• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python linalg.norm函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中pyamg.util.linalg.norm函数的典型用法代码示例。如果您正苦于以下问题:Python norm函数的具体用法?Python norm怎么用?Python norm使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了norm函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_gmres

    def test_gmres(self):
        # Ensure repeatability
        random.seed(0)
        
        #  For these small matrices, Householder and MGS GMRES should give the same result, 
        #  and for symmetric (but possibly indefinite) matrices CR and GMRES should give same result
        for maxiter in [1,2,3]:
            for case, symm_case in zip(self.cases, self.symm_cases):
                A = case['A'] 
                b = case['b']
                x0 = case['x0']
                A_symm = symm_case['A'] 
                b_symm = symm_case['b']
                x0_symm = symm_case['x0']
                
                # Test agreement between Householder and GMRES
                (x, flag) = gmres_householder(A,b,x0=x0,maxiter=min(A.shape[0],maxiter))
                (x2, flag2) = gmres_mgs(A,b,x0=x0,maxiter=min(A.shape[0],maxiter))
                assert_array_almost_equal(x/norm(x), x2/norm(x2), 
                        err_msg='Householder GMRES and MGS GMRES gave different results for small matrix')
                assert_equal(flag, flag2, 
                        err_msg='Householder GMRES and MGS GMRES returned different convergence flags for small matrix')

                # Test agreement between GMRES and CR
                if A_symm.shape[0] > 1:
                    residuals2 = []
                    (x2, flag2) = gmres_mgs(A_symm, b_symm, x0=x0_symm, maxiter=min(A.shape[0],maxiter),residuals=residuals2)
                    residuals3 = []
                    (x3, flag2) = cr(A_symm, b_symm, x0=x0_symm, maxiter=min(A.shape[0],maxiter),residuals=residuals3)
                    residuals2 = array(residuals2)
                    residuals3 = array(residuals3)
                    assert_array_almost_equal(residuals3/norm(residuals3), residuals2/norm(residuals2), 
                            err_msg='CR and GMRES yield different residual vectors')
                    assert_array_almost_equal(x2/norm(x2), x3/norm(x3), err_msg='CR and GMRES yield different answers')
开发者ID:GaZ3ll3,项目名称:pyamg,代码行数:34,代码来源:test_krylov.py


示例2: solver_diagnostic

def solver_diagnostic(A):
    ##
    # Generate B
    B = ones((A.shape[0],1), dtype=A.dtype); BH = B.copy()

    ##
    # Random initial guess, zero right-hand side
    random.seed(0)
    b = zeros((A.shape[0],1))
    x0 = rand(A.shape[0],1)

    ##
    # Create solver
    ml = smoothed_aggregation_solver(A, B=B, BH=BH,
        strength=('symmetric', {'theta': 0.0}),
        smooth=('energy', {'weighting': 'local', 'krylov': 'gmres', 'degree': 1, 'maxiter': 2}),
        improve_candidates=[('gauss_seidel_nr', {'sweep': 'symmetric', 'iterations': 4}), None],
        aggregate="standard",
        presmoother=('gauss_seidel_nr', {'sweep': 'symmetric', 'iterations': 2}),
        postsmoother=('gauss_seidel_nr', {'sweep': 'symmetric', 'iterations': 2}),
        max_levels=15,
        max_coarse=300,
        coarse_solver="pinv")

    ##
    # Solve system
    res = []
    x = ml.solve(b, x0=x0, tol=1e-08, residuals=res, accel="gmres", maxiter=300, cycle="V")
    res_rate = (res[-1]/res[0])**(1.0/(len(res)-1.))
    normr0 = norm(ravel(b) - ravel(A*x0))
    print " "
    print ml
    print "System size:                " + str(A.shape)
    print "Avg. Resid Reduction:       %1.2f"%res_rate
    print "Iterations:                 %d"%len(res)
    print "Operator Complexity:        %1.2f"%ml.operator_complexity()
    print "Work per DOA:               %1.2f"%(ml.cycle_complexity()/abs(log10(res_rate)))
    print "Relative residual norm:     %1.2e"%(norm(ravel(b) - ravel(A*x))/normr0)

    ##
    # Plot residual history
    pylab.semilogy(array(res)/normr0)
    pylab.title('Residual Histories')
    pylab.xlabel('Iteration')
    pylab.ylabel('Relative Residual Norm')
    pylab.show()
开发者ID:chase-ok,项目名称:olin-biofilm,代码行数:46,代码来源:solver_diagnostic.py


示例3: test_krylov

    def test_krylov(self):
        # Oblique projectors reduce the residual
        for method in self.oblique:
            for case in self.cases:
                A = case['A']; b = case['b']; x0 = case['x0']
                (xNew, flag) = method(A, b, x0=x0, tol=case['tol'], maxiter=case['maxiter'])
                xNew = xNew.reshape(-1,1)
                assert_equal( (norm(b - A*xNew)/norm(b - A*x0)) < case['reduction_factor'], True, err_msg='Oblique Krylov Method Failed Test')
        
        # Oblique projectors reduce the residual, here we consider oblique projectors for symmetric matrices
        for method in self.symm_oblique:
            for case in self.symm_cases:
                A = case['A']; b = case['b']; x0 = case['x0']
                (xNew, flag) = method(A, b, x0=x0, tol=case['tol'], maxiter=case['maxiter'])
                xNew = xNew.reshape(-1,1)
                assert_equal( (norm(b - A*xNew)/norm(b - A*x0)) < case['reduction_factor'], True, err_msg='Symmetric oblique Krylov Method Failed Test')
    
        # Orthogonal projectors reduce the error
        for method in self.orth:
            for case in self.cases:
                A = case['A']; b = case['b']; x0 = case['x0']
                (xNew, flag) = method(A, b, x0=x0, tol=case['tol'], maxiter=case['maxiter'])
                xNew = xNew.reshape(-1,1)
                soln = solve(A,b)
                assert_equal( (norm(soln - xNew)/norm(soln - x0)) < case['reduction_factor'], True, err_msg='Orthogonal Krylov Method Failed Test')
    
        # SPD Orthogonal projectors reduce the error
        for method in self.spd_orth:
            for case in self.spd_cases:
                A = case['A']; b = case['b']; x0 = case['x0']
                (xNew, flag) = method(A, b, x0=x0, tol=case['tol'], maxiter=case['maxiter'])
                xNew = xNew.reshape(-1,1)
                soln = solve(A,b)
                assert_equal( (norm(soln - xNew)/norm(soln - x0)) < case['reduction_factor'], True, err_msg='Orthogonal Krylov Method Failed Test')

        # Assume that Inexact Methods reduce the residual for these examples
        for method in self.inexact:
            for case in self.cases:
                A = case['A']; b = case['b']; x0 = case['x0']
                (xNew, flag) = method(A, b, x0=x0, tol=case['tol'], maxiter=A.shape[0])
                xNew = xNew.reshape(-1,1)
                assert_equal( (norm(b - A*xNew)/norm(b - A*x0)) < 0.15, True, err_msg='Inexact Krylov Method Failed Test')
开发者ID:GaZ3ll3,项目名称:pyamg,代码行数:42,代码来源:test_krylov.py


示例4: test_norm

    def test_norm(self):
        cases = []

        cases.append(4)
        cases.append(-1)
        cases.append(2.5)
        cases.append(3 + 5j)
        cases.append(7 - 2j)
        cases.append([1 + 3j, 6])
        cases.append([1 + 3j, 6 - 2j])

        for A in cases:
            assert_almost_equal(norm(A), linalg.norm(A))
开发者ID:pyamg,项目名称:pyamg,代码行数:13,代码来源:test_linalg.py


示例5: stencil_grid

    import time
    from pyamg.krylov._gmres import gmres

    A = stencil_grid([[0, -1, 0], [-1, 4, -1], [0, -1, 0]], (100, 100),
                     dtype=float, format='csr')
    b = random((A.shape[0],))
    x0 = random((A.shape[0],))

    print '\n\nTesting CR with %d x %d 2D Laplace Matrix' % \
          (A.shape[0], A.shape[0])
    t1 = time.time()
    r = []
    (x, flag) = cr(A, b, x0, tol=1e-8, maxiter=100, residuals=r)
    t2 = time.time()
    print '%s took %0.3f ms' % ('cr', (t2-t1)*1000.0)
    print 'norm = %g' % (norm(b - A*x))
    print 'info flag = %d' % (flag)

    t1 = time.time()
    r2 = []
    (x, flag) = gmres(A, b, x0, tol=1e-8, maxiter=100, residuals=r2)
    t2 = time.time()
    print '%s took %0.3f ms' % ('gmres', (t2-t1)*1000.0)
    print 'norm = %g' % (norm(b - A*x))
    print 'info flag = %d' % (flag)

    # from scipy.sparse.linalg.isolve import cg as icg
    # t1=time.time()
    # (y,flag) = icg(A,b,x0,tol=1e-8,maxiter=100)
    # t2=time.time()
    # print '\n%s took %0.3f ms' % ('linalg cg', (t2-t1)*1000.0)
开发者ID:GaZ3ll3,项目名称:pyamg,代码行数:31,代码来源:_cr.py


示例6: gmres_mgs

def gmres_mgs(A, b, x0=None, tol=1e-5, restrt=None, maxiter=None, xtype=None,
              M=None, callback=None, residuals=None, reorth=False):
    '''
    Generalized Minimum Residual Method (GMRES)
        GMRES iteratively refines the initial solution guess to the system
        Ax = b
        Modified Gram-Schmidt version

    Parameters
    ----------
    A : {array, matrix, sparse matrix, LinearOperator}
        n x n, linear system to solve
    b : {array, matrix}
        right hand side, shape is (n,) or (n,1)
    x0 : {array, matrix}
        initial guess, default is a vector of zeros
    tol : float
        relative convergence tolerance, i.e. tol is scaled by the norm
        of the initial preconditioned residual
    restrt : {None, int}
        - if int, restrt is max number of inner iterations
          and maxiter is the max number of outer iterations
        - if None, do not restart GMRES, and max number of inner iterations
          is maxiter
    maxiter : {None, int}
        - if restrt is None, maxiter is the max number of inner iterations
          and GMRES does not restart
        - if restrt is int, maxiter is the max number of outer iterations,
          and restrt is the max number of inner iterations
    xtype : type
        dtype for the solution, default is automatic type detection
    M : {array, matrix, sparse matrix, LinearOperator}
        n x n, inverted preconditioner, i.e. solve M A x = M b.
    callback : function
        User-supplied function is called after each iteration as
        callback( ||rk||_2 ), where rk is the current preconditioned residual
        vector
    residuals : list
        residuals contains the preconditioned residual norm history,
        including the initial residual.
    reorth : boolean
        If True, then a check is made whether to re-orthogonalize the Krylov
        space each GMRES iteration

