本文整理汇总了Python中pyNN.nest.run函数的典型用法代码示例。如果您正苦于以下问题:Python run函数的具体用法?Python run怎么用?Python run使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了run函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: main
def main():
# setup timestep of simulation and minimum and maximum synaptic delays
setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay)
# create a spike sources
retinaLeft = createSpikeSource("Retina Left")
retinaRight = createSpikeSource("Retina Right")
# create network and attach the spike sources
network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
# run simulation for time in milliseconds
print "Simulation started..."
run(simulationTime)
print "Simulation ended."
# plot results
from itertools import repeat
numberOfLayersToPlot = 4
layers = zip(repeat(network, numberOfLayersToPlot), range(1, numberOfLayersToPlot+1), repeat(False, numberOfLayersToPlot))
customLayers = [(network, 20, False),(network, 40, False),(network, 60, False),(network, 80, False)]
for proc in range(0, numberOfLayersToPlot):
p = Process(target=plotSimulationResults, args=customLayers[proc])
p.start()
# finalise program and simulation
end()
开发者ID:AMFtech,项目名称:StereoMatching,代码行数:26,代码来源:CooperativeNetwork.py
示例2: two_neuron_example
def two_neuron_example(
current=1000.0,
time_simulation=2000.0,
weight=0.4,
neuron_parameters={"v_rest": -50.0, "cm": 1, "tau_m": 20.0, "tau_refrac": 5.0, "v_thresh": -40.0, "v_reset": -50.0},
):
sim.setup(timestep=0.1, min_delay=0.1)
pulse = sim.DCSource(amplitude=current, start=0.0, stop=time_simulation)
pre = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))
pre.record("spikes")
pulse.inject_into(pre)
sim.run(time_simulation)
# rates in Hz
rate_pre = len(pre.get_data("spikes").segments[0].spiketrains[0]) / time_simulation * 1000.0
sim.end()
return rate_pre
开发者ID:knly,项目名称:bic-ws1516,代码行数:25,代码来源:exercise2.py
示例3: run
def run(self, spiketimes):
assert spiketimes.shape[0] == self.n_spike_source, 'spiketimes length should be equal to input neurons'
start = time.clock()
sim.reset()
end = time.clock()
print "reset uses %f s." % (end - start)
for i in range(self.n_spike_source):
spiketime = np.array(spiketimes[i], dtype=float)
if spiketimes[i].any():
self.spike_source[i].spike_times = spiketime
sim.initialize(self.hidden_neurons, V_m=0)
sim.initialize(self.output_neurons, V_m=0.)
sim.run(self.sim_time)
spiketrains = self.output_neurons.get_data(clear=True).segments[0].spiketrains
# vtrace = self.hidden_neurons.get_data(clear=True).segments[0].filter(name='V_m')[0]
# plt.figure()
# plt.plot(vtrace.times, vtrace)
# plt.show()
hidden_spiketrains = self.hidden_neurons.get_data(clear=True).segments[0].spiketrains
spike_cnts = 0
for spiketrain in hidden_spiketrains:
spike_cnts += len(list(np.array(spiketrain)))
self.hidden_spike_cnts.append(spike_cnts)
print 'hidden spikes: ', spike_cnts
spiketimes_out = []
for spiketrain in spiketrains:
spiketimes_out.append(list(np.array(spiketrain)))
return np.array(spiketimes_out)
开发者ID:starlitnext,项目名称:SpikingRNN,代码行数:35,代码来源:rsnn_sim_int.py
示例4: sim_neuron
def sim_neuron(rate):
neuron_parameters={
'v_rest' : -50.0,
'cm' : 1,
'tau_m' : 20.0,
'tau_syn_E' : 5.0,
'tau_syn_I' : 5.0,
'v_reset' : -50.0,
'v_thresh' : 10000000000000000000000000000000000000000000000000000000000000000000000.0,
'e_rev_E' : 0.0,
'e_rev_I' : -100,
}
time_simulation = 100000 # don't choose to small number in order to get good statistics
weight = 0.1 # is this value allreight
sim.setup(timestep=0.1, min_delay=0.1)
pois_exc = sim.SpikeSourcePoisson(duration=time_simulation,start=0.0,rate=rate) # generate poisson rate stimulus
pois_inh = sim.SpikeSourcePoisson(duration=time_simulation,start=0.0,rate=rate) # generate poisson rate stimulus
exc = sim.Population(1, cellclass=pois_exc) # simulate excitatory cell
inh = sim.Population(1, cellclass=pois_inh) # simulate inhibitory cell
rec = sim.Population(1, sim.IF_cond_exp(**neuron_parameters)) # simulate receiving neuron
sim.Projection(exc, rec, connector=sim.OneToOneConnector(),synapse_type=sim.StaticSynapse(weight=weight),receptor_type='excitatory') # connect excitatory neuron to receiver
sim.Projection(inh, rec, connector=sim.OneToOneConnector(),synapse_type=sim.StaticSynapse(weight=weight),receptor_type='inhibitory') # connect inhibitory neuron to receiver
rec.record('v') # record membrane potential
rec.record('gsyn_exc') # record excitatory conductance
rec.record('gsyn_inh') # record inhibitory conductance
sim.run(time_simulation) # start simulation
return rec.get_data('v').segments[0].analogsignalarrays[0], rec.get_data('gsyn_exc').segments[0].analogsignalarrays[0], rec.get_data('gsyn_inh').segments[0].analogsignalarrays[0] # return membrane potential, excitatory conductance, inhibitory conductance
开发者ID:knly,项目名称:bic-ws1516,代码行数:32,代码来源:exercise1.py
示例5: main
def main(args):
setup(timestep=0.1)
random_image = np.random.rand(2,2)
size = random_image.size
input_population_arr = Population(random_image.size, SpikeSourceArray, {'spike_times': [0 for i in range(0, random_image.size)]})
cell_params = {'tau_refrac': 2.0, 'v_thresh': -50.0, 'tau_syn_E': 2.0, 'tau_syn_I': 2.0}
output_population = Population(1, IF_curr_alpha, cell_params, label="output")
projection = Projection(input_population_arr, output_population, AllToAllConnector())
projection.setWeights(1.0)
input_population_arr.record('spikes')
output_population.record('spikes')
tstop = 1000.0
run(tstop)
output_population.write_data("simpleNetwork_output.pkl",'spikes')
input_population_arr.write_data("simpleNetwork_input.pkl",'spikes')
#output_population.print_v("simpleNetwork.v")
end()
开发者ID:danielgeier,项目名称:ml2-spiking,代码行数:27,代码来源:population_example.py
示例6: run_test
def run_test(w_list, cell_para, spike_source_data):
pop_list = []
p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
#input poisson layer
input_size = w_list[0].shape[0]
pop_in = p.Population(input_size, p.SpikeSourceArray, {'spike_times' : []})
for j in range(input_size):
pop_in[j].spike_times = spike_source_data[j]
pop_list.append(pop_in)
for w in w_list:
pos_w = np.copy(w)
pos_w[pos_w < 0] = 0
neg_w = np.copy(w)
neg_w[neg_w > 0] = 0
output_size = w.shape[1]
pop_out = p.Population(output_size, p.IF_curr_exp, cell_para)
p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = pos_w), target='excitatory')
p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = neg_w), target='inhibitory')
pop_list.append(pop_out)
pop_in = pop_out
pop_out.record()
run_time = np.ceil(np.max(spike_source_data)[0]/1000.)*1000
p.run(run_time)
spikes = pop_out.getSpikes(compatible_output=True)
return spikes
开发者ID:qian-liu,项目名称:iconip2016,代码行数:28,代码来源:spiking_relu.py
示例7: compute
def compute(self, proximal, distal=None):
if distal is not None:
for i, times in enumerate(distal):
self.distal_input[i].spike_times = times
active = []
predictive = []
if not (isinstance(proximal[0], list) or isinstance(proximal[0], np.ndarray)):
proximal = [proximal]
timestep = self.parameters.config.timestep
for p in proximal:
t = pynn.get_current_time()
for c in p:
self.proximal_input[int(c)].spike_times = np.array([t + 0.01])
pynn.run(self.parameters.config.timestep)
spikes_soma = self.soma.getSpikes()
mask = (spikes_soma[:,1] >= t) & (spikes_soma[:,1] < t + timestep)
active.append(np.unique(spikes_soma[mask,0]))
spikes_distal = self.distal.getSpikes()
mask = (spikes_distal[:,1] >= t) & (spikes_distal[:,1] < t + timestep)
predictive.append(np.unique(spikes_distal[mask,0].astype(np.int16)/2))
return (active, predictive)
开发者ID:subutai,项目名称:htm-hardware,代码行数:28,代码来源:temporal_memory.py
示例8: test_ticket244
def test_ticket244():
nest = pyNN.nest
nest.setup(threads=4)
p1 = nest.Population(4, nest.IF_curr_exp())
p1.record('spikes')
poisson_generator = nest.Population(3, nest.SpikeSourcePoisson(rate=1000.0))
conn = nest.OneToOneConnector()
syn = nest.StaticSynapse(weight=1.0)
nest.Projection(poisson_generator, p1.sample(3), conn, syn, receptor_type="excitatory")
nest.run(15)
p1.get_data()
开发者ID:mfraezz,项目名称:PyNN,代码行数:11,代码来源:test_nest.py
示例9: two_neuron_example
def two_neuron_example(
current=1000.0,
time_simulation=2000.,
weight=0.4,
neuron_parameters={
'v_rest' : -65.0,
'cm' : 0.1,
'tau_m' : 1.0,
'tau_refrac' : 2.0,
'tau_syn_E' : 10.0,
'tau_syn_I' : 10.0,
'i_offset' : 0.0,
'v_reset' : -65.0,
'v_thresh' : -50.0,
},
):
"""
Connects to neurons with corresponding parameters.
The first is stimulated via current injection while the second receives
the other one's spikes.
"""
sim.setup(timestep=0.1, min_delay=0.1)
pulse = sim.DCSource(amplitude=current, start=0.0, stop=time_simulation)
pre = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))
post = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))
pre.record('spikes')
post.record('spikes')
sim.Projection(pre, post, connector=sim.OneToOneConnector(),
synapse_type=sim.StaticSynapse(weight=weight),
receptor_type='excitatory')
pulse.inject_into(pre)
sim.run(time_simulation)
# rates in Hz
rate_pre = len(pre.get_data('spikes').segments[0].spiketrains[0])\
/ time_simulation * 1000.
rate_post = len(post.get_data('spikes').segments[0].spiketrains[0])\
/ time_simulation * 1000.
sim.end()
return rate_pre, rate_post
开发者ID:knly,项目名称:bic-ws1516,代码行数:51,代码来源:bic_sh01_ex03_code.py
示例10: loop
def loop():
for device_instance in Interfaces.DeviceMeta._instances:
device_instance._create_device()
print "Entered loop"
i = 0
while(True):
sim.run(20.0)
Observers.Observer.notify()
Setters.Setter.notify()
SimulatorPorts.RPCPort.execute()
for pop_view in population_register.values():
pass
#print pop_view.meanSpikeCount()
#print 'amplitude', pop_view.get_data().segments[0].filter(name='v')
#print nest.GetStatus(map(int, [pop_view.all_cells[0]]), 'V_m')
i += 1
sim.end()
开发者ID:uahic,项目名称:music_wizard,代码行数:19,代码来源:simulator_node.py
示例11: test_record_native_model
def test_record_native_model():
if not have_nest:
raise SkipTest
nest = pyNN.nest
from pyNN.random import RandomDistribution
init_logging(logfile=None, debug=True)
nest.setup()
parameters = {'tau_m': 17.0}
n_cells = 10
p1 = nest.Population(n_cells, nest.native_cell_type("ht_neuron")(**parameters))
p1.initialize(V_m=-70.0, Theta=-50.0)
p1.set(theta_eq=-51.5)
#assert_arrays_equal(p1.get('theta_eq'), -51.5*numpy.ones((10,)))
assert_equal(p1.get('theta_eq'), -51.5)
print(p1.get('tau_m'))
p1.set(tau_m=RandomDistribution('uniform', low=15.0, high=20.0))
print(p1.get('tau_m'))
current_source = nest.StepCurrentSource(times=[50.0, 110.0, 150.0, 210.0],
amplitudes=[0.01, 0.02, -0.02, 0.01])
p1.inject(current_source)
p2 = nest.Population(1, nest.native_cell_type("poisson_generator")(rate=200.0))
print("Setting up recording")
p2.record('spikes')
p1.record('V_m')
connector = nest.AllToAllConnector()
syn = nest.StaticSynapse(weight=0.001)
prj_ampa = nest.Projection(p2, p1, connector, syn, receptor_type='AMPA')
tstop = 250.0
nest.run(tstop)
vm = p1.get_data().segments[0].analogsignals[0]
n_points = int(tstop / nest.get_time_step()) + 1
assert_equal(vm.shape, (n_points, n_cells))
assert vm.max() > 0.0 # should have some spikes
开发者ID:antolikjan,项目名称:PyNN,代码行数:43,代码来源:test_nest.py
示例12: scnn_test
def scnn_test(l_cnn, w_cnn, num_test, test, max_rate, dur_test, silence):
p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
L = l_cnn
random.seed(0)
input_size = L[0][1]
pops_list = []
pops_list.append(init_inputlayer(input_size, test[:num_test, :], max_rate, dur_test, silence))
for l in range(len(w_cnn)):
pops_list.append(construct_layer(pops_list[l], L[l+1][0], L[l+1][1], w_cnn[l]))
result = pops_list[-1][0]
result.record()
p.run((dur_test+silence)*num_test)
spike_result = result.getSpikes(compatible_output=True)
p.end()
spike_result_count = count_spikes(spike_result, 10, num_test, dur_test, silence)
predict = np.argmax(spike_result_count, axis=0)
# prob = np.exp(spike_result_count)/np.sum(np.exp(spike_result_count), axis=0)
return predict
开发者ID:qian-liu,项目名称:iconip2016,代码行数:20,代码来源:scnn_sim.py
示例13: test_record_native_model
def test_record_native_model():
nest = pyNN.nest
from pyNN.random import RandomDistribution
from pyNN.utility import init_logging
init_logging(logfile=None, debug=True)
nest.setup()
parameters = {'Tau_m': 17.0}
n_cells = 10
p1 = nest.Population(n_cells, nest.native_cell_type("ht_neuron"), parameters)
p1.initialize('V_m', -70.0)
p1.initialize('Theta', -50.0)
p1.set('Theta_eq', -51.5)
assert_equal(p1.get('Theta_eq'), [-51.5]*10)
print p1.get('Tau_m')
p1.rset('Tau_m', RandomDistribution('uniform', [15.0, 20.0]))
print p1.get('Tau_m')
current_source = nest.StepCurrentSource({'times' : [50.0, 110.0, 150.0, 210.0],
'amplitudes' : [0.01, 0.02, -0.02, 0.01]})
p1.inject(current_source)
p2 = nest.Population(1, nest.native_cell_type("poisson_generator"), {'rate': 200.0})
print "Setting up recording"
p2.record()
p1._record('V_m')
connector = nest.AllToAllConnector(weights=0.001)
prj_ampa = nest.Projection(p2, p1, connector, target='AMPA')
tstop = 250.0
nest.run(tstop)
n_points = int(tstop/nest.get_time_step()) + 1
assert_equal(p1.recorders['V_m'].get().shape, (n_points*n_cells, 3))
id, t, v = p1.recorders['V_m'].get().T
assert v.max() > 0.0 # should have some spikes
开发者ID:agravier,项目名称:pynn,代码行数:41,代码来源:test_nest.py
示例14: compute
def compute(self, data, learn=True):
"""Perform the actual computation"""
timestep = self.parameters.config.timestep
# run simulation
for i, d in enumerate(data):
t = pynn.get_current_time()
d = d.astype(np.int32)
activity = np.array(self.calculate_activity([d]))
train = np.ndarray((np.sum(activity), 2))
pos = 0
for j in range(len(self.stimulus)):
spikes = np.sort(np.random.normal(1.0 + t, 0.01, activity[0][j]))
train[pos:pos+activity[0][j],:] = np.vstack([np.ones(spikes.size)*j, spikes]).T
pos += activity[0][j]
for j, s in enumerate(self.stimulus):
s.spike_times = train[train[:,0] == j,1]
pynn.run(timestep)
# extract spikes and calculate activity
spikes = self.columns.getSpikes()
mask = (spikes[:,1] > t) & (spikes[:,1] < t + timestep)
active_columns = np.unique(spikes[mask,0]).astype(np.int32)
yield active_columns
if learn > 0:
# wake up, school's starting in five minutes!
c = np.zeros(self.permanences.shape[0], dtype=np.bool)
c[active_columns] = 1
d = d.astype(np.bool)
self.permanences[np.outer(c, d)] += 0.01
self.permanences[np.outer(c, np.invert(d))] -= 0.01
self.permanences = np.minimum(np.maximum(self.permanences, 0), 1)
if type(learn) == int:
learn -= 1
开发者ID:subutai,项目名称:htm-hardware,代码行数:38,代码来源:spatial_pooler.py
示例15: test_column_input
def test_column_input():
"""
Tests whether all neurons receive the same feedforward input from
common proximal dendrite.
"""
LOG.info('Testing column input...')
# reset the simulator
sim.reset()
column = Column.Column()
sim.run(1000)
spikes = column.FetchSpikes()
print('Spikes before: {}'.format(spikes))
# now stream some input into the column
column.SetFeedforwardDendrite(1000.0)
sim.run(1000)
spikes = column.FetchSpikes().segments[0]
print('Spikes after: {}'.format(spikes))
LOG.info('Test complete.')
开发者ID:codeteam17,项目名称:spiked,代码行数:23,代码来源:test_column.py
示例16: test_encoder_rate_1
def test_encoder_rate_1():
"""
Checks if encoder is properly encoding provided values.
"""
encoder = ScalarEncoder.ScalarEncoder(
size=10, width=1, min_val=0, max_val=10)
encoder.encode(5.0)
sim.run(100)
rate = encoder.population.getSpikes()
voltages = encoder.population.get_v().segments[0]
pdb.set_trace()
plot_signal(voltages, 1)
# get index of maximum rate neuron
idx_max = np.argmax(rate)
LOG.info(rate)
LOG.info('Max firing rate: {}'.format(idx_max))
assert idx_max == 4 # indexing starts from zero
开发者ID:codeteam17,项目名称:spiked,代码行数:24,代码来源:test_encoder.py
示例17: _run_microcircuit
def _run_microcircuit(plot_filename, conf):
import plotting
import logging
simulator = conf['simulator']
# we here only need nest as simulator, simulator = 'nest'
import pyNN.nest as sim
# prepare simulation
logging.basicConfig()
# extract parameters from config file
master_seed = conf['params_dict']['nest']['master_seed']
layers = conf['layers']
pops = conf['pops']
plot_spiking_activity = conf['plot_spiking_activity']
raster_t_min = conf['raster_t_min']
raster_t_max = conf['raster_t_max']
frac_to_plot = conf['frac_to_plot']
record_corr = conf['params_dict']['nest']['record_corr']
tau_max = conf['tau_max']
# Numbers of neurons from which to record spikes
n_rec = helper_functions.get_n_rec(conf)
sim.setup(**conf['simulator_params'][simulator])
if simulator == 'nest':
n_vp = sim.nest.GetKernelStatus('total_num_virtual_procs')
if sim.rank() == 0:
print 'n_vp: ', n_vp
print 'master_seed: ', master_seed
sim.nest.SetKernelStatus({'print_time': False,
'dict_miss_is_error': False,
'grng_seed': master_seed,
'rng_seeds': range(master_seed + 1,
master_seed + n_vp + 1),
'data_path': conf['system_params'] \
['output_path']})
import network
# result of export-files
results = []
# create network
start_netw = time.time()
n = network.Network(sim)
# contains the GIDs of the spike detectors and voltmeters needed for
# retrieving filenames later
device_list = n.setup(sim, conf)
end_netw = time.time()
if sim.rank() == 0:
print 'Creating the network took ', end_netw - start_netw, ' s'
# simulate
if sim.rank() == 0:
print "Simulating..."
start_sim = time.time()
sim.run(conf['simulator_params'][simulator]['sim_duration'])
end_sim = time.time()
if sim.rank() == 0:
print 'Simulation took ', end_sim - start_sim, ' s'
# extract filename from device_list (spikedetector/voltmeter),
# gid of neuron and thread. merge outputs from all threads
# into a single file which is then added to the task output.
for dev in device_list:
label = sim.nest.GetStatus(dev)[0]['label']
gid = sim.nest.GetStatus(dev)[0]['global_id']
# use the file extension to distinguish between spike and voltage
# output
extension = sim.nest.GetStatus(dev)[0]['file_extension']
if extension == 'gdf': # spikes
data = np.empty((0, 2))
elif extension == 'dat': # voltages
data = np.empty((0, 3))
for thread in xrange(conf['simulator_params']['nest']['threads']):
filenames = glob.glob(conf['system_params']['output_path']
+ '%s-*%d-%d.%s' % (label, gid, thread, extension))
assert(
len(filenames) == 1), 'Multiple input files found. Use a clean output directory.'
data = np.vstack([data, np.loadtxt(filenames[0])])
# delete original files
os.remove(filenames[0])
order = np.argsort(data[:, 1])
data = data[order]
outputfile_name = 'collected_%s-%d.%s' % (label, gid, extension)
outputfile = open(outputfile_name, 'w')
# the outputfile should have same format as output from NEST.
# i.e., [int, float] for spikes and [int, float, float] for voltages,
# hence we write it line by line and assign the corresponding filetype
if extension == 'gdf': # spikes
for line in data:
outputfile.write('%d\t%.3f\n' % (line[0], line[1]))
outputfile.close()
filetype = 'application/vnd.juelich.nest.spike_times'
#.........这里部分代码省略.........
开发者ID:BerndSchuller,项目名称:UP-Tasks,代码行数:101,代码来源:microcircuit_task.py
示例18:
conn = [
sim.Projection(input[0:1], cells, connector, target="AMPA_spikeinput"),
sim.Projection(input[1:2], cells, connector, target="GABAa_spikeinput"),
sim.Projection(input[2:3], cells, connector, target="GABAb_spikeinput"),
]
cells._record("iaf_V")
cells._record("AMPA_g")
cells._record("GABAa_g")
cells._record("GABAb_g")
cells.record()
sim.run(100.0)
cells.recorders["iaf_V"].write("Results/nineml_neuron.V", filter=[cells[0]])
cells.recorders["AMPA_g"].write("Results/nineml_neuron.g_exc", filter=[cells[0]])
cells.recorders["GABAa_g"].write("Results/nineml_neuron.g_gabaA", filter=[cells[0]])
cells.recorders["GABAb_g"].write("Results/nineml_neuron.g_gagaB", filter=[cells[0]])
t = cells.recorders["iaf_V"].get()[:, 1]
v = cells.recorders["iaf_V"].get()[:, 2]
gInhA = cells.recorders["GABAa_g"].get()[:, 2]
gInhB = cells.recorders["GABAb_g"].get()[:, 2]
gExc = cells.recorders["AMPA_g"].get()[:, 2]
import pylab
开发者ID:pgleeson,项目名称:nineml,代码行数:28,代码来源:example_modular_iaf_3coba_to_pynn_nest.py
示例19: xrange
'e_rev_leak': ELeak,
'e_rev_E' : EIs[1],
'e_rev_I' : EIs[2],
'tau_syn_E' : 0.2,
'tau_syn_I' : 2.0,
'i_offset' : 0.0,
}
#vs = np.linspace(-75.0, EIs[0] + 5, 3)
vs = [-80.0, -61.0, -60.0]
neurons = [sim.create(sim.HH_cond_exp(**cellparams)) for _ in vs]
for i in xrange(len(vs)):
neurons[i].record(["v"])
neurons[i].initialize(v=vs[i])
sim.run(tEnd)
fig = plt.figure(figsize=(cm2inch(12.4), cm2inch(7)))
ax = fig.add_subplot(111)
#cmap = plt.cm.rainbow
#cmap = colors.LinearSegmentedColormap.from_list('blues', ['#729fcf', '#3465a4',
# '#193a6b'])
lss = ['--', ':', '-']
#colors = iter(cmap(np.linspace(0, 1, len(vs))))
colors = iter(['#204a87'] * 3)
for i in xrange(len(vs)):
data = neurons[i].get_data()
signal_names = [s.name for s in data.segments[0].analogsignalarrays]
vm = data.segments[0].analogsignalarrays[signal_names.index('v')]
ax.plot(vm.times, vm, lss[i], color=next(colors),
开发者ID:hbp-sanncs,项目名称:master-thesis-astoeckel-2015,代码行数:31,代码来源:plot_hh_ap2.py
示例20: nt
import pyNN.nest as sim
parameters = {
u'E_L': 0.0,
u'I_e': 0.9, # 用这个参数来表示leaky
u'V_reset': 0.0,
u'V_th': 0.5,
u't_ref': .0,
}
sim.setup(timestep=01.0)
nt = sim.native_cell_type('iaf_psc_delta_xxq')
n = sim.Population(1, nt(**parameters))
s = sim.Population(1, sim.SpikeSourceArray())
s[0].spike_times = [10, 15, 20, 30, 40]
p = sim.Projection(s, n, sim.FromListConnector([(0, 0, 0.00025, 0.01)]))
# p1 = sim.Projection(n, n, sim.FromListConnector([(0, 0, 0.00025, 1.0)]))
n.record('V_m')
n.record('V_m')
sim.initialize(n, V_m=0.)
sim.run(128.0)
vtrace = n.get_data(clear=True).segments[0].filter(name='V_m')[0]
print p.get(['weight'], format='array')
plt.figure()
plt.plot(vtrace.times, vtrace, 'o')
plt.ylim([0, 0.6])
plt.show()
sim.end()
开发者ID:starlitnext,项目名称:SpikingRNN,代码行数:31,代码来源:cell_type_test.py
注:本文中的pyNN.nest.run函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论