本文整理汇总了Python中pyNN.utility.normalized_filename函数的典型用法代码示例。如果您正苦于以下问题:Python normalized_filename函数的具体用法?Python normalized_filename怎么用?Python normalized_filename使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了normalized_filename函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: plotGraphOfMembranePotential
def plotGraphOfMembranePotential(network=None):
assert network is not None, "Network is not initialised."
from pyNN.utility import normalized_filename
filename = normalized_filename("Results", "cell_type_demonstration", "pkl", "nest")
cells = network.get_population("Cell Output Population of Network")
inhL = network.get_population("Inhibitory Population of Left Retina")
inhR = network.get_population("Inhibitory Population of Right Retina")
from pyNN.utility.plotting import Figure, Panel
figure_filename = filename.replace("pkl", "png")
Figure(
Panel(cells.get_data().segments[0].filter(name='v')[0],
ylabel="Membrane potential (mV)", xlabel="Time (ms)",
data_labels=[cells.label], yticks=True, xticks=True, ylim=(-110, -40)),
Panel(inhL.get_data().segments[0].filter(name='v')[0],
ylabel="Membrane potential (mV)", xlabel="Time (ms)",
data_labels=[inhL.label], yticks=True, xticks=True, ylim=(-110, -40)),
Panel(inhR.get_data().segments[0].filter(name='v')[0],
ylabel="Membrane potential (mV)", xlabel="Time (ms)",
data_labels=[inhR.label], yticks=True, xticks=True, ylim=(-110, -40)),
title="Cooperative Network"
).save(figure_filename)
print "Graph is saved under the name: {0}".format(figure_filename)
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:25,代码来源:NetworkVisualiser.py
示例2: print
projections[label].initialize(a=synapse_types[label].parameter_space['n'], u=synapse_types[label].parameter_space['U'])
spike_source.record('spikes')
if "nest" in sim.__name__:
print(sim.nest.GetStatus([projections['depressing, n=5'].nest_connections[0]]))
# === Run the simulation =====================================================
sim.run(400.0)
# === Save the results, optionally plot a figure =============================
for label, p in populations.items():
filename = normalized_filename("Results", "multiquantal_synapses_%s" % label,
"pkl", options.simulator)
p.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
#figure_filename = normalized_filename("Results", "multiquantal_synapses",
# "png", options.simulator)
figure_filename = "Results/multiquantal_synapses_{}.png".format(options.simulator)
data = {}
for label in synapse_types:
data[label] = populations[label].get_data().segments[0]
gsyn = data[label].filter(name='gsyn_inh')[0]
gsyn_mean = neo.AnalogSignal(gsyn.mean(axis=1).reshape(-1, 1),
sampling_rate=gsyn.sampling_rate,
开发者ID:NeuralEnsemble,项目名称:PyNN,代码行数:32,代码来源:multiquantal_synapses.py
示例3: get_script_args
"""
Simple test of injecting time-varying current into a cell
Andrew Davison, UNIC, CNRS
May 2009
$Id$
"""
from pyNN.utility import get_script_args, normalized_filename
simulator_name = get_script_args(1)[0]
exec("from pyNN.%s import *" % simulator_name)
setup()
cell = create(IF_curr_exp(v_thresh=-55.0, tau_refrac=5.0))
current_source = StepCurrentSource(times=[50.0, 110.0, 150.0, 210.0],
amplitudes=[0.4, 0.6, -0.2, 0.2])
cell.inject(current_source)
filename = normalized_filename("Results", "StepCurrentSource", "pkl", simulator_name)
record('v', cell, filename, annotations={'script_name': __file__})
run(250.0)
end()
开发者ID:bernhardkaplan,项目名称:PyNN,代码行数:26,代码来源:StepCurrentSource.py
示例4: int
n_spikes = int(2*tstop*input_rate/1000.0)
spike_times = numpy.add.accumulate(rng.next(n_spikes, 'exponential',
{'beta': 1000.0/input_rate}, mask_local=False))
input_population = sim.Population(10, sim.SpikeSourceArray(spike_times=spike_times), label="input")
output_population = sim.Population(20, sim.IF_curr_exp(**cell_params), label="output")
print("[%d] input_population cells: %s" % (node, input_population.local_cells))
print("[%d] output_population cells: %s" % (node, output_population.local_cells))
print("tau_m =", output_population.get('tau_m'))
print("[%d] Connecting populations" % node)
connector = sim.FixedProbabilityConnector(0.5, rng=rng)
syn = sim.StaticSynapse(weight=1.0)
projection = sim.Projection(input_population, output_population, connector, syn)
filename = normalized_filename("Results", "simpleRandomNetwork", "conn",
simulator_name, sim.num_processes())
projection.save('connections', filename)
input_population.record('spikes')
output_population.record('spikes')
output_population.sample(n_record, rng).record('v')
print("[%d] Running simulation" % node)
sim.run(tstop)
print("[%d] Writing spikes and Vm to disk" % node)
filename = normalized_filename("Results", "simpleRandomNetwork_output", "pkl",
simulator_name, sim.num_processes())
output_population.write_data(filename, annotations={'script_name': __file__})
##input_population.write_data('%s_input.h5' % file_stem)
spike_counts = output_population.get_spike_counts()
开发者ID:Haptein,项目名称:PyNN,代码行数:32,代码来源:simpleRandomNetwork.py
示例5: normalized_filename
projections[label] = sim.Projection(spike_source, populations[label], connector,
receptor_type='inhibitory',
synapse_type=synapse_types[label])
spike_source.record('spikes')
# === Run the simulation =====================================================
sim.run(400.0)
# === Save the results, optionally plot a figure =============================
for label, p in populations.items():
filename = normalized_filename("Results", "stochastic_tsodyksmarkram_%s" % label,
"pkl", options.simulator)
p.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
#figure_filename = normalized_filename("Results", "stochastic_tsodyksmarkram",
# "png", options.simulator)
figure_filename = "Results/stochastic_tsodyksmarkram_{}.png".format(options.simulator)
panels = []
for variable in ('gsyn_inh',): # 'v'):
for population in sorted(populations.values(), key=lambda p: p.label):
panels.append(
Panel(population.get_data().segments[0].filter(name=variable)[0],
data_labels=[population.label], yticks=True),
)
开发者ID:NeuralEnsemble,项目名称:PyNN,代码行数:32,代码来源:stochastic_tsodyksmarkram.py
示例6: setup
rate = 100.0
setup(timestep=0.1, min_delay=0.2, max_delay=1.0)
cell_params = {'tau_refrac': 2.0, 'v_thresh': [-50.0, -48.0] ,
'tau_syn_E': 2.0, 'tau_syn_I': 2.0}
output_population = Population(2, IF_curr_alpha(**cell_params), label="output")
number = int(2*tstop*rate/1000.0)
numpy.random.seed(26278342)
spike_times = numpy.add.accumulate(numpy.random.exponential(1000.0/rate, size=number))
assert spike_times.max() > tstop
print spike_times.min()
input_population = Population(1, SpikeSourceArray(spike_times=spike_times), label="input")
projection = Projection(input_population, output_population,
AllToAllConnector(), StaticSynapse(weight=1.0))
input_population.record('spikes')
output_population.record(('spikes', 'v'))
run(tstop)
filename = normalized_filename("Results", "simpleNetwork_output", "pkl",
simulator_name)
output_population.write_data(filename, annotations={'script_name': __file__})
##input_population.write_data("Results/simpleNetwork_input_%s.h5" % simulator_name)
end()
开发者ID:bernhardkaplan,项目名称:PyNN,代码行数:30,代码来源:simpleNetwork.py
示例7: range
for pixel in range(0, dimensionRetinaX):
for disp in range(disparityMin, disparityMax+1):
# connect each pixel with as many cells on the same row as disparity values allow. Weight and delay are set to 1 and 0 respectively.
indexInNetworkLayer = pixel*dimensionRetinaX + pixel - disp*dimensionRetinaX
if indexInNetworkLayer < 0:
break
connectionPaternRetinaRight.append((pixel, indexInNetworkLayer, 0.189, 0.2))
print connectionPaternRetinaRight
connectionRetinaLeft = Projection(retinaLeft, oneNeuralLayer, FromListConnector(connectionPaternRetinaLeft), StaticSynapse(), receptor_type='excitatory')
connectionRetinaRight = Projection(retinaRight, oneNeuralLayer, FromListConnector(connectionPaternRetinaRight), StaticSynapse(), receptor_type='excitatory')
run(200.0)
# plot results
filename = normalized_filename("Results", "cell_type_demonstration", "pkl", "nest")
oneNeuralLayer.write_data(filename, annotations={'script_name': __file__})
retinaLeft.write_data(filename, annotations={'script_name': __file__})
retinaRight.write_data(filename, annotations={'script_name': __file__})
cellActivity = oneNeuralLayer.get_data().segments[0]
retinaLeftActivity = retinaLeft.get_data().segments[0]
retinaRightActivity = retinaRight.get_data().segments[0]
# from pyNN.utility.plotting import Figure, Panel
# figure_filename = filename.replace("pkl", "png")
# Figure(Panel(cellActivity.spiketrains, xlabel="Time (ms)", xticks=True, yticks=True),
# Panel(cellActivity.filter(name='v')[0], ylabel="Membrane potential (mV)", yticks=True, ylim=(-66, -48)),
# Panel(retinaLeftActivity.spiketrains, xlabel="Time (ms)", xticks=True, yticks=True),
# Panel(retinaRightActivity.spiketrains, xlabel="Time (ms)", xticks=True, yticks=True),
# title="Simple CoNet", annotations="Simulated with NEST").save(figure_filename)
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:31,代码来源:simpleCoNet.py
示例8: gen
return [gen() for j in i]
else:
return gen()
assert generate_spike_times(0).max() > simtime
spike_source = Population(n, SpikeSourceArray(spike_times=generate_spike_times))
spike_source.record("spikes")
cells.record("spikes")
cells[0:1].record("v")
input_conns = Projection(spike_source, cells, AllToAllConnector(), StaticSynapse())
input_conns.setWeights(w)
input_conns.setDelays(syn_delay)
# === Run simulation ===========================================================
run(simtime)
# spike_source.write_data("Results/small_network_input_np%d_%s.pkl" % (num_processes(), simulator_name))
filename = normalized_filename("Results", "small_network", "pkl", simulator_name, num_processes())
cells.write_data(filename, annotations={"script_name": __file__})
print "Mean firing rate: ", cells.mean_spike_count() * 1000.0 / simtime, "Hz"
# === Clean up and quit ========================================================
end()
开发者ID:bernhardkaplan,项目名称:PyNN,代码行数:30,代码来源:small_network.py
示例9: MyProgressBar
return t + self.interval
class MyProgressBar(object):
def __init__(self, interval, t_stop):
self.interval = interval
self.t_stop = t_stop
self.pb = ProgressBar(width=int(t_stop / interval), char=".")
def __call__(self, t):
self.pb(t / self.t_stop)
return t + self.interval
sim.setup()
p = sim.Population(50, sim.SpikeSourcePoisson())
p.record("spikes")
rate_generator = iter(range(0, 100, 20))
progress_bar = ProgressBar()
sim.run(1000, callbacks=[MyProgressBar(10.0, 1000.0), SetRate(p, rate_generator, 200.0)])
data = p.get_data().segments[0]
Figure(Panel(data.spiketrains, xlabel="Time (ms)", xticks=True), title="Time varying Poisson spike trains").save(
normalized_filename("Results", "varying_poisson", "png", args.simulator)
)
sim.end()
开发者ID:tillschumann,项目名称:PyNN,代码行数:30,代码来源:varying_poisson.py
示例10: zip
# === Create four cells and inject current into each one =====================
cells = sim.Population(4, sim.IF_curr_exp(v_thresh=-55.0, tau_refrac=5.0, tau_m=10.0))
current_sources = [sim.DCSource(amplitude=0.5, start=50.0, stop=400.0),
sim.StepCurrentSource(times=[50.0, 210.0, 250.0, 410.0],
amplitudes=[0.4, 0.6, -0.2, 0.2]),
sim.ACSource(start=50.0, stop=450.0, amplitude=0.2,
offset=0.1, frequency=10.0, phase=180.0),
sim.NoisyCurrentSource(mean=0.5, stdev=0.2, start=50.0,
stop=450.0, dt=1.0)]
for cell, current_source in zip(cells, current_sources):
cell.inject(current_source)
filename = normalized_filename("Results", "current_injection", "pkl", options.simulator)
sim.record('v', cells, filename, annotations={'script_name': __file__})
# === Run the simulation =====================================================
sim.run(500.0)
# === Save the results, optionally plot a figure =============================
vm = cells.get_data().segments[0].filter(name="v")[0]
sim.end()
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
from quantities import mV
开发者ID:Haptein,项目名称:PyNN,代码行数:31,代码来源:current_injection.py
示例11: print
print("tau_eta = ", neurons.get('tau_eta'))
print("a_gamma = ", neurons.get('a_gamma'))
electrode = sim.DCSource(**parameters['stimulus'])
electrode.inject_into(neurons)
neurons.record(['v', 'i_eta', 'v_t'])
# === Run the simulation =====================================================
sim.run(t_stop)
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "gif_neuron", "pkl",
options.simulator, sim.num_processes())
neurons.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
figure_filename = filename.replace("pkl", "png")
data = neurons.get_data().segments[0]
v = data.filter(name="v")[0]
v_t = data.filter(name="v_t")[0]
i_eta = data.filter(name="i_eta")[0]
Figure(
Panel(v, ylabel="Membrane potential (mV)",
yticks=True, ylim=[-66, -52]),
Panel(v_t, ylabel="Threshold (mV)",
yticks=True),
Panel(i_eta, ylabel="i_eta (nA)", xticks=True,
开发者ID:NeuralEnsemble,项目名称:PyNN,代码行数:32,代码来源:gif_neuron.py
示例12: print
print("Height of first EPSP:")
for population in all_neurons.populations:
# retrieve the recorded data
vm = population.get_data().segments[0].filter(name='v')[0]
# take the data between the first and second incoming spikes
vm12 = vm.time_slice(spike_times[0] * ms, spike_times[1] * ms)
# calculate and print the EPSP height
for channel in (0, 1):
v_init = vm12[:, channel][0]
height = vm12[:, channel].max() - v_init
print(" {:<30} at {}: {}".format(population.label, v_init, height))
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "synaptic_input", "pkl", options.simulator)
all_neurons.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
figure_filename = filename.replace("pkl", "png")
Figure(
Panel(cuba_exp.get_data().segments[0].filter(name='v')[0],
ylabel="Membrane potential (mV)",
data_labels=[cuba_exp.label], yticks=True, ylim=(-66, -50)),
Panel(cuba_alpha.get_data().segments[0].filter(name='v')[0],
data_labels=[cuba_alpha.label], yticks=True, ylim=(-66, -50)),
Panel(coba_exp.get_data().segments[0].filter(name='v')[0],
data_labels=[coba_exp.label], yticks=True, ylim=(-66, -50)),
Panel(coba_alpha.get_data().segments[0].filter(name='v')[0],
data_labels=[coba_alpha.label], yticks=True, ylim=(-66, -50)),
开发者ID:HBPNeurorobotics,项目名称:PyNN,代码行数:30,代码来源:synaptic_input.py
示例13: normalized_filename
electrode = sim.DCSource(start=2.0, stop=92.0, amplitude=0.014)
electrode.inject_into(neurons[2:3])
neurons.record(['v']) #, 'u'])
neurons.initialize(v=-70.0, u=-14.0)
# === Run the simulation =====================================================
sim.run(100.0)
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "Izhikevich", "pkl",
options.simulator, sim.num_processes())
neurons.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
figure_filename = filename.replace("pkl", "png")
data = neurons.get_data().segments[0]
v = data.filter(name="v")[0]
#u = data.filter(name="u")[0]
Figure(
Panel(v, ylabel="Membrane potential (mV)", xticks=True, xlabel="Time (ms)",
data_labels=[options.simulator.upper()], yticks=True),
#Panel(u, ylabel="u variable (units?)"),
).save(figure_filename)
print(figure_filename)
开发者ID:Huitzilo,项目名称:PyNN,代码行数:30,代码来源:Izhikevich.py
示例14: report_time
def report_time(t):
print "The time is %gms" % t
return t + 500
sim.run(t_stop, callbacks=[report_time])
scipy.io.savemat('weights.mat', {
'la':connections.get('weight', format='list', with_address=True),
'ln':connections.get('weight', format='list', with_address=False),
'aa':connections.get('weight', format='array', with_address=True),
'an':connections.get('weight', format='array', with_address=False)
})
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "ball_trajectories", "pkl", options.simulator)
p2.write_data(filename, annotations={'script_name': __file__})
presynaptic_data = p1.get_data().segments[0]
postsynaptic_data = p2.get_data().segments[0]
print("Post-synaptic spike times: %s" % postsynaptic_data.spiketrains[0])
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel, DataTable
figure_filename = filename.replace("pkl", "png")
Figure(
# raster plot of the presynaptic neuron spike times
Panel(presynaptic_data.spiketrains,
yticks=True, markersize=0.2, xlim=((episodes-10)*(t_stop/episodes), t_stop)),
Panel(postsynaptic_data.spiketrains,
yticks=True, markersize=0.2, xlim=((episodes-10)*(t_stop/episodes), t_stop)),
开发者ID:darioml,项目名称:fyp-public,代码行数:31,代码来源:ball_trajectories.py
示例15: normalized_filename
projections[label] = sim.Projection(spike_source, populations[label], connector,
receptor_type='inhibitory',
synapse_type=synapse_types[label])
spike_source.record('spikes')
# === Run the simulation =====================================================
sim.run(200.0)
# === Save the results, optionally plot a figure =============================
for label, p in populations.items():
filename = normalized_filename("Results", "tsodyksmarkram_%s" % label,
"pkl", options.simulator)
p.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
figure_filename = normalized_filename("Results", "tsodyksmarkram",
"png", options.simulator)
panels = []
for variable in ('gsyn_inh', 'v'):
for population in populations.values():
panels.append(
Panel(population.get_data().segments[0].filter(name=variable)[0],
data_labels=[population.label], yticks=True),
)
# add ylabel to top panel in each group
开发者ID:HBPNeurorobotics,项目名称:PyNN,代码行数:32,代码来源:tsodyksmarkram.py
示例16: run_simulation
t_stop = 350.0
run_simulation(a=-0.02, b=-1.0, c=-60.0, d=8.0, v_init=-63.8,
waveform=pulse(0.075, [50], 170, # 200 in original
t_stop, baseline=0.08),
t_stop=t_stop, title='(S) Inhibition-induced spiking')
# == Sub-plot T: Inhibition-induced bursting ================================
'''
Modifying parameter d from -2.0 to -0.7 in order to reproduce Fig. 1
'''
t_stop = 350.0
run_simulation(a=-0.026, b=-1.0, c=-45.0, d=-0.7, v_init=-63.8,
waveform=pulse(0.075, [50], 200, t_stop, baseline=0.08),
t_stop=t_stop, title='(T) Inhibition-induced bursting')
# == Export figure in PNG format ============================================
filename = normalized_filename("results", "izhikevich2004", "png", options.simulator)
try:
os.makedirs(os.path.dirname(filename))
except OSError:
pass
fig.savefig(filename)
print("\n Simulation complete. Results can be seen in figure at %s\n"%(filename))
开发者ID:OpenSourceBrain,项目名称:IzhikevichModel,代码行数:28,代码来源:izhikevich2004.py
示例17: normalized_filename
projections[label] = sim.Projection(spike_source, populations[label], connector,
receptor_type='inhibitory',
synapse_type=synapse_types[label])
spike_source.record('spikes')
# === Run the simulation =====================================================
sim.run(400.0)
# === Save the results, optionally plot a figure =============================
for label, p in populations.items():
filename = normalized_filename("Results", "stochastic_comparison_%s" % label,
"pkl", options.simulator)
p.write_data(filename, annotations={'script_name': __file__})
if options.plot_figure:
from pyNN.utility.plotting import Figure, Panel
#figure_filename = normalized_filename("Results", "stochastic_comparison",
# "png", options.simulator)
figure_filename = "Results/stochastic_comparison_{}.png".format(options.simulator)
data = {}
for label in synapse_types:
data[label] = populations[label].get_data().segments[0]
if 'stochastic' in label:
gsyn = data[label].filter(name='gsyn_inh')[0]
gsyn_mean = neo.AnalogSignal(gsyn.mean(axis=1).reshape(-1, 1),
开发者ID:NeuralEnsemble,项目名称:PyNN,代码行数:32,代码来源:stochastic_deterministic_comparison.py
示例18: print
print("Height of first EPSP:")
for population in all_neurons.populations:
# retrieve the recorded data
vm = population.get_data().segments[0].filter(name='v')[0]
# take the data between the first and second incoming spikes
vm12 = vm.time_slice(spike_times[0] * ms, spike_times[1] * ms)
# calculate and print the EPSP height
for channel in (0, 1):
v_init = vm12[:, channel][0]
height = vm12[:, channel].max() - v_init
print(" {:<30} at {}: {}".format(population.label, v_init, height))
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "synaptic_input", "pkl", 'NEST')
all_neurons.write_data(filename, annotations={'script_name': __file__})
from pyNN.utility.plotting import Figure, Panel
figure_filename = filename.replace("pkl", "png")
Figure(
Panel(cuba_exp.get_data().segments[0].filter(name='v')[0],
ylabel="Membrane potential (mV)",
data_labels=[cuba_exp.label], yticks=True, ylim=(-66, -50)),
Panel(cuba_alpha.get_data().segments[0].filter(name='v')[0],
data_labels=[cuba_alpha.label], yticks=True, ylim=(-66, -50)),
Panel(coba_exp.get_data().segments[0].filter(name='v')[0],
data_labels=[coba_exp.label], yticks=True, ylim=(-66, -50)),
Panel(coba_alpha.get_data().segments[0].filter(name='v')[0],
data_labels=[coba_alpha.label], yticks=True, ylim=(-66, -50)),
Panel(v_step.get_data().segments[0].filter(name='v')[0],
开发者ID:jackokaiser,项目名称:SNN-sandbox,代码行数:30,代码来源:twoNeurons.py
示例19: WeightRecorder
sampling_period=self.interval * ms,
channel_index=numpy.arange(len(self._weights[0])),
name="weight",
)
weight_recorder = WeightRecorder(sampling_interval=1.0, projection=connections)
# === Run the simulation =====================================================
sim.run(t_stop, callbacks=[weight_recorder])
# === Save the results, optionally plot a figure =============================
filename = normalized_filename("Results", "simple_stdp", "pkl", options.simulator)
p2.write_data(filename, annotations={"script_name": __file__})
presynaptic_data = p1.get_data().segments[0]
postsynaptic_data = p2.get_data().segments[0]
print("Post-synaptic spike times: %s" % postsynaptic_data.spiketrains[0])
weights = weight_recorder.get_weights()
final_weights = numpy.array(weights[-1])
deltas = delta_t * numpy.arange(n // 2, -n // 2, -1)
print("Final weights: %s" % final_weights)
plasticity_data = DataTable(deltas, final_weights)
if options.fit_curve:
开发者ID:pgleeson,项目名称:PyNN,代码行数:30,代码来源:simple_STDP.py
示例20: print
# === Run simulation ===========================================================
print("%d Running simulation..." % node_id)
sim.run(tstop)
simCPUTime = timer.diff()
E_count = exc_cells.mean_spike_count()
I_count = inh_cells.mean_spike_count()
# === Print results to file ====================================================
print("%d Writing data to file..." % node_id)
filename = normalized_filename("Results", "VAbenchmarks_%s_exc" % options.benchmark, "pkl",
options.simulator, np)
exc_cells.write_data(filename,
annotations={'script_name': __file__})
inh_cells.write_data(filename.replace("exc", "inh"),
annotations={'script_name': __file__})
writeCPUTime = timer.diff()
if options.use_views or options.use_assembly:
connections = "%d e→e,i %d i→e,i" % (connections['exc'].size(),
connections['inh'].size())
else:
connections = u"%d e→e %d e→i %d i→e %d i→i" % (connections['e2e'].size(),
connections['e2i'].size(),
connections['i2e'].size(),
connections['i2i'].size())
开发者ID:Huitzilo,项目名称:PyNN,代码行数:32,代码来源:VAbenchmarks.py
注:本文中的pyNN.utility.normalized_filename函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论