    Returns
    -------
    (xNew, info)
    xNew : an updated guess to the solution of Ax = b
    info : halting status of gmres

            ==  =============================================
            0   successful exit
            >0  convergence to tolerance not achieved,
                return iteration count instead.  This value
                is precisely the order of the Krylov space.
            <0  numerical breakdown, or illegal input
            ==  =============================================

    Notes
    -----
        - The LinearOperator class is in scipy.sparse.linalg.interface.
          Use this class if you prefer to define A or M as a mat-vec routine
          as opposed to explicitly constructing the matrix.  A.psolve(..) is
          still supported as a legacy.
        - For robustness, modified Gram-Schmidt is used to orthogonalize the
          Krylov Space Givens Rotations are used to provide the residual norm
          each iteration

    Examples
    --------
    >>> from pyamg.krylov import gmres
    >>> from pyamg.util.linalg import norm
    >>> import numpy as np
    >>> from pyamg.gallery import poisson
    >>> A = poisson((10,10))
    >>> b = np.ones((A.shape[0],))
    >>> (x,flag) = gmres(A,b, maxiter=2, tol=1e-8, orthog='mgs')
    >>> print norm(b - A*x)
    >>> 6.5428213057

    References
    ----------
    .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems,
       Second Edition", SIAM, pp. 151-172, pp. 272-275, 2003
       http://www-users.cs.umn.edu/~saad/books.html

    .. [2] C. T. Kelley, http://www4.ncsu.edu/~ctk/matlab_roots.html
    '''
    # Convert inputs to linear system, with error checking
    A, M, x, b, postprocess = make_system(A, M, x0, b)
    dimen = A.shape[0]

    # Ensure that warnings are always reissued from this function
    import warnings
    warnings.filterwarnings('always', module='pyamg\.krylov\._gmres_mgs')

    # Choose type
    if not hasattr(A, 'dtype'):
        Atype = upcast(x.dtype, b.dtype)
    else:
#.........这里部分代码省略.........
开发者ID:ben-s-southworth,项目名称:pyamg,代码行数:101,代码来源:_gmres_mgs.py


示例7: random

    # x0 = random((4,1))
    # %timeit -n 15 (x,flag) = gmres(A,b,x0,tol=1e-8,maxiter=100)

    from pyamg.gallery import poisson
    from numpy.random import random
    from pyamg.util.linalg import norm
    A = poisson((125, 125), dtype=float, format='csr')
    # A.data = A.data + 0.001j*rand(A.data.shape[0])
    b = random((A.shape[0],))
    x0 = random((A.shape[0],))

    import time
    from scipy.sparse.linalg.isolve import gmres as igmres

    print('\n\nTesting GMRES with %d x %d 2D Laplace Matrix' %
          (A.shape[0], A.shape[0]))
    t1 = time.time()
    (x, flag) = gmres_mgs(A, b, x0, tol=1e-8, maxiter=500)
    t2 = time.time()
    print('%s took %0.3f ms' % ('gmres', (t2-t1)*1000.0))
    print('norm = %g' % (norm(b - A*x)))
    print('info flag = %d' % (flag))

    t1 = time.time()
    # DON"T Enforce a maxiter as scipy gmres can't handle it correctly
    (y, flag) = igmres(A, b, x0, tol=1e-8)
    t2 = time.time()
    print('\n%s took %0.3f ms' % ('linalg gmres', (t2-t1)*1000.0))
    print('norm = %g' % (norm(b - A*y)))
    print('info flag = %d' % (flag))
开发者ID:ben-s-southworth,项目名称:pyamg,代码行数:30,代码来源:_gmres_mgs.py


示例8: test_krylov

    def test_krylov(self):
        # Oblique projectors reduce the residual
        for method in self.oblique:
            for case in self.cases:
                A = case["A"]
                b = case["b"]
                x0 = case["x0"]
                (xNew, flag) = method(A, b, x0=x0, tol=case["tol"], maxiter=case["maxiter"])
                xNew = xNew.reshape(-1, 1)
                assert_equal(
                    (norm(b - A * xNew) / norm(b - A * x0)) < case["reduction_factor"],
                    True,
                    err_msg="Oblique Krylov Method Failed Test",
                )

        # Oblique projectors reduce the residual, here we consider oblique
        # projectors for symmetric matrices
        for method in self.symm_oblique:
            for case in self.symm_cases:
                A = case["A"]
                b = case["b"]
                x0 = case["x0"]
                (xNew, flag) = method(A, b, x0=x0, tol=case["tol"], maxiter=case["maxiter"])
                xNew = xNew.reshape(-1, 1)
                assert_equal(
                    (norm(b - A * xNew) / norm(b - A * x0)) < case["reduction_factor"],
                    True,
                    err_msg="Symmetric oblique Krylov Method Failed",
                )

        # Orthogonal projectors reduce the error
        for method in self.orth:
            for case in self.cases:
                A = case["A"]
                b = case["b"]
                x0 = case["x0"]
                (xNew, flag) = method(A, b, x0=x0, tol=case["tol"], maxiter=case["maxiter"])
                xNew = xNew.reshape(-1, 1)
                soln = solve(A, b)
                assert_equal(
                    (norm(soln - xNew) / norm(soln - x0)) < case["reduction_factor"],
                    True,
                    err_msg="Orthogonal Krylov Method Failed Test",
                )

        # SPD Orthogonal projectors reduce the error
        for method in self.spd_orth:
            for case in self.spd_cases:
                A = case["A"]
                b = case["b"]
                x0 = case["x0"]
                (xNew, flag) = method(A, b, x0=x0, tol=case["tol"], maxiter=case["maxiter"])
                xNew = xNew.reshape(-1, 1)
                soln = solve(A, b)
                assert_equal(
                    (norm(soln - xNew) / norm(soln - x0)) < case["reduction_factor"],
                    True,
                    err_msg="Orthogonal Krylov Method Failed Test",
                )

        # Assume that Inexact Methods reduce the residual for these examples
        for method in self.inexact:
            for case in self.cases:
                A = case["A"]
                b = case["b"]
                x0 = case["x0"]
                (xNew, flag) = method(A, b, x0=x0, tol=case["tol"], maxiter=A.shape[0])
                xNew = xNew.reshape(-1, 1)
                assert_equal(
                    (norm(b - A * xNew) / norm(b - A * x0)) < 0.35, True, err_msg="Inexact Krylov Method Failed Test"
                )
开发者ID:pyamg,项目名称:pyamg,代码行数:71,代码来源:test_krylov.py


示例9: cgnr

def cgnr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None,
         callback=None, residuals=None):
    '''Conjugate Gradient, Normal Residual algorithm

    Applies CG to the normal equations, A.H A x = b. Left preconditioning
    is supported.  Note that unless A is well-conditioned, the use of
    CGNR is inadvisable

    Parameters
    ----------
    A : {array, matrix, sparse matrix, LinearOperator}
        n x n, linear system to solve
    b : {array, matrix}
        right hand side, shape is (n,) or (n,1)
    x0 : {array, matrix}
        initial guess, default is a vector of zeros
    tol : float
        relative convergence tolerance, i.e. tol is scaled by ||r_0||_2
    maxiter : int
        maximum number of allowed iterations
    xtype : type
        dtype for the solution, default is automatic type detection
    M : {array, matrix, sparse matrix, LinearOperator}
        n x n, inverted preconditioner, i.e. solve M A.H A x = b.
    callback : function
        User-supplied function is called after each iteration as
        callback(xk), where xk is the current solution vector
    residuals : list
        residuals has the residual norm history,
        including the initial residual, appended to it

    Returns
    -------
    (xNew, info)
    xNew : an updated guess to the solution of Ax = b
    info : halting status of cgnr

            ==  =======================================
            0   successful exit
            >0  convergence to tolerance not achieved,
                return iteration count instead.
            <0  numerical breakdown, or illegal input
            ==  =======================================


    Notes
    -----
    The LinearOperator class is in scipy.sparse.linalg.interface.
    Use this class if you prefer to define A or M as a mat-vec routine
    as opposed to explicitly constructing the matrix.  A.psolve(..) is
    still supported as a legacy.

    Examples
    --------
    >>> from pyamg.krylov.cgnr import cgnr
    >>> from pyamg.util.linalg import norm
    >>> import numpy as np
    >>> from pyamg.gallery import poisson
    >>> A = poisson((10,10))
    >>> b = np.ones((A.shape[0],))
    >>> (x,flag) = cgnr(A,b, maxiter=2, tol=1e-8)
    >>> print norm(b - A*x)
    9.3910201849

    References
    ----------
    .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems,
       Second Edition", SIAM, pp. 276-7, 2003
       http://www-users.cs.umn.edu/~saad/books.html

    '''

    # Store the conjugate transpose explicitly as it will be used much later on
    if isspmatrix(A):
        AH = A.H
    else:
        # TODO avoid doing this since A may be a different sparse type
        AH = aslinearoperator(asmatrix(A).H)

    # Convert inputs to linear system, with error checking
    A, M, x, b, postprocess = make_system(A, M, x0, b)
    dimen = A.shape[0]

    # Ensure that warnings are always reissued from this function
    import warnings
    warnings.filterwarnings('always', module='pyamg\.krylov\._cgnr')

    # Choose type
    if not hasattr(A, 'dtype'):
        Atype = upcast(x.dtype, b.dtype)
    else:
        Atype = A.dtype
    if not hasattr(M, 'dtype'):
        Mtype = upcast(x.dtype, b.dtype)
    else:
        Mtype = M.dtype
    xtype = upcast(Atype, x.dtype, b.dtype, Mtype)

    # Should norm(r) be kept
    if residuals == []:
#.........这里部分代码省略.........
开发者ID:ben-s-southworth,项目名称:pyamg,代码行数:101,代码来源:_cgnr.py


示例10: solve

def solve(A, b, x0=None, tol=1e-5, maxiter=400, return_solver=False,
          existing_solver=None, verb=True):
    """
    Solve the arbitrary system Ax=b with the best out-of-the box choice for a
    solver.  The matrix A can be non-Hermitian, indefinite, Hermitian
    positive-definite, complex, etc...  Generic and robust settings for
    smoothed_aggregation_solver(..) are used to invert A.


    Parameters
    ----------
    A : {array, matrix, csr_matrix, bsr_matrix}
        Matrix to invert, CSR or BSR format preferred for efficiency
    b : {array}
        Right hand side.
    x0 : {array} : default random vector
        Initial guess
    tol : {float} : default 1e-5
        Stopping criteria: relative residual r[k]/r[0] tolerance
    maxiter : {int} : default 400
        Stopping criteria: maximum number of allowable iterations
    return_solver : {bool} : default False
        True: return the solver generated
    existing_solver : {smoothed_aggregation_solver} : default None
        If instance of a multilevel solver, then existing_solver is used
        to invert A, thus saving time on setup cost.
    verb : {bool}
        If True, print verbose output during runtime

    Returns
    -------
    x : {array}
        Solution to Ax = b
    ml : multilevel_solver
        Optional return of the multilevel structure used for the solve

    Notes
    -----
    If calling solve(...) multiple times for the same matrix, A, solver reuse
    is easy and efficient.  Set "return_solver=True", and the return value will
    be a tuple, (x,ml), where ml is the solver used to invert A, and x is the
    solution to Ax=b.  Then, the next time solve(...) is called, set
    "existing_solver=ml".

    Examples
    --------
    >>> from numpy import arange, array
    >>> from pyamg import solve
    >>> from pyamg.gallery import poisson
    >>> from pyamg.util.linalg import norm
    >>> A = poisson((40,40),format='csr')
    >>> b = array(arange(A.shape[0]), dtype=float)
    >>> x = solve(A,b,verb=False)
    >>> print "%1.2e"%(norm(b - A*x)/norm(b))
    6.28e-06
    """

    # Convert A to acceptable CSR/BSR format
    A = make_csr(A)

    # Generate solver if necessary
    if existing_solver is None:

        # Parameter dictionary for smoothed_aggregation_solver
        config = solver_configuration(A, B=None, verb=verb)
        # Generate solver
        existing_solver = solver(A, config)

    else:
        if existing_solver.levels[0].A.shape[0] != A.shape[0]:
            raise TypeError('Argument existing_solver must have level 0 matrix\
                             of same size as A')

    # Krylov acceleration depends on symmetry of A
    if existing_solver.levels[0].A.symmetry == 'hermitian':
        accel = 'cg'
    else:
        accel = 'gmres'

    # Initial guess
    if x0 is None:
        x0 = np.array(sp.rand(A.shape[0],), dtype=A.dtype)

    # Callback function to print iteration number
    if verb:
        iteration = np.zeros((1,))
        print "    maxiter = %d" % maxiter

        def callback(x, iteration):
            iteration[0] = iteration[0] + 1
            print "    iteration %d" % iteration[0]

        callback2 = lambda x: callback(x, iteration)
    else:
        callback2 = None

    # Solve with accelerated Krylov method
    x = existing_solver.solve(b, x0=x0, accel=accel, tol=tol, maxiter=maxiter,
                              callback=callback2)
    if verb:
#.........这里部分代码省略.........
开发者ID:ChaliZhg,项目名称:pyamg,代码行数:101,代码来源:blackbox.py


示例11: solve

    def solve(self, b, x0=None, tol=1e-5, maxiter=100, cycle='V', accel=None,
              callback=None, residuals=None, return_residuals=False):
        """Execute multigrid cycling.

        Parameters
        ----------
        b : array
            Right hand side.
        x0 : array
            Initial guess.
        tol : float
            Stopping criteria: relative residual r[k]/r[0] tolerance.
        maxiter : int
            Stopping criteria: maximum number of allowable iterations.
        cycle : {'V','W','F','AMLI'}
            Type of multigrid cycle to perform in each iteration.
        accel : string, function
            Defines acceleration method.  Can be a string such as 'cg'
            or 'gmres' which is the name of an iterative solver in
            pyamg.krylov (preferred) or scipy.sparse.linalg.isolve.
            If accel is not a string, it will be treated like a function
            with the same interface provided by the iterative solvers in SciPy.
        callback : function
            User-defined function called after each iteration.  It is
            called as callback(xk) where xk is the k-th iterate vector.
        residuals : list
            List to contain residual norms at each iteration.

        Returns
        -------
        x : array
            Approximate solution to Ax=b

        See Also
        --------
        aspreconditioner

        Examples
        --------
        >>> from numpy import ones
        >>> from pyamg import ruge_stuben_solver
        >>> from pyamg.gallery import poisson
        >>> A = poisson((100, 100), format='csr')
        >>> b = A * ones(A.shape[0])
        >>> ml = ruge_stuben_solver(A, max_coarse=10)
        >>> residuals = []
        >>> x = ml.solve(b, tol=1e-12, residuals=residuals) # standalone solver

        """
        from pyamg.util.linalg import residual_norm, norm

        if x0 is None:
            x = np.zeros_like(b)
        else:
            x = np.array(x0)  # copy

        cycle = str(cycle).upper()

        # AMLI cycles require hermitian matrix
        if (cycle == 'AMLI') and hasattr(self.levels[0].A, 'symmetry'):
            if self.levels[0].A.symmetry != 'hermitian':
                raise ValueError('AMLI cycles require \
                    symmetry to be hermitian')

        if accel is not None:

            # Check for symmetric smoothing scheme when using CG
            if (accel is 'cg') and (not self.symmetric_smoothing):
                warn('Incompatible non-symmetric multigrid preconditioner '
                     'detected, due to presmoother/postsmoother combination. '
                     'CG requires SPD preconditioner, not just SPD matrix.')

            # Check for AMLI compatability
            if (accel != 'fgmres') and (cycle == 'AMLI'):
                raise ValueError('AMLI cycles require acceleration (accel) '
                                 'to be fgmres, or no acceleration')

            # py23 compatibility:
            try:
                basestring
            except NameError:
                basestring = str

            # Acceleration is being used
            kwargs = {}
            if isinstance(accel, basestring):
                from pyamg import krylov
                from scipy.sparse.linalg import isolve
                kwargs = {}
                if hasattr(krylov, accel):
                    accel = getattr(krylov, accel)
                else:
                    accel = getattr(isolve, accel)
                    kwargs['atol'] = 'legacy'

            A = self.levels[0].A
            M = self.aspreconditioner(cycle=cycle)

            try:  # try PyAMG style interface which has a residuals parameter
                return accel(A, b, x0=x0, tol=tol, maxiter=maxiter, M=M,
#.........这里部分代码省略.........
开发者ID:pyamg,项目名称:pyamg,代码行数:101,代码来源:multilevel.py


示例12: general_setup_stage


#.........这里部分代码省略.........

        # construct R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i].R = levels[i].P.T.asformat(levels[i].P.format)
        elif symmetry == 'hermitian':
            levels[i].R = levels[i].P.H.asformat(levels[i].P.format)

        # construct coarse A
        levels[i+1].A = levels[i].R * levels[i].A * levels[i].P

        # construct bridging P
        T_bridge = make_bridge(levels[i+1].T)
        R_bridge = levels[i+2].B

        # smooth bridging P
        fn, kwargs = unpack_arg(smooth[i+1])
        if fn == 'jacobi':
            levels[i+1].P = jacobi_prolongation_smoother(levels[i+1].A,
                                                         T_bridge,
                                                         levels[i+1].C,
                                                         R_bridge, **kwargs)
        elif fn == 'richardson':
            levels[i+1].P = richardson_prolongation_smoother(levels[i+1].A,
                                                             T_bridge,
                                                             **kwargs)
        elif fn == 'energy':
            levels[i+1].P = energy_prolongation_smoother(levels[i+1].A,
                                                         T_bridge,
                                                         levels[i+1].C,
                                                         R_bridge, None,
                                                         (False, {}), **kwargs)
        elif fn is None:
            levels[i+1].P = T_bridge
        else:
            raise ValueError('unrecognized prolongation smoother method %s' %
                             str(fn))

        # construct the "bridging" R
        if symmetry == 'symmetric':  # R should reflect A's structure
            levels[i+1].R = levels[i+1].P.T.asformat(levels[i+1].P.format)
        elif symmetry == 'hermitian':
            levels[i+1].R = levels[i+1].P.H.asformat(levels[i+1].P.format)

        # run solver on candidate
        solver = multilevel_solver(levels[i+1:], coarse_solver=coarse_solver)
        change_smoothers(solver, presmoother=prepostsmoother,
                         postsmoother=prepostsmoother)
        x = solver.solve(np.zeros_like(x), x0=x,
                         tol=float(np.finfo(np.float).tiny),
                         maxiter=candidate_iters)
        work[:] += 2 * solver.operator_complexity() * solver.levels[0].A.nnz *\
            candidate_iters*2

        # update values on next level
        levels[i+1].B = R[:, :-1].copy()
        levels[i+1].T = T_bridge

    # note that we only use the x from the second coarsest level
    fn, kwargs = unpack_arg(prepostsmoother)
    for lvl in reversed(levels[:-2]):
        x = lvl.P * x
        work[:] += lvl.A.nnz*candidate_iters*2

        if fn == 'gauss_seidel':
            # only relax at nonzeros, so as not to mess up any locally dropped
            # candidates
            indices = np.ravel(x).nonzero()[0]
            gauss_seidel_indexed(lvl.A, x, np.zeros_like(x), indices,
                                 iterations=candidate_iters, sweep='symmetric')

        elif fn == 'gauss_seidel_ne':
            gauss_seidel_ne(lvl.A, x, np.zeros_like(x),
                            iterations=candidate_iters, sweep='symmetric')

        elif fn == 'gauss_seidel_nr':
            gauss_seidel_nr(lvl.A, x, np.zeros_like(x),
                            iterations=candidate_iters, sweep='symmetric')

        elif fn == 'jacobi':
            jacobi(lvl.A, x, np.zeros_like(x), iterations=1,
                   omega=1.0 / rho_D_inv_A(lvl.A))

        elif fn == 'richardson':
            polynomial(lvl.A, x, np.zeros_like(x), iterations=1,
                       coefficients=[1.0/approximate_spectral_radius(lvl.A)])

        elif fn == 'gmres':
            x[:] = (gmres(lvl.A, np.zeros_like(x), x0=x,
                          maxiter=candidate_iters)[0]).reshape(x.shape)
        else:
            raise TypeError('Unrecognized smoother')

    # x will be dense again, so we have to drop locally again
    elim, elim_kwargs = unpack_arg(eliminate_local)
    if elim is True:
        x = x/norm(x, 'inf')
        eliminate_local_candidates(x, levels[0].AggOp, levels[0].A, T0,
                                   **elim_kwargs)

    return x.reshape(-1, 1)
开发者ID:pyamg,项目名称:pyamg,代码行数:101,代码来源:adaptive.py


示例13: adaptive_sa_solver


#.........这里部分代码省略.........

    """
    if not (isspmatrix_csr(A) or isspmatrix_bsr(A)):
        try:
            A = csr_matrix(A)
            warn("Implicit conversion of A to CSR", SparseEfficiencyWarning)
        except BaseException:
            raise TypeError('Argument A must have type csr_matrix or\
                            bsr_matrix, or be convertible to csr_matrix')

    A = A.asfptype()
    if A.shape[0] != A.shape[1]:
        raise ValueError('expected square matrix')

    # Track work in terms of relaxation
    work = np.zeros((1,))

    # Levelize the user parameters, so that they become lists describing the
    # desired user option on each level.
    max_levels, max_coarse, strength =\
        levelize_strength_or_aggregation(strength, max_levels, max_coarse)
    max_levels, max_coarse, aggregate =\
        levelize_strength_or_aggregation(aggregate, max_levels, max_coarse)
    smooth = levelize_smooth_or_improve_candidates(smooth, max_levels)

    # Develop initial candidate(s).  Note that any predefined aggregation is
    # preserved.
    if initial_candidates is None:
        B, aggregate, strength =\
            initial_setup_stage(A, symmetry, pdef, candidate_iters, epsilon,
                                max_levels, max_coarse, aggregate,
                                prepostsmoother, smooth, strength, work)
        # Normalize B
        B = (1.0/norm(B, 'inf')) * B
        num_candidates -= 1
    else:
        # Otherwise, use predefined candidates
        B = initial_candidates
        num_candidates -= B.shape[1]
        # Generate Aggregation and Strength Operators (the brute force way)
        sa = smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                         presmoother=prepostsmoother,
                                         postsmoother=prepostsmoother,
                                         smooth=smooth, strength=strength,
                                         max_levels=max_levels,
                                         max_coarse=max_coarse,
                                         aggregate=aggregate,
                                         coarse_solver=coarse_solver,
                                         improve_candidates=None, keep=True,
                                         **kwargs)
        if len(sa.levels) > 1:
            # Set strength-of-connection and aggregation
            aggregate = [('predefined', {'AggOp': sa.levels[i].AggOp.tocsr()})
                         for i in range(len(sa.levels) - 1)]
            strength = [('predefined', {'C': sa.levels[i].C.tocsr()})
                        for i in range(len(sa.levels) - 1)]

    # Develop additional candidates
    for i in range(num_candidates):
        x = general_setup_stage(
            smoothed_aggregation_solver(A, B=B, symmetry=symmetry,
                                        presmoother=prepostsmoother,
                                        postsmoother=prepostsmoother,
                                        smooth=smooth,
                                        coarse_solver=coarse_solver,
                                        aggregate=aggregate,
开发者ID:pyamg,项目名称:pyamg,代码行数:67,代码来源:adaptive.py


示例14: cr

def cr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None,
       callback=None, residuals=None):
    '''Conjugate Residual algorithm

    Solves the linear system Ax = b. Left preconditioning is supported.
    The matrix A must be Hermitian symmetric (but not necessarily definite).

    Parameters
    ----------
    A : {array, matrix, sparse matrix, LinearOperator}
        n x n, linear system to solve
    b : {array, matrix}
        right hand side, shape is (n,) or (n,1)
    x0 : {array, matrix}
        initial guess, default is a vector of zeros
    tol : float
        relative convergence tolerance, i.e. tol is scaled by the
        preconditioner norm of r_0, or ||r_0||_M.
    maxiter : int
        maximum number of allowed iterations
    xtype : type
        dtype for the solution, default is automatic type detection
    M : {array, matrix, sparse matrix, LinearOperator}
        n x n, inverted preconditioner, i.e. solve M A x = M b.
    callback : function
        User-supplied function is called after each iteration as
        callback(xk), where xk is the current solution vector
    residuals : list
        residuals contains the residual norm history,
        including the initial residual.  The preconditioner norm
        is used, instead of the Euclidean norm.

    Returns
    -------
    (xNew, info)
    xNew : an updated guess to the solution of Ax = b
    info : halting status of cr

            ==  =======================================
            0   successful exit
            >0  convergence to tolerance not achieved,
                return iteration count instead.
            <0  numerical breakdown, or illegal input
            ==  =======================================

    Notes
    -----
    The LinearOperator class is in scipy.sparse.linalg.interface.
    Use this class if you prefer to define A or M as a mat-vec routine
    as opposed to explicitly constructing the matrix.  A.psolve(..) is
    still supported as a legacy.

    The 2-norm of the preconditioned residual is used both for halting and
    returned in the residuals list.

    Examples
    --------
    >>> from pyamg.krylov.cr import cr
    >>> from pyamg.util.linalg import norm
    >>> import numpy
    >>> from pyamg.gallery import poisson
    >>> A = poisson((10,10))
    >>> b = numpy.ones((A.shape[0],))
    >>> (x,flag) = cr(A,b, maxiter=2, tol=1e-8)
    >>> print norm(b - A*x)
    10.9370700187

    References
    ----------
    .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems,
       Second Edition", SIAM, pp. 262-67, 2003
       http://www-users.cs.umn.edu/~saad/books.html

    '''
    A, M, x, b, postprocess = make_system(A, M, x0, b, xtype=None)
    n = len(b)

    ##
    # Ensure that warnings are always reissued from this function
    import warnings
    warnings.filterwarnings('always', module='pyamg\.krylov\._cr')

    # determine maxiter
    if maxiter is None:
        maxiter = int(1.3*len(b)) + 2
    elif maxiter < 1:
        raise ValueError('Number of iterations must be positive')

    # choose tolerance for numerically zero values
    t = A.dtype.char
    eps = numpy.finfo(numpy.float).eps
    feps = numpy.finfo(numpy.single).eps
    geps = numpy.finfo(numpy.longfloat).eps
    _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2}
    numerically_zero = {0: feps*1e3, 1: eps*1e6,
                        2: geps*1e6}[_array_precision[t]]

    # setup method
    r = b - A*x
    z = M*r
#.........这里部分代码省略.........
开发者ID:GaZ3ll3,项目名称:pyamg,代码行数:101,代码来源:_cr.py


示例15: polynomial

def polynomial(A, x, b, coefficients, iterations=1):
    """Apply a polynomial smoother to the system Ax=b


    Parameters
    ----------
    A : sparse matrix
        Sparse NxN matrix
    x : ndarray
        Approximate solution (length N)
    b : ndarray
        Right-hand side (length N)
    coefficients : {array_like}
        Coefficients of the polynomial.  See Notes section for details.
    iterations : int
        Number of iterations to perform

    Returns
    -------
    Nothing, x will be modified in place.

    Notes
    -----
    The smoother has the form  x[:] = x + p(A) (b - A*x) where p(A) is a 
    polynomial in A whose scalar coefficients are specified (in descending 
    order) by argument 'coefficients'.

    - Richardson iteration p(A) = c_0:
        polynomial_smoother(A, x, b, [c_0])

    - Linear smoother p(A) = c_1*A + c_0:
        polynomial_smoother(A, x, b, [c_1, c_0])

    - Quadratic smoother p(A) = c_2*A^2 + c_1*A + c_0:
        polynomial_smoother(A, x, b, [c_2, c_1, c_0])

    Here, Horner's Rule is applied to avoid computing A^k directly.  
    
    For efficience, the method detects the case x = 0 one matrix-vector 
    product is avoided (since (b - A*x) is b).

    Examples
    --------
    >>> ## The polynomial smoother is not currently used directly 
    >>> ## in PyAMG.  It is only used by the chebyshev smoothing option,
    >>> ## which automatically calculates the correct coefficients.
    >>> from pyamg.gallery import poisson
    >>> from pyamg.util.linalg import norm
    >>> import numpy
    >>> from pyamg.aggregation import smoothed_aggregation_solver
    >>> A = poisson((10,10), format='csr')
    >>> b = numpy.ones((A.shape[0],1))
    >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)),
    ...         coarse_solver='pinv2', max_coarse=50,
    ...         presmoother=('chebyshev', {'degree':3, 'iterations':1}), 
    ...         postsmoother=('chebyshev', {'degree':3, 'iterations':1}))
    >>> x0=numpy.zeros((A.shape[0],1))
    >>> residuals=[]
    >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals)
    """
    A,x,b = make_system(A, x, b, formats=None)

    for i in range(iterations):
        from pyamg.util.linalg import norm

        if norm(x) == 0:
            residual = b
        else:
            residual = (b - A*x)

        h = coefficients[0]*residual
    
        for c in coefficients[1:]:
            h = c*residual + A*h
    
        x += h
开发者ID:GaZ3ll3,项目名称:pyamg,代码行数:76,代码来源:relaxation.py


示例16: minimal_residual

def minimal_residual(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, 
       callback=None, residuals=None):
    '''Minimal residual (MR) algorithm
    
    Solves the linear system Ax = b. Left preconditioning is supported.

    Parameters
    ----------
    A : {array, matrix, sparse matrix, LinearOperator}
        n x n, linear system to solve
    b : {array, matrix}
        right hand side, shape is (n,) or (n,1)
    x0 : {array, matrix}
        initial guess, default is a vector of zeros
    tol : float
        relative convergence tolerance, i.e. tol is scaled by the
        preconditioner norm of r_0, or ||r_0||_M.
    maxiter : int
        maximum number of allowed iterations
    xtype : type
        dtype for the solution, default is automatic type detection
    M : {array, matrix, sparse matrix, LinearOperator}
        n x n, inverted preconditioner, i.e. solve M A x = M b.
    callback : function
        User-supplied function is called after each iteration as
       

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.scale_rows函数代码示例发布时间:2022-05-25
下一篇:
Python linalg.approximate_spectral_radius函数代码示例发布时间:2022-05-25
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap