本文整理汇总了Python中pyarrow.int16函数的典型用法代码示例。如果您正苦于以下问题:Python int16函数的具体用法?Python int16怎么用?Python int16使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了int16函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: make_recordbatch
def make_recordbatch(length):
schema = pa.schema([pa.field('f0', pa.int16()),
pa.field('f1', pa.int16())])
a0 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16))
a1 = pa.array(np.random.randint(0, 255, size=length, dtype=np.int16))
batch = pa.RecordBatch.from_arrays([a0, a1], schema)
return batch
开发者ID:emkornfield,项目名称:arrow,代码行数:7,代码来源:test_cuda.py
示例2: test_table_safe_casting
def test_table_safe_casting():
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.0, 2.0, 3.0, 4.0, 5.0], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = pa.Table.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
casted_table = table.cast(target_schema)
assert casted_table.equals(expected_table)
开发者ID:emkornfield,项目名称:arrow,代码行数:26,代码来源:test_table.py
示例3: test_table_unsafe_casting
def test_table_unsafe_casting():
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.1, 2.2, 3.3, 4.4, 5.5], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = pa.Table.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
with pytest.raises(pa.ArrowInvalid,
match='Floating point value truncated'):
table.cast(target_schema)
casted_table = table.cast(target_schema, safe=False)
assert casted_table.equals(expected_table)
开发者ID:emkornfield,项目名称:arrow,代码行数:30,代码来源:test_table.py
示例4: test_struct_array_field
def test_struct_array_field():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
x0 = a.field(0)
y0 = a.field(1)
x1 = a.field(-2)
y1 = a.field(-1)
x2 = a.field('x')
y2 = a.field('y')
assert isinstance(x0, pa.lib.Int16Array)
assert isinstance(y1, pa.lib.FloatArray)
assert x0.equals(pa.array([1, 3, 5], type=pa.int16()))
assert y0.equals(pa.array([2.5, 4.5, 6.5], type=pa.float32()))
assert x0.equals(x1)
assert x0.equals(x2)
assert y0.equals(y1)
assert y0.equals(y2)
for invalid_index in [None, pa.int16()]:
with pytest.raises(TypeError):
a.field(invalid_index)
for invalid_index in [3, -3]:
with pytest.raises(IndexError):
a.field(invalid_index)
for invalid_name in ['z', '']:
with pytest.raises(KeyError):
a.field(invalid_name)
开发者ID:emkornfield,项目名称:arrow,代码行数:32,代码来源:test_array.py
示例5: test_column_pickle
def test_column_pickle():
arr = pa.chunked_array([[1, 2], [5, 6, 7]], type=pa.int16())
field = pa.field("ints", pa.int16()).add_metadata({b"foo": b"bar"})
col = pa.column(field, arr)
result = pickle.loads(pickle.dumps(col))
assert result.equals(col)
assert result.data.num_chunks == 2
assert result.field == field
开发者ID:dremio,项目名称:arrow,代码行数:9,代码来源:test_table.py
示例6: test_convert_options
def test_convert_options():
cls = ConvertOptions
opts = cls()
assert opts.check_utf8 is True
opts.check_utf8 = False
assert opts.check_utf8 is False
assert opts.strings_can_be_null is False
opts.strings_can_be_null = True
assert opts.strings_can_be_null is True
assert opts.column_types == {}
# Pass column_types as mapping
opts.column_types = {'b': pa.int16(), 'c': pa.float32()}
assert opts.column_types == {'b': pa.int16(), 'c': pa.float32()}
opts.column_types = {'v': 'int16', 'w': 'null'}
assert opts.column_types == {'v': pa.int16(), 'w': pa.null()}
# Pass column_types as schema
schema = pa.schema([('a', pa.int32()), ('b', pa.string())])
opts.column_types = schema
assert opts.column_types == {'a': pa.int32(), 'b': pa.string()}
# Pass column_types as sequence
opts.column_types = [('x', pa.binary())]
assert opts.column_types == {'x': pa.binary()}
with pytest.raises(TypeError, match='DataType expected'):
opts.column_types = {'a': None}
with pytest.raises(TypeError):
opts.column_types = 0
assert isinstance(opts.null_values, list)
assert '' in opts.null_values
assert 'N/A' in opts.null_values
opts.null_values = ['xxx', 'yyy']
assert opts.null_values == ['xxx', 'yyy']
assert isinstance(opts.true_values, list)
opts.true_values = ['xxx', 'yyy']
assert opts.true_values == ['xxx', 'yyy']
assert isinstance(opts.false_values, list)
opts.false_values = ['xxx', 'yyy']
assert opts.false_values == ['xxx', 'yyy']
opts = cls(check_utf8=False, column_types={'a': pa.null()},
null_values=['N', 'nn'], true_values=['T', 'tt'],
false_values=['F', 'ff'], strings_can_be_null=True)
assert opts.check_utf8 is False
assert opts.column_types == {'a': pa.null()}
assert opts.null_values == ['N', 'nn']
assert opts.false_values == ['F', 'ff']
assert opts.true_values == ['T', 'tt']
assert opts.strings_can_be_null is True
开发者ID:wesm,项目名称:arrow,代码行数:54,代码来源:test_csv.py
示例7: test_column_flatten
def test_column_flatten():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
col = pa.Column.from_array('foo', a)
x, y = col.flatten()
assert x == pa.column('foo.x', pa.array([1, 3, 5], type=pa.int16()))
assert y == pa.column('foo.y', pa.array([2.5, 4.5, 6.5],
type=pa.float32()))
# Empty column
a = pa.array([], type=ty)
col = pa.Column.from_array('foo', a)
x, y = col.flatten()
assert x == pa.column('foo.x', pa.array([], type=pa.int16()))
assert y == pa.column('foo.y', pa.array([], type=pa.float32()))
开发者ID:dremio,项目名称:arrow,代码行数:15,代码来源:test_table.py
示例8: test_cast_integers_unsafe
def test_cast_integers_unsafe():
# We let NumPy do the unsafe casting
unsafe_cases = [
(np.array([50000], dtype='i4'), 'int32',
np.array([50000], dtype='i2'), pa.int16()),
(np.array([70000], dtype='i4'), 'int32',
np.array([70000], dtype='u2'), pa.uint16()),
(np.array([-1], dtype='i4'), 'int32',
np.array([-1], dtype='u2'), pa.uint16()),
(np.array([50000], dtype='u2'), pa.uint16(),
np.array([50000], dtype='i2'), pa.int16())
]
for case in unsafe_cases:
_check_cast_case(case, safe=False)
开发者ID:CodingCat,项目名称:arrow,代码行数:15,代码来源:test_array.py
示例9: _from_jvm_int_type
def _from_jvm_int_type(jvm_type):
"""
Convert a JVM int type to its Python equivalent.
Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Int
Returns
-------
typ: pyarrow.DataType
"""
if jvm_type.isSigned:
if jvm_type.bitWidth == 8:
return pa.int8()
elif jvm_type.bitWidth == 16:
return pa.int16()
elif jvm_type.bitWidth == 32:
return pa.int32()
elif jvm_type.bitWidth == 64:
return pa.int64()
else:
if jvm_type.bitWidth == 8:
return pa.uint8()
elif jvm_type.bitWidth == 16:
return pa.uint16()
elif jvm_type.bitWidth == 32:
return pa.uint32()
elif jvm_type.bitWidth == 64:
return pa.uint64()
开发者ID:rok,项目名称:arrow,代码行数:30,代码来源:jvm.py
示例10: test_type_to_pandas_dtype
def test_type_to_pandas_dtype():
M8_ns = np.dtype('datetime64[ns]')
cases = [
(pa.null(), np.float64),
(pa.bool_(), np.bool_),
(pa.int8(), np.int8),
(pa.int16(), np.int16),
(pa.int32(), np.int32),
(pa.int64(), np.int64),
(pa.uint8(), np.uint8),
(pa.uint16(), np.uint16),
(pa.uint32(), np.uint32),
(pa.uint64(), np.uint64),
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64),
(pa.date32(), M8_ns),
(pa.date64(), M8_ns),
(pa.timestamp('ms'), M8_ns),
(pa.binary(), np.object_),
(pa.binary(12), np.object_),
(pa.string(), np.object_),
(pa.list_(pa.int8()), np.object_),
]
for arrow_type, numpy_type in cases:
assert arrow_type.to_pandas_dtype() == numpy_type
开发者ID:giantwhale,项目名称:arrow,代码行数:26,代码来源:test_schema.py
示例11: test_cast_from_null
def test_cast_from_null():
in_data = [None] * 3
in_type = pa.null()
out_types = [
pa.null(),
pa.uint8(),
pa.float16(),
pa.utf8(),
pa.binary(),
pa.binary(10),
pa.list_(pa.int16()),
pa.decimal128(19, 4),
pa.timestamp('us'),
pa.timestamp('us', tz='UTC'),
pa.timestamp('us', tz='Europe/Paris'),
pa.struct([pa.field('a', pa.int32()),
pa.field('b', pa.list_(pa.int8())),
pa.field('c', pa.string())]),
]
for out_type in out_types:
_check_cast_case((in_data, in_type, in_data, out_type))
out_types = [
pa.dictionary(pa.int32(), pa.string()),
pa.union([pa.field('a', pa.binary(10)),
pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE),
pa.union([pa.field('a', pa.binary(10)),
pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE),
]
in_arr = pa.array(in_data, type=pa.null())
for out_type in out_types:
with pytest.raises(NotImplementedError):
in_arr.cast(out_type)
开发者ID:rok,项目名称:arrow,代码行数:33,代码来源:test_array.py
示例12: test_orcfile_empty
def test_orcfile_empty():
from pyarrow import orc
f = orc.ORCFile(path_for_orc_example('TestOrcFile.emptyFile'))
table = f.read()
assert table.num_rows == 0
schema = table.schema
expected_schema = pa.schema([
('boolean1', pa.bool_()),
('byte1', pa.int8()),
('short1', pa.int16()),
('int1', pa.int32()),
('long1', pa.int64()),
('float1', pa.float32()),
('double1', pa.float64()),
('bytes1', pa.binary()),
('string1', pa.string()),
('middle', pa.struct([
('list', pa.list_(pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
]))),
])),
('list', pa.list_(pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
]))),
('map', pa.list_(pa.struct([
('key', pa.string()),
('value', pa.struct([
('int1', pa.int32()),
('string1', pa.string()),
])),
]))),
])
assert schema == expected_schema
开发者ID:dremio,项目名称:arrow,代码行数:35,代码来源:test_orc.py
示例13: test_recordbatch_basics
def test_recordbatch_basics():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10])
]
batch = pa.RecordBatch.from_arrays(data, ['c0', 'c1'])
assert not batch.schema.metadata
assert len(batch) == 5
assert batch.num_rows == 5
assert batch.num_columns == len(data)
assert batch.to_pydict() == OrderedDict([
('c0', [0, 1, 2, 3, 4]),
('c1', [-10, -5, 0, 5, 10])
])
with pytest.raises(IndexError):
# bounds checking
batch[2]
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16()),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
batch = pa.RecordBatch.from_arrays(data, schema)
assert batch.schema == schema
开发者ID:dremio,项目名称:arrow,代码行数:27,代码来源:test_table.py
示例14: test_buffers_nested
def test_buffers_nested():
a = pa.array([[1, 2], None, [3, None, 4, 5]], type=pa.list_(pa.int64()))
buffers = a.buffers()
assert len(buffers) == 4
# The parent buffers
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
offsets = buffers[1].to_pybytes()
assert struct.unpack('4i', offsets) == (0, 2, 2, 6)
# The child buffers
null_bitmap = buffers[2].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00110111
values = buffers[3].to_pybytes()
assert struct.unpack('qqq8xqq', values) == (1, 2, 3, 4, 5)
a = pa.array([(42, None), None, (None, 43)],
type=pa.struct([pa.field('a', pa.int8()),
pa.field('b', pa.int16())]))
buffers = a.buffers()
assert len(buffers) == 5
# The parent buffer
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
# The child buffers: 'a'
null_bitmap = buffers[1].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000001
values = buffers[2].to_pybytes()
assert struct.unpack('bxx', values) == (42,)
# The child buffers: 'b'
null_bitmap = buffers[3].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000100
values = buffers[4].to_pybytes()
assert struct.unpack('4xh', values) == (43,)
开发者ID:CodingCat,项目名称:arrow,代码行数:33,代码来源:test_array.py
示例15: test_buffers_primitive
def test_buffers_primitive():
a = pa.array([1, 2, None, 4], type=pa.int16())
buffers = a.buffers()
assert len(buffers) == 2
null_bitmap = buffers[0].to_pybytes()
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying
assert bytearray(null_bitmap)[0] == 0b00001011
# Slicing does not affect the buffers but the offset
a_sliced = a[1:]
buffers = a_sliced.buffers()
a_sliced.offset == 1
assert len(buffers) == 2
null_bitmap = buffers[0].to_pybytes()
assert 1 <= len(null_bitmap) <= 64 # XXX this is varying
assert bytearray(null_bitmap)[0] == 0b00001011
assert struct.unpack('hhxxh', buffers[1].to_pybytes()) == (1, 2, 4)
a = pa.array(np.int8([4, 5, 6]))
buffers = a.buffers()
assert len(buffers) == 2
# No null bitmap from Numpy int array
assert buffers[0] is None
assert struct.unpack('3b', buffers[1].to_pybytes()) == (4, 5, 6)
a = pa.array([b'foo!', None, b'bar!!'])
buffers = a.buffers()
assert len(buffers) == 3
null_bitmap = buffers[0].to_pybytes()
assert bytearray(null_bitmap)[0] == 0b00000101
offsets = buffers[1].to_pybytes()
assert struct.unpack('4i', offsets) == (0, 4, 4, 9)
values = buffers[2].to_pybytes()
assert values == b'foo!bar!!'
开发者ID:CodingCat,项目名称:arrow,代码行数:35,代码来源:test_array.py
示例16: test_empty_cast
def test_empty_cast():
types = [
pa.null(),
pa.bool_(),
pa.int8(),
pa.int16(),
pa.int32(),
pa.int64(),
pa.uint8(),
pa.uint16(),
pa.uint32(),
pa.uint64(),
pa.float16(),
pa.float32(),
pa.float64(),
pa.date32(),
pa.date64(),
pa.binary(),
pa.binary(length=4),
pa.string(),
]
for (t1, t2) in itertools.product(types, types):
try:
# ARROW-4766: Ensure that supported types conversion don't segfault
# on empty arrays of common types
pa.array([], type=t1).cast(t2)
except pa.lib.ArrowNotImplementedError:
continue
开发者ID:emkornfield,项目名称:arrow,代码行数:29,代码来源:test_array.py
示例17: test_table_flatten
def test_table_flatten():
ty1 = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
ty2 = pa.struct([pa.field('nest', ty1)])
a = pa.array([(1, 2.5), (3, 4.5)], type=ty1)
b = pa.array([((11, 12.5),), ((13, 14.5),)], type=ty2)
c = pa.array([False, True], type=pa.bool_())
table = pa.Table.from_arrays([a, b, c], names=['a', 'b', 'c'])
t2 = table.flatten()
t2._validate()
expected = pa.Table.from_arrays([
pa.array([1, 3], type=pa.int16()),
pa.array([2.5, 4.5], type=pa.float32()),
pa.array([(11, 12.5), (13, 14.5)], type=ty1),
c],
names=['a.x', 'a.y', 'b.nest', 'c'])
assert t2.equals(expected)
开发者ID:dremio,项目名称:arrow,代码行数:18,代码来源:test_table.py
示例18: test_type_schema_pickling
def test_type_schema_pickling():
cases = [
pa.int8(),
pa.string(),
pa.binary(),
pa.binary(10),
pa.list_(pa.string()),
pa.struct([
pa.field('a', 'int8'),
pa.field('b', 'string')
]),
pa.union([
pa.field('a', pa.int8()),
pa.field('b', pa.int16())
], pa.lib.UnionMode_SPARSE),
pa.union([
pa.field('a', pa.int8()),
pa.field('b', pa.int16())
], pa.lib.UnionMode_DENSE),
pa.time32('s'),
pa.time64('us'),
pa.date32(),
pa.date64(),
pa.timestamp('ms'),
pa.timestamp('ns'),
pa.decimal128(12, 2),
pa.field('a', 'string', metadata={b'foo': b'bar'})
]
for val in cases:
roundtripped = pickle.loads(pickle.dumps(val))
assert val == roundtripped
fields = []
for i, f in enumerate(cases):
if isinstance(f, pa.Field):
fields.append(f)
else:
fields.append(pa.field('_f{}'.format(i), f))
schema = pa.schema(fields, metadata={b'foo': b'bar'})
roundtripped = pickle.loads(pickle.dumps(schema))
assert schema == roundtripped
开发者ID:giantwhale,项目名称:arrow,代码行数:43,代码来源:test_schema.py
示例19: dataframe_with_arrays
def dataframe_with_arrays(include_index=False):
"""
Dataframe with numpy arrays columns of every possible primtive type.
Returns
-------
df: pandas.DataFrame
schema: pyarrow.Schema
Arrow schema definition that is in line with the constructed df.
"""
dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
('i4', pa.int32()), ('i8', pa.int64()),
('u1', pa.uint8()), ('u2', pa.uint16()),
('u4', pa.uint32()), ('u8', pa.uint64()),
('f4', pa.float32()), ('f8', pa.float64())]
arrays = OrderedDict()
fields = []
for dtype, arrow_dtype in dtypes:
fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
arrays[dtype] = [
np.arange(10, dtype=dtype),
np.arange(5, dtype=dtype),
None,
np.arange(1, dtype=dtype)
]
fields.append(pa.field('str', pa.list_(pa.string())))
arrays['str'] = [
np.array([u"1", u"ä"], dtype="object"),
None,
np.array([u"1"], dtype="object"),
np.array([u"1", u"2", u"3"], dtype="object")
]
fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
arrays['datetime64'] = [
np.array(['2007-07-13T01:23:34.123456789',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
None,
None,
np.array(['2007-07-13T02',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
]
if include_index:
fields.append(pa.field('__index_level_0__', pa.int64()))
df = pd.DataFrame(arrays)
schema = pa.schema(fields)
return df, schema
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:55,代码来源:pandas_examples.py
示例20: test_bit_width
def test_bit_width():
for ty, expected in [(pa.bool_(), 1),
(pa.int8(), 8),
(pa.uint32(), 32),
(pa.float16(), 16),
(pa.decimal128(19, 4), 128),
(pa.binary(42), 42 * 8)]:
assert ty.bit_width == expected
for ty in [pa.binary(), pa.string(), pa.list_(pa.int16())]:
with pytest.raises(ValueError, match="fixed width"):
ty.bit_width
开发者ID:CodingCat,项目名称:arrow,代码行数:11,代码来源:test_types.py
注:本文中的pyarrow.int16函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论