• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python pyarrow.float64函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyarrow.float64函数的典型用法代码示例。如果您正苦于以下问题:Python float64函数的具体用法?Python float64怎么用?Python float64使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了float64函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_type_to_pandas_dtype

def test_type_to_pandas_dtype():
    M8_ns = np.dtype('datetime64[ns]')
    cases = [
        (pa.null(), np.float64),
        (pa.bool_(), np.bool_),
        (pa.int8(), np.int8),
        (pa.int16(), np.int16),
        (pa.int32(), np.int32),
        (pa.int64(), np.int64),
        (pa.uint8(), np.uint8),
        (pa.uint16(), np.uint16),
        (pa.uint32(), np.uint32),
        (pa.uint64(), np.uint64),
        (pa.float16(), np.float16),
        (pa.float32(), np.float32),
        (pa.float64(), np.float64),
        (pa.date32(), M8_ns),
        (pa.date64(), M8_ns),
        (pa.timestamp('ms'), M8_ns),
        (pa.binary(), np.object_),
        (pa.binary(12), np.object_),
        (pa.string(), np.object_),
        (pa.list_(pa.int8()), np.object_),
    ]
    for arrow_type, numpy_type in cases:
        assert arrow_type.to_pandas_dtype() == numpy_type
开发者ID:giantwhale,项目名称:arrow,代码行数:26,代码来源:test_schema.py


示例2: test_sequence_numpy_double

def test_sequence_numpy_double(seq, np_scalar):
    data = [np_scalar(1.5), np_scalar(1), None, np_scalar(2.5), None, None]
    arr = pa.array(seq(data))
    assert len(arr) == 6
    assert arr.null_count == 3
    assert arr.type == pa.float64()
    assert arr.to_pylist() == data
开发者ID:CodingCat,项目名称:arrow,代码行数:7,代码来源:test_convert_builtin.py


示例3: test_empty_cast

def test_empty_cast():
    types = [
        pa.null(),
        pa.bool_(),
        pa.int8(),
        pa.int16(),
        pa.int32(),
        pa.int64(),
        pa.uint8(),
        pa.uint16(),
        pa.uint32(),
        pa.uint64(),
        pa.float16(),
        pa.float32(),
        pa.float64(),
        pa.date32(),
        pa.date64(),
        pa.binary(),
        pa.binary(length=4),
        pa.string(),
    ]

    for (t1, t2) in itertools.product(types, types):
        try:
            # ARROW-4766: Ensure that supported types conversion don't segfault
            # on empty arrays of common types
            pa.array([], type=t1).cast(t2)
        except pa.lib.ArrowNotImplementedError:
            continue
开发者ID:emkornfield,项目名称:arrow,代码行数:29,代码来源:test_array.py


示例4: test_table_unsafe_casting

def test_table_unsafe_casting():
    data = [
        pa.array(range(5), type=pa.int64()),
        pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
        pa.array([1.1, 2.2, 3.3, 4.4, 5.5], type=pa.float64()),
        pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
    ]
    table = pa.Table.from_arrays(data, names=tuple('abcd'))

    expected_data = [
        pa.array(range(5), type=pa.int32()),
        pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
        pa.array([1, 2, 3, 4, 5], type=pa.int64()),
        pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
    ]
    expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))

    target_schema = pa.schema([
        pa.field('a', pa.int32()),
        pa.field('b', pa.int16()),
        pa.field('c', pa.int64()),
        pa.field('d', pa.string())
    ])

    with pytest.raises(pa.ArrowInvalid,
                       match='Floating point value truncated'):
        table.cast(target_schema)

    casted_table = table.cast(target_schema, safe=False)
    assert casted_table.equals(expected_table)
开发者ID:emkornfield,项目名称:arrow,代码行数:30,代码来源:test_table.py


示例5: test_cast_integers_safe

def test_cast_integers_safe():
    safe_cases = [
        (np.array([0, 1, 2, 3], dtype='i1'), 'int8',
         np.array([0, 1, 2, 3], dtype='i4'), pa.int32()),
        (np.array([0, 1, 2, 3], dtype='i1'), 'int8',
         np.array([0, 1, 2, 3], dtype='u4'), pa.uint16()),
        (np.array([0, 1, 2, 3], dtype='i1'), 'int8',
         np.array([0, 1, 2, 3], dtype='u1'), pa.uint8()),
        (np.array([0, 1, 2, 3], dtype='i1'), 'int8',
         np.array([0, 1, 2, 3], dtype='f8'), pa.float64())
    ]

    for case in safe_cases:
        _check_cast_case(case)

    unsafe_cases = [
        (np.array([50000], dtype='i4'), 'int32', 'int16'),
        (np.array([70000], dtype='i4'), 'int32', 'uint16'),
        (np.array([-1], dtype='i4'), 'int32', 'uint16'),
        (np.array([50000], dtype='u2'), 'uint16', 'int16')
    ]
    for in_data, in_type, out_type in unsafe_cases:
        in_arr = pa.array(in_data, type=in_type)

        with pytest.raises(pa.ArrowInvalid):
            in_arr.cast(out_type)
开发者ID:CodingCat,项目名称:arrow,代码行数:26,代码来源:test_array.py


示例6: test_float_nulls

    def test_float_nulls(self):
        num_values = 100

        null_mask = np.random.randint(0, 10, size=num_values) < 3
        dtypes = [('f4', pa.float32()), ('f8', pa.float64())]
        names = ['f4', 'f8']
        expected_cols = []

        arrays = []
        fields = []
        for name, arrow_dtype in dtypes:
            values = np.random.randn(num_values).astype(name)

            arr = pa.array(values, from_pandas=True, mask=null_mask)
            arrays.append(arr)
            fields.append(pa.field(name, arrow_dtype))
            values[null_mask] = np.nan

            expected_cols.append(values)

        ex_frame = pd.DataFrame(dict(zip(names, expected_cols)),
                                columns=names)

        table = pa.Table.from_arrays(arrays, names)
        assert table.schema.equals(pa.schema(fields))
        result = table.to_pandas()
        tm.assert_frame_equal(result, ex_frame)
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:27,代码来源:test_convert_pandas.py


示例7: test_table_safe_casting

def test_table_safe_casting():
    data = [
        pa.array(range(5), type=pa.int64()),
        pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
        pa.array([1.0, 2.0, 3.0, 4.0, 5.0], type=pa.float64()),
        pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
    ]
    table = pa.Table.from_arrays(data, names=tuple('abcd'))

    expected_data = [
        pa.array(range(5), type=pa.int32()),
        pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
        pa.array([1, 2, 3, 4, 5], type=pa.int64()),
        pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
    ]
    expected_table = pa.Table.from_arrays(expected_data, names=tuple('abcd'))

    target_schema = pa.schema([
        pa.field('a', pa.int32()),
        pa.field('b', pa.int16()),
        pa.field('c', pa.int64()),
        pa.field('d', pa.string())
    ])
    casted_table = table.cast(target_schema)

    assert casted_table.equals(expected_table)
开发者ID:emkornfield,项目名称:arrow,代码行数:26,代码来源:test_table.py


示例8: test_sequence_double

def test_sequence_double():
    data = [1.5, 1., None, 2.5, None, None]
    arr = pa.array(data)
    assert len(arr) == 6
    assert arr.null_count == 3
    assert arr.type == pa.float64()
    assert arr.to_pylist() == data
开发者ID:dremio,项目名称:arrow,代码行数:7,代码来源:test_convert_builtin.py


示例9: test_dictionary_type

def test_dictionary_type():
    ty0 = pa.dictionary(pa.int32(), pa.string())
    assert ty0.index_type == pa.int32()
    assert ty0.value_type == pa.string()
    assert ty0.ordered is False

    ty1 = pa.dictionary(pa.int8(), pa.float64(), ordered=True)
    assert ty1.index_type == pa.int8()
    assert ty1.value_type == pa.float64()
    assert ty1.ordered is True

    # construct from non-arrow objects
    ty2 = pa.dictionary('int8', 'string')
    assert ty2.index_type == pa.int8()
    assert ty2.value_type == pa.string()
    assert ty2.ordered is False
开发者ID:rok,项目名称:arrow,代码行数:16,代码来源:test_types.py


示例10: test_orcfile_empty

def test_orcfile_empty():
    from pyarrow import orc
    f = orc.ORCFile(path_for_orc_example('TestOrcFile.emptyFile'))
    table = f.read()
    assert table.num_rows == 0
    schema = table.schema
    expected_schema = pa.schema([
        ('boolean1', pa.bool_()),
        ('byte1', pa.int8()),
        ('short1', pa.int16()),
        ('int1', pa.int32()),
        ('long1', pa.int64()),
        ('float1', pa.float32()),
        ('double1', pa.float64()),
        ('bytes1', pa.binary()),
        ('string1', pa.string()),
        ('middle', pa.struct([
            ('list', pa.list_(pa.struct([
                ('int1', pa.int32()),
                ('string1', pa.string()),
                ]))),
            ])),
        ('list', pa.list_(pa.struct([
            ('int1', pa.int32()),
            ('string1', pa.string()),
            ]))),
        ('map', pa.list_(pa.struct([
            ('key', pa.string()),
            ('value', pa.struct([
                ('int1', pa.int32()),
                ('string1', pa.string()),
                ])),
            ]))),
        ])
    assert schema == expected_schema
开发者ID:dremio,项目名称:arrow,代码行数:35,代码来源:test_orc.py


示例11: test_double

 def test_double(self):
     data = [1.5, 1, None, 2.5, None, None]
     arr = pa.from_pylist(data)
     assert len(arr) == 6
     assert arr.null_count == 3
     assert arr.type == pa.float64()
     assert arr.to_pylist() == data
开发者ID:StevenMPhillips,项目名称:arrow,代码行数:7,代码来源:test_convert_builtin.py


示例12: test_float_object_nulls

 def test_float_object_nulls(self):
     arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object)
     df = pd.DataFrame({'floats': arr})
     expected = pd.DataFrame({'floats': pd.to_numeric(arr)})
     field = pa.field('floats', pa.float64())
     schema = pa.schema([field])
     self._check_pandas_roundtrip(df, expected=expected,
                                  expected_schema=schema)
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:8,代码来源:test_convert_pandas.py


示例13: do_get

    def do_get(self, ticket):
        data1 = [pa.array([-10, -5, 0, 5, 10], type=pa.int32())]
        data2 = [pa.array([-10.0, -5.0, 0.0, 5.0, 10.0], type=pa.float64())]
        assert data1.type != data2.type
        table1 = pa.Table.from_arrays(data1, names=['a'])
        table2 = pa.Table.from_arrays(data2, names=['a'])
        assert table1.schema == self.schema

        return flight.GeneratorStream(self.schema, [table1, table2])
开发者ID:emkornfield,项目名称:arrow,代码行数:9,代码来源:test_flight.py


示例14: test_field_flatten

def test_field_flatten():
    f0 = pa.field('foo', pa.int32()).add_metadata({b'foo': b'bar'})
    assert f0.flatten() == [f0]

    f1 = pa.field('bar', pa.float64(), nullable=False)
    ff = pa.field('ff', pa.struct([f0, f1]), nullable=False)
    assert ff.flatten() == [
        pa.field('ff.foo', pa.int32()).add_metadata({b'foo': b'bar'}),
        pa.field('ff.bar', pa.float64(), nullable=False)]  # XXX

    # Nullable parent makes flattened child nullable
    ff = pa.field('ff', pa.struct([f0, f1]))
    assert ff.flatten() == [
        pa.field('ff.foo', pa.int32()).add_metadata({b'foo': b'bar'}),
        pa.field('ff.bar', pa.float64())]

    fff = pa.field('fff', pa.struct([ff]))
    assert fff.flatten() == [pa.field('fff.ff', pa.struct([f0, f1]))]
开发者ID:rok,项目名称:arrow,代码行数:18,代码来源:test_schema.py


示例15: test_all_nulls_cast_numeric

    def test_all_nulls_cast_numeric(self):
        arr = np.array([None], dtype=object)

        def _check_type(t):
            a2 = pa.array(arr, type=t)
            assert a2.type == t
            assert a2[0].as_py() is None

        _check_type(pa.int32())
        _check_type(pa.float64())
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:10,代码来源:test_convert_pandas.py


示例16: test_cast_column

def test_cast_column():
    arrays = [pa.array([1, 2, 3]), pa.array([4, 5, 6])]

    col = pa.column('foo', arrays)

    target = pa.float64()
    casted = col.cast(target)

    expected = pa.column('foo', [x.cast(target) for x in arrays])
    assert casted.equals(expected)
开发者ID:CodingCat,项目名称:arrow,代码行数:10,代码来源:test_array.py


示例17: dataframe_with_arrays

def dataframe_with_arrays(include_index=False):
    """
    Dataframe with numpy arrays columns of every possible primtive type.

    Returns
    -------
    df: pandas.DataFrame
    schema: pyarrow.Schema
        Arrow schema definition that is in line with the constructed df.
    """
    dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
              ('i4', pa.int32()), ('i8', pa.int64()),
              ('u1', pa.uint8()), ('u2', pa.uint16()),
              ('u4', pa.uint32()), ('u8', pa.uint64()),
              ('f4', pa.float32()), ('f8', pa.float64())]

    arrays = OrderedDict()
    fields = []
    for dtype, arrow_dtype in dtypes:
        fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
        arrays[dtype] = [
            np.arange(10, dtype=dtype),
            np.arange(5, dtype=dtype),
            None,
            np.arange(1, dtype=dtype)
        ]

    fields.append(pa.field('str', pa.list_(pa.string())))
    arrays['str'] = [
        np.array([u"1", u"ä"], dtype="object"),
        None,
        np.array([u"1"], dtype="object"),
        np.array([u"1", u"2", u"3"], dtype="object")
    ]

    fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
    arrays['datetime64'] = [
        np.array(['2007-07-13T01:23:34.123456789',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
        None,
        None,
        np.array(['2007-07-13T02',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
    ]

    if include_index:
        fields.append(pa.field('__index_level_0__', pa.int64()))
    df = pd.DataFrame(arrays)
    schema = pa.schema(fields)

    return df, schema
开发者ID:NonVolatileComputing,项目名称:arrow,代码行数:55,代码来源:pandas_examples.py


示例18: json_to_parquet

def json_to_parquet(data, output, schema):
    column_data = {}
    array_data = []

    for row in data:
        for column in schema.names:
            _col = column_data.get(column, [])
            _col.append(row.get(column))
            column_data[column] = _col

    for column in schema:
        _col = column_data.get(column.name)
        if isinstance(column.type, pa.lib.TimestampType):
            _converted_col = []
            for t in _col:
                try:
                    _converted_col.append(pd.to_datetime(t))
                except pd._libs.tslib.OutOfBoundsDatetime:
                    _converted_col.append(pd.Timestamp.max)
            array_data.append(pa.Array.from_pandas(pd.to_datetime(_converted_col), type=pa.timestamp('ms')))
        # Float types are ambiguous for conversions, need to specify the exact type
        elif column.type.id == pa.float64().id:
            array_data.append(pa.array(_col, type=pa.float64()))
        elif column.type.id == pa.float32().id:
            # Python doesn't have a native float32 type
            # and PyArrow cannot cast float64 -> float32
            _col = pd.to_numeric(_col, downcast='float')
            array_data.append(pa.Array.from_pandas(_col, type=pa.float32()))
        elif column.type.id == pa.int64().id:
            array_data.append(pa.array([int(ele) for ele in _col], type=pa.int64()))
        else:
            array_data.append(pa.array(_col, type=column.type))

    data = pa.RecordBatch.from_arrays(array_data, schema.names)

    try:
        table = pa.Table.from_batches(data)
    except TypeError:
        table = pa.Table.from_batches([data])

    pq.write_table(table, output, compression='SNAPPY', coerce_timestamps='ms')
开发者ID:liulnn,项目名称:python-utils,代码行数:41,代码来源:json_to_parquet.py


示例19: dataframe_with_lists

def dataframe_with_lists(include_index=False):
    """
    Dataframe with list columns of every possible primtive type.

    Returns
    -------
    df: pandas.DataFrame
    schema: pyarrow.Schema
        Arrow schema definition that is in line with the constructed df.
    """
    arrays = OrderedDict()
    fields = []

    fields.append(pa.field('int64', pa.list_(pa.int64())))
    arrays['int64'] = [
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        [0, 1, 2, 3, 4],
        None,
        [],
        np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] * 2,
                 dtype=np.int64)[::2]
    ]
    fields.append(pa.field('double', pa.list_(pa.float64())))
    arrays['double'] = [
        [0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],
        [0., 1., 2., 3., 4.],
        None,
        [],
        np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.] * 2)[::2],
    ]
    fields.append(pa.field('bytes_list', pa.list_(pa.binary())))
    arrays['bytes_list'] = [
        [b"1", b"f"],
        None,
        [b"1"],
        [b"1", b"2", b"3"],
        [],
    ]
    fields.append(pa.field('str_list', pa.list_(pa.string())))
    arrays['str_list'] = [
        [u"1", u"ä"],
        None,
        [u"1"],
        [u"1", u"2", u"3"],
        [],
    ]

    if include_index:
        fields.append(pa.field('__index_level_0__', pa.int64()))
    df = pd.DataFrame(arrays)
    schema = pa.schema(fields)

    return df, schema
开发者ID:CodingCat,项目名称:arrow,代码行数:53,代码来源:pandas_examples.py


示例20: test_bq_to_arrow_data_type_w_struct

def test_bq_to_arrow_data_type_w_struct(module_under_test, bq_type):
    fields = (
        schema.SchemaField("field01", "STRING"),
        schema.SchemaField("field02", "BYTES"),
        schema.SchemaField("field03", "INTEGER"),
        schema.SchemaField("field04", "INT64"),
        schema.SchemaField("field05", "FLOAT"),
        schema.SchemaField("field06", "FLOAT64"),
        schema.SchemaField("field07", "NUMERIC"),
        schema.SchemaField("field08", "BOOLEAN"),
        schema.SchemaField("field09", "BOOL"),
        schema.SchemaField("field10", "TIMESTAMP"),
        schema.SchemaField("field11", "DATE"),
        schema.SchemaField("field12", "TIME"),
        schema.SchemaField("field13", "DATETIME"),
        schema.SchemaField("field14", "GEOGRAPHY"),
    )
    field = schema.SchemaField("ignored_name", bq_type, mode="NULLABLE", fields=fields)
    actual = module_under_test.bq_to_arrow_data_type(field)
    expected = pyarrow.struct(
        (
            pyarrow.field("field01", pyarrow.string()),
            pyarrow.field("field02", pyarrow.binary()),
            pyarrow.field("field03", pyarrow.int64()),
            pyarrow.field("field04", pyarrow.int64()),
            pyarrow.field("field05", pyarrow.float64()),
            pyarrow.field("field06", pyarrow.float64()),
            pyarrow.field("field07", module_under_test.pyarrow_numeric()),
            pyarrow.field("field08", pyarrow.bool_()),
            pyarrow.field("field09", pyarrow.bool_()),
            pyarrow.field("field10", module_under_test.pyarrow_timestamp()),
            pyarrow.field("field11", pyarrow.date32()),
            pyarrow.field("field12", module_under_test.pyarrow_time()),
            pyarrow.field("field13", module_under_test.pyarrow_datetime()),
            pyarrow.field("field14", pyarrow.string()),
        )
    )
    assert pyarrow.types.is_struct(actual)
    assert actual.num_children == len(fields)
    assert actual.equals(expected)
开发者ID:GoogleCloudPlatform,项目名称:gcloud-python,代码行数:40,代码来源:test__pandas_helpers.py



注:本文中的pyarrow.float64函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python pyarrow.from_pylist函数代码示例发布时间:2022-05-25
下一篇:
Python pyarrow.float32函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap