile)
		saveFile.close()

	def load(self, saveFileName="recognizernet.brain"):
		saveFile = open(saveFileName, 'r')
		myClassifierNet = pickle.load(saveFile)
		saveFile.close()

	def classify(self, fileName):
		myImage = Image.open(fileName)
		if self.myClassifierNet.activate(twelveToneParallel(myImage)) < 0.5:
			return 0
		else:
			return 1
开发者ID:anurive,项目名称:pybrain-picture-sort,代码行数:34,代码来源:recognizer.py


示例16: trainDataSet

def trainDataSet():
    cases = Case.objects.exclude(geocode__isnull=True, geocode__grid=-1)

    print "Data Representation"
    ds = SupervisedDataSet(5245, 5245)
    for w in xrange(0,52):
        print "Start week w",
        dataset_input = [0 for i in xrange(0,5245)]
        dataset_output = [0 for i in xrange(0,5245)]
        for i in xrange(0,5245):
            dataset_input[i] = cases.filter(geocode__grid=i, morbidity__week=w).count()
            dataset_output[i] = 1 if (cases.filter(geocode__grid=i, morbidity__week=w+1).count() > 0 or cases.filter(geocode__grid=i, morbidity__week=w+2).count() > 0) else 0
        ds.addSample( (dataset_input), (dataset_output))
        print " - done week w"
    # tstdata, trndata = ds.splitWithProportion(0.25)
    print "Train"
    net = buildNetwork( 5245, 1000, 5245, bias=True)
    trainer = BackpropTrainer(net, ds, learningrate=0.1, momentum=0.99)

    terrors = trainer.trainUntilConvergence(verbose = None, validationProportion = 0.33, maxEpochs = 1000, continueEpochs = 10 )
    # print terrors[0][-1],terrors[1][-1]
    fo = open("data.txt", "w")
    for input, expectedOutput in ds:
        output = net.activate(input)
        count = 0
        for q in xrange(0, 5245):
            print math.floor(output[q]), math.floor(expectedOutput[q])
            if math.floor(output[q]) == math.floor(expectedOutput[q]):
                count+=1    
        m = count/5245
        fo.write("{0} ::  {1}".format(count, m));
开发者ID:kevcal69,项目名称:thesis,代码行数:31,代码来源:rep.py


示例17: parse_and_train

 def parse_and_train(self):
     f = open(self.file,'r')
     learn_lines = []
     for line in f:
         if line.strip() != '':
             learn_lines.append(line)
     i = 0
     f.close()
     while i < len(learn_lines):
         ins, outs = self.convert_to_tuple(learn_lines[i],learn_lines[i+1])
         i += 2
         self.ds.addSample(ins,outs)
     self.nn = buildNetwork(self.ios,self.hns,25,self.ios)
     #self.train_dat, self.test_dat = self.ds.splitWithProportion(0.75)
     self.train_dat = self.ds
     trnr = BackpropTrainer(self.nn,dataset=self.train_dat,momentum=0.1,verbose=False,weightdecay=0.01)
     i = 150
     trnr.trainEpochs(150)
     while i < self.epochs:
         trnr.trainEpochs(50)
         i += 50
         print 'For epoch ' + str(i)
         print 'For train:'
         self.print_current_error()
         #print 'For test:'
         #self.print_validation()
     self.nn.sortModules()
开发者ID:iforneri,项目名称:EmpathicaNLP,代码行数:27,代码来源:nlp_nn.py


示例18: run_data

def run_data():
    with open('new_data2.txt') as data_file:
        data = json.load(data_file)
    ds = SupervisedDataSet(1316, 1316)
    for i in xrange(0, 51):
        print "Adding {}th data sample".format(i),
        input = tuple(data[str(i)]['input'])
        output = tuple(data[str(i)]['output'])        
        # print len(input), len(output)
        ds.addSample( input, output)
        print ":: Done"

    print "Train"
    net = buildNetwork( 1316, 100, 1316, bias=True, )
    trainer = BackpropTrainer(net, ds)

    terrors = trainer.trainUntilConvergence(verbose = True, validationProportion = 0.33, maxEpochs = 20, continueEpochs = 10 )
    # print terrors[0][-1],terrors[1][-1]
    fo = open("results2.txt", "w")
    for input, expectedOutput in ds:
        output = net.activate(input)
        count = 0
        for q in xrange(0, 1316):
            print output[q], expectedOutput[q]
            if math.floor(output[q]) == math.floor(expectedOutput[q]):
                count+=1    
        m = float(count)/1316.00
        print "{0} ::  {1}".format(count, m)
        fo.write("{0} ::  {1}\n".format(count, m))
开发者ID:kevcal69,项目名称:thesis,代码行数:29,代码来源:rep.py


示例19: NeuralNetwork

def NeuralNetwork(tRiver, qRiver, pRiver, TRiver, qnewRiver, pnewRiver, TnewRiver):
    # build neural network with 20 neurons for historic data on flux, 3 for last 3 temp data, 3 for last precipitation,
    # hidden layer with more than input neurons (hinder specification)
    # and 3 output neurons (flux for next day, first derivative, second derivative

    Ndim = 10+3+3
    Nout = 3
    net = buildNetwork(Ndim, Ndim, Nout, hiddenclass=TanhLayer)
    ds = SupervisedDataSet(Ndim, Nout)

    # next big job: find data values to build up library of training set
    for t in range(len(tRiver)-3):
        input_flow = qRiver[t-20:2:t]
        input_prec = pRiver[t-3:t]
        input_temp = TRiver[t-3:t]
        input_vec = np.hstack([input_flow, input_prec, input_temp])

        output_flow = np.hstack([qRiver[t:t+3]]) # first approx, split later for long predictions
        ds.addSample(input_vec, output_flow)

    trainer = BackpropTrainer(net, ds)
    #trainer.train()
    trainer.trainUntilConvergence()

    # now call it repeatedly on the second set

    prediction = net.activate(np.hstack([qnewRiver[:20], pnewRiver[:3], TnewRiver[:3]]))
    return prediction
开发者ID:PascalSteger,项目名称:aqualytic,代码行数:28,代码来源:nn.py


示例20: pybrain_high

def pybrain_high():
	back=[]
	alldate=New_stock.objects.filter().exclude(name='CIHKY')[0:100]
	wholelen=len(alldate)
	test=New_stock.objects.filter(name__contains="CIHKY")
	testlen=len(test)
	# test dateset
	testdata= SupervisedDataSet(5, 1)
	testwhole=newalldate(test,testlen)
	for i in testwhole:
		testdata.addSample((i[0],i[2],i[3],i[4],i[5]), (0,))	
	# 实验 dateset
	data= SupervisedDataSet(5, 1)
	wholedate=newalldate(alldate,wholelen)
	for i in wholedate:
		data.addSample((i[0],i[2],i[3],i[4],i[5]), (i[1]))	
	#print testwhole
	# 建立bp神经网络
	net = buildNetwork(5, 3, 1,bias=True,hiddenclass=TanhLayer, outclass=SoftmaxLayer)
	
	trainer = BackpropTrainer(net,data)
	trainer.trainEpochs(epochs=100)
	# train and test the network
#	print trainer.train()
	trainer.train()
	print 'ok'
	out=net.activateOnDataset(testdata)
	for j in  test:
                back.append((j.high))
	print back
	print out
	backout=backnormal(back,out)
	print 'okokokoko'
	print backout # 输出22的测试集合
	return out 
开发者ID:lanlanzky,项目名称:stock_project,代码行数:35,代码来源:views.py



注:本文中的pybrain.supervised.trainers.BackpropTrainer类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python trainers.RPropMinusTrainer类代码示例发布时间:2022-05-25
下一篇:
Python supervised.RPropMinusTrainer类代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap