本文整理汇总了Python中pybrain.structure.networks.feedforward.FeedForwardNetwork类的典型用法代码示例。如果您正苦于以下问题:Python FeedForwardNetwork类的具体用法?Python FeedForwardNetwork怎么用?Python FeedForwardNetwork使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了FeedForwardNetwork类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, predefined = None, **kwargs):
""" For the current implementation, the sequence length
needs to be fixed, and given at construction time. """
if predefined is not None:
self.predefined = predefined
else:
self.predefined = {}
FeedForwardNetwork.__init__(self, **kwargs)
assert self.seqlen is not None
# the input is a 1D-mesh (as a view on a flat input layer)
inmod = LinearLayer(self.inputsize * self.seqlen, name='input')
inmesh = ModuleMesh.viewOnFlatLayer(inmod, (self.seqlen,), 'inmesh')
# the output is also a 1D-mesh
outmod = self.outcomponentclass(self.outputsize * self.seqlen, name='output')
outmesh = ModuleMesh.viewOnFlatLayer(outmod, (self.seqlen,), 'outmesh')
# the hidden layers are places in a 2xseqlen mesh
hiddenmesh = ModuleMesh.constructWithLayers(self.componentclass, self.hiddensize,
(2, self.seqlen), 'hidden')
# add the modules
for c in inmesh:
self.addInputModule(c)
for c in outmesh:
self.addOutputModule(c)
for c in hiddenmesh:
self.addModule(c)
# set the connections weights to be shared
inconnf = MotherConnection(inmesh.componentOutdim * hiddenmesh.componentIndim, name='inconn')
outconnf = MotherConnection(outmesh.componentIndim * hiddenmesh.componentOutdim, name='outconn')
forwardconn = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='fconn')
if self.symmetric:
backwardconn = forwardconn
inconnb = inconnf
outconnb = outconnf
else:
backwardconn = MotherConnection(hiddenmesh.componentIndim * hiddenmesh.componentOutdim, name='bconn')
inconnb = MotherConnection(inmesh.componentOutdim * hiddenmesh.componentIndim, name='inconn')
outconnb = MotherConnection(outmesh.componentIndim * hiddenmesh.componentOutdim, name='outconn')
# build the connections
for i in range(self.seqlen):
# input to hidden
self.addConnection(SharedFullConnection(inconnf, inmesh[(i,)], hiddenmesh[(0, i)]))
self.addConnection(SharedFullConnection(inconnb, inmesh[(i,)], hiddenmesh[(1, i)]))
# hidden to output
self.addConnection(SharedFullConnection(outconnf, hiddenmesh[(0, i)], outmesh[(i,)]))
self.addConnection(SharedFullConnection(outconnb, hiddenmesh[(1, i)], outmesh[(i,)]))
if i > 0:
# forward in time
self.addConnection(SharedFullConnection(forwardconn, hiddenmesh[(0, i - 1)], hiddenmesh[(0, i)]))
if i < self.seqlen - 1:
# backward in time
self.addConnection(SharedFullConnection(backwardconn, hiddenmesh[(1, i + 1)], hiddenmesh[(1, i)]))
self.sortModules()
开发者ID:Angeliqe,项目名称:pybrain,代码行数:59,代码来源:bidirectional.py
示例2: createNet
def createNet():
net = FeedForwardNetwork()
modules = add_modules(net)
add_connections(net, modules)
# finish up
net.sortModules()
gradientCheck(net)
return net
开发者ID:lbvienna,项目名称:compare_documents,代码行数:8,代码来源:neuralNet.py
示例3: buildSlicedNetwork
def buildSlicedNetwork():
""" build a network with shared connections. Two hiddne modules are symetrically linked, but to a different
input neuron than the output neuron. The weights are random. """
N = FeedForwardNetwork('sliced')
a = LinearLayer(2, name = 'a')
b = LinearLayer(2, name = 'b')
N.addInputModule(a)
N.addOutputModule(b)
N.addConnection(FullConnection(a, b, inSliceTo=1, outSliceFrom=1))
N.addConnection(FullConnection(a, b, inSliceFrom=1, outSliceTo=1))
N.sortModules()
return N
开发者ID:HKou,项目名称:pybrain,代码行数:13,代码来源:test_sliced_connections.py
示例4: __init__
def __init__(self, boardSize, convSize, numFeatureMaps, **args):
inputdim = 2
FeedForwardNetwork.__init__(self, **args)
inlayer = LinearLayer(inputdim*boardSize*boardSize, name = 'in')
self.addInputModule(inlayer)
# we need some treatment of the border too - thus we pad the direct board input.
x = convSize/2
insize = boardSize+2*x
if convSize % 2 == 0:
insize -= 1
paddedlayer = LinearLayer(inputdim*insize*insize, name = 'pad')
self.addModule(paddedlayer)
# we connect a bias to the padded-parts (with shared but trainable weights).
bias = BiasUnit()
self.addModule(bias)
biasConn = MotherConnection(inputdim)
paddable = []
if convSize % 2 == 0:
xs = range(x)+range(insize-x+1, insize)
else:
xs = range(x)+range(insize-x, insize)
paddable.extend(crossproduct([range(insize), xs]))
paddable.extend(crossproduct([xs, range(x, boardSize+x)]))
for (i, j) in paddable:
self.addConnection(SharedFullConnection(biasConn, bias, paddedlayer,
outSliceFrom = (i*insize+j)*inputdim,
outSliceTo = (i*insize+j+1)*inputdim))
for i in range(boardSize):
inmod = ModuleSlice(inlayer, outSliceFrom = i*boardSize*inputdim,
outSliceTo = (i+1)*boardSize*inputdim)
outmod = ModuleSlice(paddedlayer, inSliceFrom = ((i+x)*insize+x)*inputdim,
inSliceTo = ((i+x)*insize+x+boardSize)*inputdim)
self.addConnection(IdentityConnection(inmod, outmod))
self._buildStructure(inputdim, insize, paddedlayer, convSize, numFeatureMaps)
self.sortModules()
开发者ID:ZachPhillipsGary,项目名称:CS200-NLP-ANNsProject,代码行数:41,代码来源:convboard.py
示例5: training
def training(self,d):
"""
Builds a network ,trains and returns it
"""
self.net = FeedForwardNetwork()
inLayer = LinearLayer(4) # 4 inputs
hiddenLayer = SigmoidLayer(3) # 5 neurons on hidden layer with sigmoid function
outLayer = LinearLayer(2) # 2 neuron as output layer
"add layers to NN"
self.net.addInputModule(inLayer)
self.net.addModule(hiddenLayer)
self.net.addOutputModule(outLayer)
"create connections"
in_to_hidden = FullConnection(inLayer, hiddenLayer)
hidden_to_out = FullConnection(hiddenLayer, outLayer)
"add connections"
self.net.addConnection(in_to_hidden)
self.net.addConnection(hidden_to_out)
"some unknown but necessary function :)"
self.net.sortModules()
print self.net
"generate big sized training set"
trainingSet = SupervisedDataSet(4,2)
trainArr = self.generate_training_set()
for ri in range(2000):
input = ((trainArr[0][ri][0],trainArr[0][ri][1],trainArr[0][ri][2],trainArr[0][ri][3]))
target = ((trainArr[1][ri][0],trainArr[1][ri][1]))
trainingSet.addSample(input, target)
"create backpropogation trainer"
t = BackpropTrainer(self.net,d,learningrate=0.00001, momentum=0.99)
while True:
globErr = t.train()
print "global error:", globErr
if globErr < 0.0001:
break
return self.net
开发者ID:MFarida,项目名称:NEUCOGAR,代码行数:48,代码来源:Main.py
示例6: __init__
def __init__(self, x_dim, y_dim, hidden_size, s_id):
self.serialize_id = s_id
self.net = FeedForwardNetwork()
in_layer = LinearLayer(x_dim)
hidden_layer = SigmoidLayer(hidden_size)
out_layer = LinearLayer(y_dim)
self.net.addInputModule(in_layer)
self.net.addModule(hidden_layer)
self.net.addOutputModule(out_layer)
in_to_hidden = FullConnection(in_layer, hidden_layer)
hidden_to_out = FullConnection(hidden_layer, out_layer)
self.net.addConnection(in_to_hidden)
self.net.addConnection(hidden_to_out)
self.net.sortModules()
开发者ID:erdincay,项目名称:ScoreGrass,代码行数:17,代码来源:PyBrainANNs.py
示例7: _generate_pybrain_network
def _generate_pybrain_network(self):
# make network
self._pybrain_network = FeedForwardNetwork()
# make layers
self._in_layer = LinearLayer(self.n_input_neurons, name='in')
self._hidden_layer = SigmoidLayer(self.n_hidden_neurons, name='hidden')
self._out_layer = LinearLayer(self.n_output_neurons, name='out')
self._bias_neuron = BiasUnit(name='bias')
# make connections between layers
self._in_hidden_connection = FullConnection(self._in_layer, self._hidden_layer)
self._hidden_out_connection = FullConnection(self._hidden_layer, self._out_layer)
self._bias_hidden_connection = FullConnection(self._bias_neuron, self._hidden_layer)
self._bias_out_connection = FullConnection(self._bias_neuron, self._out_layer)
# add modules to network
self._pybrain_network.addInputModule(self._in_layer)
self._pybrain_network.addModule(self._hidden_layer)
self._pybrain_network.addOutputModule(self._out_layer)
self._pybrain_network.addModule(self._bias_neuron)
# add connections to network
for c in (self._in_hidden_connection, self._hidden_out_connection, self._bias_hidden_connection, self._bias_out_connection):
self._pybrain_network.addConnection(c)
# initialize network with added modules/connections
self._pybrain_network.sortModules()
开发者ID:LocusCoeruleus,项目名称:netwhisperer,代码行数:23,代码来源:network.py
示例8: _buildNetwork
def _buildNetwork(*layers, **options):
"""This is a helper function to create different kinds of networks.
`layers` is a list of tuples. Each tuple can contain an arbitrary number of
layers, each being connected to the next one with IdentityConnections. Due
to this, all layers have to have the same dimension. We call these tuples
'parts.'
Afterwards, the last layer of one tuple is connected to the first layer of
the following tuple by a FullConnection.
If the keyword argument bias is given, BiasUnits are added additionally with
every FullConnection.
Example:
_buildNetwork(
(LinearLayer(3),),
(SigmoidLayer(4), GaussianLayer(4)),
(SigmoidLayer(3),),
)
"""
bias = options['bias'] if 'bias' in options else False
net = FeedForwardNetwork()
layerParts = iter(layers)
firstPart = iter(layerParts.next())
firstLayer = firstPart.next()
net.addInputModule(firstLayer)
prevLayer = firstLayer
for part in chain(firstPart, layerParts):
new_part = True
for layer in part:
net.addModule(layer)
# Pick class depending on whether we entered a new part
if new_part:
ConnectionClass = FullConnection
if bias:
biasUnit = BiasUnit('BiasUnit for %s' % layer.name)
net.addModule(biasUnit)
net.addConnection(FullConnection(biasUnit, layer))
else:
ConnectionClass = IdentityConnection
new_part = False
conn = ConnectionClass(prevLayer, layer)
net.addConnection(conn)
prevLayer = layer
net.addOutputModule(layer)
net.sortModules()
return net
开发者ID:Boblogic07,项目名称:pybrain,代码行数:52,代码来源:shortcuts.py
示例9: __init__
def __init__(self, inputdim, insize, convSize, numFeatureMaps, **args):
FeedForwardNetwork.__init__(self, **args)
inlayer = LinearLayer(inputdim * insize * insize)
self.addInputModule(inlayer)
self._buildStructure(inputdim, insize, inlayer, convSize, numFeatureMaps)
self.sortModules()
开发者ID:Angeliqe,项目名称:pybrain,代码行数:6,代码来源:convolutional.py
示例10: __init__
def __init__(self, states, verbose=False, max_epochs=None):
'''Create a NeuralNetwork instance.
`states` is a tuple of tuples of ints, representing the discovered subnetworks'
entrez ids.
'''
self.verbose = verbose
self.max_epochs = max_epochs
self.num_features = sum(map(lambda tup: len(tup), states))
self.states = states
n = FeedForwardNetwork()
n.addOutputModule(TanhLayer(1, name='out'))
n.addModule(BiasUnit(name='bias out'))
n.addConnection(FullConnection(n['bias out'], n['out']))
for i, state in enumerate(states):
dim = len(state)
n.addInputModule(TanhLayer(dim, name='input %s' % i))
n.addModule(BiasUnit(name='bias input %s' % i))
n.addConnection(FullConnection(n['bias input %s' % i], n['input %s' % i]))
n.addConnection(FullConnection(n['input %s' % i], n['out']))
n.sortModules()
self.n = n
开发者ID:mrorii,项目名称:crane,代码行数:25,代码来源:neural_network.py
示例11: generate_training_set
class MLP:
data = SupervisedDataSet
net = FeedForwardNetwork
def generate_training_set(self):
random.seed()
ind = floor(empty((2000,4)))
outd = floor(empty((2000, 2)))
res = array((ind,outd))
print ind
print
print outd
print
print res
for i in range(2000):
n = random.getrandbits(1)
if n == 0:
a = random.randint(0,100)
b = random.randint(0,100)
c = random.randint(100,5000)
d = random.randint(100,5000)
res[0][i][0] = a
res[0][i][1] = b
res[0][i][2] = c
res[0][i][3] = d
res[1][i][0] = 0
res[1][i][1] = 1
else:
a = random.randint(100,5000)
b = random.randint(100,5000)
c = random.randint(0,100)
d = random.randint(0,100)
res[0][i][0] = a
res[0][i][1] = b
res[0][i][2] = c
res[0][i][3] = d
res[1][i][0] = 1
res[1][i][1] = 0
for i in range(2000):
print res[0][i][0],res[0][i][1],res[0][i][2],res[0][i][3], " out", res[1][i][0],res[1][i][1]
return res
def getFullDataSet(self):
res = zeros((50**4, 4))
a = 0
b = 0
c = 0
d = 0
for i in range(len(res)):
if (a % 50 == 0):
a = 0
a = a + 1
if (i % 2 == 0):
if (b % 50 == 0):
b = 0
b = b + 1
if (i % 4 == 0):
if (c % 50 == 0):
c = 0
c = c + 1
if (i % 8 ==0):
if (d % 50 == 0):
d = 0
d = d + 1
res[i][0] = a
res[i][1] = b
res[i][2] = c
res[i][3] = d
res += 75
return res
def make_dataset(self):
"""
Creates a set of training data with 2-dimensioanal input and 2-dimensional output
So how dataset have to be looks like?
"""
self.data = SupervisedDataSet(4,2)
self.data.addSample((1,1,150,150),(0,1))
self.data.addSample((1,1,199,142),(0,1))
self.data.addSample((150,120,43,12),(1,0))
self.data.addSample((198,123,54,65),(1,0))
return self.data
def training(self,d):
"""
Builds a network ,trains and returns it
#.........这里部分代码省略.........
开发者ID:MFarida,项目名称:NEUCOGAR,代码行数:101,代码来源:Main.py
示例12: _build_network
def _build_network():
logger.info("Building network...")
net = FeedForwardNetwork()
inp = LinearLayer(IMG_WIDTH * IMG_HEIGHT * 2)
h1_image_width = IMG_WIDTH - FIRST_CONVOLUTION_FILTER + 1
h1_image_height = IMG_HEIGHT - FIRST_CONVOLUTION_FILTER + 1
h1_full_width = h1_image_width * CONVOLUTION_MULTIPLIER * NUMBER_OF_IMAGES
h1_full_height = h1_image_height * CONVOLUTION_MULTIPLIER
h1 = SigmoidLayer(h1_full_width * h1_full_height)
h2_width = h1_full_width / 2
h2_height = h1_full_height / 2
h2 = LinearLayer(h2_width * h2_height)
h3_image_width = h2_width / CONVOLUTION_MULTIPLIER / NUMBER_OF_IMAGES - SECOND_CONVOLUTION_FILTER + 1
h3_image_height = h2_height / CONVOLUTION_MULTIPLIER - SECOND_CONVOLUTION_FILTER + 1
h3_full_width = h3_image_width * (CONVOLUTION_MULTIPLIER * 2) * NUMBER_OF_IMAGES
h3_full_height = h3_image_height * (CONVOLUTION_MULTIPLIER * 2)
h3 = SigmoidLayer(h3_full_width * h3_full_height)
h4_full_width = h3_image_width - MERGE_FILTER
h4_full_height = h3_image_height - MERGE_FILTER
h4 = SigmoidLayer(h4_full_width * h4_full_height)
logger.info("BASE IMG: %d x %d" % (IMG_WIDTH, IMG_HEIGHT))
logger.info("First layer IMG: %d x %d" % (h1_image_width, h1_image_height))
logger.info("First layer FULL: %d x %d" % (h1_full_width, h1_full_height))
logger.info("Second layer FULL: %d x %d" % (h2_width, h2_height))
logger.info("Third layer IMG: %d x %d" % (h3_image_width, h3_image_height))
logger.info("Third layer FULL: %d x %d" % (h3_full_width, h3_full_height))
logger.info("Forth layer FULL: %d x %d" % (h3_image_width, h3_image_height))
outp = SoftmaxLayer(2)
h5 = SigmoidLayer(h4_full_width * h4_full_height)
# add modules
net.addOutputModule(outp)
net.addInputModule(inp)
net.addModule(h1)
net.addModule(h2)
net.addModule(h3)
net.addModule(h4)
net.addModule(h5)
# create connections
for i in range(NUMBER_OF_IMAGES):
_add_convolutional_connection(
net=net,
h1=inp,
h2=h1,
filter_size=FIRST_CONVOLUTION_FILTER,
multiplier=CONVOLUTION_MULTIPLIER,
input_width=IMG_WIDTH * 2,
input_height=IMG_HEIGHT,
output_width=h1_full_width,
output_height=h1_full_height,
offset_x=h1_image_width * i,
offset_y=0,
size_x=h1_image_width,
size_y=h1_image_height
)
_add_pool_connection(
net=net,
h1=h1,
h2=h2,
input_width=h1_full_width,
input_height=h1_full_height
)
for i in range(NUMBER_OF_IMAGES * CONVOLUTION_MULTIPLIER):
for j in range(CONVOLUTION_MULTIPLIER):
_add_convolutional_connection(
net=net,
h1=h2,
h2=h3,
filter_size=SECOND_CONVOLUTION_FILTER,
multiplier=CONVOLUTION_MULTIPLIER,
input_width=h2_width,
input_height=h2_height,
output_width=h3_full_width,
output_height=h3_full_height,
offset_x=h3_image_width * i,
offset_y=h3_image_height * j,
size_x=h3_image_width,
size_y=h3_image_height
)
_merge_connection(
net=net,
h1=h3,
h2=h4,
filter_size=MERGE_FILTER,
input_width=h3_full_width,
input_height=h3_full_height,
output_width=h4_full_width,
output_height=h4_full_height
)
#.........这里部分代码省略.........
开发者ID:ShadowswordPL,项目名称:PowerRecruiter,代码行数:101,代码来源:neural_network.py
示例13: __init__
def __init__(self, **args):
FeedForwardNetwork.__init__(self, **args)
开发者ID:hherman1,项目名称:ConvolutionalNeuralNetwork,代码行数:2,代码来源:CustomConv.py
示例14: buildSubsamplingNetwork
def buildSubsamplingNetwork():
""" Builds a network with subsampling connections. """
n = FeedForwardNetwork()
n.addInputModule(LinearLayer(6, 'in'))
n.addOutputModule(LinearLayer(1, 'out'))
n.addConnection(SubsamplingConnection(n['in'], n['out'], inSliceTo=4))
n.addConnection(SubsamplingConnection(n['in'], n['out'], inSliceFrom=4))
n.sortModules()
return n
开发者ID:davidmiller,项目名称:pybrain,代码行数:9,代码来源:test_subsampling_connection.py
示例15: buildnet
def buildnet(modules):
net = FeedForwardNetwork(name='mynet');
net.addInputModule(modules['in'])
net.addModule(modules['hidden'])
net.addOutputModule(modules['out'])
net.addModule(modules['bias'])
net.addConnection(modules['in_to_hidden'])
net.addConnection(modules['bias_to_hidden'])
net.addConnection(modules['bias_to_out'])
if ('hidden2' in modules):
net.addModule(modules['hidden2'])
net.addConnection(modules['hidden_to_hidden2'])
net.addConnection(modules['bias_to_hidden2'])
net.addConnection(modules['hidden2_to_out'])
else:
net.addConnection(modules['hidden_to_out'])
net.sortModules()
return net
开发者ID:gnrhxni,项目名称:CS542,代码行数:18,代码来源:nettalk_modules.py
示例16: buildParity
def buildParity(self):
self.params['dataset'] = 'parity'
self.trn_data = ParityDataSet(nsamples=75)
self.trn_data.setField('class', self.trn_data['target'])
self.tst_data = ParityDataSet(nsamples=75)
global trn_data
trn_data = self.trn_data
nn = FeedForwardNetwork()
inLayer = TanhLayer(4, name='in')
hiddenLayer = TanhLayer(6, name='hidden0')
outLayer = ThresholdLayer(1, name='out')
nn.addInputModule(inLayer)
nn.addModule(hiddenLayer)
nn.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer, hiddenLayer)
hidden_to_out = FullConnection(hiddenLayer, outLayer)
nn.addConnection(in_to_hidden)
nn.addConnection(hidden_to_out)
nn.sortModules()
nn.randomize()
self.net_settings = str(nn.connections)
self.nn = nn
开发者ID:mfbx9da4,项目名称:neuron-astrocyte-networks,代码行数:22,代码来源:pybrain_ga.py
示例17: print
ds.addSample((1, 1), (0,))
for input, target in ds:
print(input, target)
#define layers and connections
inLayer = LinearLayer(2)
hiddenLayerOne = SigmoidLayer(4, "one")
hiddenLayerTwo = SigmoidLayer(4, "two")
outLayer = LinearLayer(1)
inToHiddenOne = FullConnection(inLayer, hiddenLayerOne)
hiddenOneToTwo = FullConnection(hiddenLayerOne, hiddenLayerTwo)
hiddenTwoToOut = FullConnection(hiddenLayerTwo, outLayer)
#wire the layers and connections to a net
net = FeedForwardNetwork()
net.addInputModule(inLayer)
net.addModule(hiddenLayerOne)
net.addModule(hiddenLayerTwo)
net.addOutputModule(outLayer)
net.addConnection(inToHiddenOne)
net.addConnection(hiddenOneToTwo)
net.addConnection(hiddenTwoToOut)
net.sortModules()
print(net)
trainer = BackpropTrainer(net, ds)
for i in range(20):
for j in range(1000):
开发者ID:martinfesser,项目名称:PythonAndAi,代码行数:31,代码来源:feedforwardTutorial.py
示例18: FullConnection
bias_to_out = FullConnection(biasUnit, outLayer)
tosave = [ inLayer, hiddenLayer, outLayer, biasUnit, in_to_hidden, hidden_to_out, bias_to_hidden, bias_to_out ];
return tosave
if (len(sys.argv) <= 3):
saved = buildNet()
else:
saved = pickle.load(open(sys.argv[3], "rb"));
pickle.dump( saved, open( "pablosemptynet.p", "wb" ) )
net = FeedForwardNetwork(name='mynet');
net.addInputModule(saved[0])
net.addModule(saved[1])
net.addOutputModule(saved[2])
net.addModule(saved[3])
net.addConnection(saved[4])
net.addConnection(saved[5])
net.addConnection(saved[6])
net.addConnection(saved[7])
net.sortModules()
trainer = BackpropTrainer(net, None, learningrate=lrate, verbose=False, batchlearning=True, weightdecay=wdecay)
stressErrors=list();
phonemeErrors=list();
开发者ID:gnrhxni,项目名称:CS542,代码行数:31,代码来源:pablo_network.py
示例19: phoneme_to_layer
class Network:
"NETwhisperer neural network"
def phoneme_to_layer(self, phoneme):
return self.phonemes_to_layers[phoneme]
def layer_to_phoneme(self, layer):
def cos_to_input(item):
phoneme, phoneme_layer = item
return _cos(layer,phoneme_layer)
# minimum angle should be maximum cos
return max(self.phonemes_to_layers.iteritems(), key=cos_to_input)[0]
def __init__(self, window_size, window_middle, n_hidden_neurons):
self.window_size = window_size
self.window_middle = window_middle
self.n_hidden_neurons = n_hidden_neurons
self.n_trainings = 0
self.training_errors = []
self._init_layers()
self._generate_pybrain_network()
def _init_layers(self):
# one neuron for each window/letter combination
self.letter_neuron_names = list(product(range(self.window_size), corpus.all_letters))
# one neuron for each phoneme trait
self.phoneme_trait_neuron_names = list(corpus.all_phoneme_traits)
# neuron counts
self.n_input_neurons = len(self.letter_neuron_names)
self.n_output_neurons = len(self.phoneme_trait_neuron_names)
# mapping from (pos, letter) to input neuron index
self.letters_to_neurons = dict({(pos_and_letter, index) for index, pos_and_letter in enumerate(self.letter_neuron_names)})
# mapping from trait to neuron
self.traits_to_neurons = dict({(trait, index) for index, trait in enumerate(self.phoneme_trait_neuron_names)})
# mapping from phoneme to layer
self.phonemes_to_layers = {}
for (phoneme, traits) in corpus.phoneme_traits.iteritems():
layer = zeros(self.n_output_neurons)
for trait in traits:
index = self.traits_to_neurons[trait]
layer[index] = 1
self.phonemes_to_layers[phoneme] = layer
def _generate_pybrain_network(self):
# make network
self._pybrain_network = FeedForwardNetwork()
# make layers
self._in_layer = LinearLayer(self.n_input_neurons, name='in')
self._hidden_layer = SigmoidLayer(self.n_hidden_neurons, name='hidden')
self._out_layer = LinearLayer(self.n_output_neurons, name='out')
self._bias_neuron = BiasUnit(name='bias')
# make connections between layers
self._in_hidden_connection = FullConnection(self._in_layer, self._hidden_layer)
self._hidden_out_connection = FullConnection(self._hidden_layer, self._out_layer)
self._bias_hidden_connection = FullConnection(self._bias_neuron, self._hidden_layer)
self._bias_out_connection = FullConnection(self._bias_neuron, self._out_layer)
# add modules to network
self._pybrain_network.addInputModule(self._in_layer)
self._pybrain_network.addModule(self._hidden_layer)
self._pybrain_network.addOutputModule(self._out_layer)
self._pybrain_network.addModule(self._bias_neuron)
# add connections to network
for c in (self._in_hidden_connection, self._hidden_out_connection, self._bias_hidden_connection, self._bias_out_connection):
self._pybrain_network.addConnection(c)
# initialize network with added modules/connections
self._pybrain_network.sortModules()
def windowIter(self, letters):
assert type(letters) == str
padding_before = ' ' * self.window_middle
padding_after = ' ' * (self.window_size - self.window_middle - 1)
padded_letters = padding_before + letters + padding_after
# for each letter in the sample
for l_num in range(len(letters)):
letters_window = padded_letters[l_num:l_num+self.window_size]
yield letters_window
def generateSamples(self, letters, phonemes):
assert len(letters) == len(phonemes)
for (letters_window, current_phoneme) in izip(self.windowIter(letters), phonemes):
yield self.letters_to_layer(letters_window), self.phoneme_to_layer(current_phoneme)
def letters_to_layer(self, letters):
assert len(letters) == self.window_size
# start with empty layer
layer = zeros(self.n_input_neurons)
# loop through letters and activate each neuron
for (pos, letter) in enumerate(letters):
index = self.letters_to_neurons[(pos, letter)]
layer[index] = 1
return layer
def train(self, training_set, n_epochs=1, callback=None):
# build dataset
dataset = DataSet(self.n_input_neurons, self.n_output_neurons)
for (ltr,ph) in training_set:
for sample in self.generateSamples(ltr,ph):
dataset.addSample(*sample)
# build trainer
trainer = Trainer(self._pybrain_network, dataset, 0.01, 1.0, 0.9)
#.........这里部分代码省略.........
开发者ID:LocusCoeruleus,项目名称:netwhisperer,代码行数:101,代码来源:network.py
示例20: main
def main():
a = 0
for i in range(0,100):
inLayer = SigmoidLayer(2)
hiddenLayer = SigmoidLayer(3)
outLayer = SigmoidLayer(1)
net = FeedForwardNetwork()
net.addInputModule(inLayer)
net.addModule(hiddenLayer)
net.addOutputModule(outLayer)
in_to_hidden = FullConnection(inLayer,hiddenLayer)
hidden_to_out = FullConnection(hiddenLayer,outLayer)
net.addConnection(in_to_hidden)
net.addConnection(hidden_to_out)
net.sortModules()
ds = SupervisedDataSet(2,1)
ds.addSample((1,1), (0))
ds.addSample((1,0), (1))
ds.addSample((0,1), (1))
ds.addSample((0,0), (0))
trainer = BackpropTrainer(net,ds)
trainer.trainUntilConvergence()
out = net.activate((1,1))
if (out < 0.5):
a = a + 1
print(str(a) + "/100")
开发者ID:Kerzak1408,项目名称:HearthstoneAI,代码行数:33,代码来源:neural_network.py
注:本文中的pybrain.structure.networks.feedforward.FeedForwardNetwork类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论