• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python logging_utils._get_logger函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中utils.logging_utils._get_logger函数的典型用法代码示例。如果您正苦于以下问题:Python _get_logger函数的具体用法?Python _get_logger怎么用?Python _get_logger使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了_get_logger函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, model_folder, model_list, subm_prefix, 
                weight_opt_max_evals=10, w_min=-1., w_max=1., 
                inst_subsample=0.5, inst_subsample_replacement=False, 
                inst_splitter=None,
                model_subsample=1.0, model_subsample_replacement=True,
                bagging_size=10, init_top_k=5, epsilon=0.00001, 
                multiprocessing=False, multiprocessing_num_cores=1,
                enable_extreme=True, random_seed=0):

        self.model_folder = model_folder
        self.model_list = model_list
        self.subm_prefix = subm_prefix
        self.weight_opt_max_evals = weight_opt_max_evals
        self.w_min = w_min
        self.w_max = w_max
        assert inst_subsample > 0 and inst_subsample <= 1.
        self.inst_subsample = inst_subsample
        self.inst_subsample_replacement = inst_subsample_replacement
        self.inst_splitter = inst_splitter
        assert model_subsample > 0
        assert (type(model_subsample) == int) or (model_subsample <= 1.)
        self.model_subsample = model_subsample
        self.model_subsample_replacement = model_subsample_replacement
        self.bagging_size = bagging_size
        self.init_top_k = init_top_k
        self.epsilon = epsilon
        self.multiprocessing = multiprocessing
        self.multiprocessing_num_cores = multiprocessing_num_cores
        self.enable_extreme = enable_extreme
        self.random_seed = random_seed
        logname = "ensemble_selection_%s.log"%time_utils._timestamp()
        self.logger = logging_utils._get_logger(config.LOG_DIR, logname)
        self.n_models = len(self.model_list)
开发者ID:Anhmike,项目名称:Kaggle_HomeDepot,代码行数:33,代码来源:extreme_ensemble_selection.py


示例2: main

def main():
    logname = "generate_feature_intersect_position_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    generators = [
        IntersectPosition_Ngram, 
        IntersectNormPosition_Ngram, 
    ]
    obs_fields_list = []
    target_fields_list = []
    ## query in document
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"][1:2] )
    ## document in query
    obs_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"][1:2] )
    target_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    ngrams = [1,2,3,12,123][:3]
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            for ngram in ngrams:
                param_list = [ngram, aggregation_mode]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:25,代码来源:feature_intersect_position.py


示例3: run_tsne_lsa_ngram

def run_tsne_lsa_ngram():
    logname = "generate_feature_tsne_lsa_ngram_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfAll.drop(["product_attribute_list"], inplace=True, axis=1)

    generators = [TSNE_LSA_Word_Ngram, TSNE_LSA_Char_Ngram]
    ngrams_list = [[1,2,3], [2,3,4,5]]
    ngrams_list = [[1,2,3], [4]]
    obs_fields = ["search_term", "search_term_alt", "search_term_auto_corrected", "product_title", "product_description"]
    for generator,ngrams in zip(generators, ngrams_list):
        for ngram in ngrams:
            param_list = [ngram, config.SVD_DIM, config.SVD_N_ITER]
            sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger, force_corr=True)
            sf.go()

    generators = [TSNE_LSA_Word_Ngram_Pair]
    ngrams = [1, 2]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_description"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for ngram in ngrams:
            for generator in generators:
                param_list = [ngram, config.SVD_DIM, config.SVD_N_ITER]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger, force_corr=True)
                pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:28,代码来源:feature_vector_space.py


示例4: main

def main():
    logname = "generate_feature_group_relevance_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfTrain = dfAll.iloc[:TRAIN_SIZE].copy()

    ## run python3 splitter.py first
    split = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR)
    n_iter = len(split)

    ## for cv
    for i in range(n_iter):
        trainInd, validInd = split[i][0], split[i][1]
        dfTrain2 = dfTrain.iloc[trainInd].copy()
        sub_feature_dir = "%s/Run%d" % (config.FEAT_DIR, i+1)

        obs_fields = ["search_term", "product_title"][1:]
        aggregation_mode = ["mean", "std", "max", "min", "median", "size"]
        param_list = [dfAll["id"], dfTrain2, aggregation_mode]
        sf = StandaloneFeatureWrapper(GroupRelevance, dfAll, obs_fields, param_list, sub_feature_dir, logger)
        sf.go()

    ## for all
    sub_feature_dir = "%s/All" % (config.FEAT_DIR)
    obs_fields = ["search_term", "product_title"][1:]
    aggregation_mode = ["mean", "std", "max", "min", "median", "size"]
    param_list = [dfAll["id"], dfTrain, aggregation_mode]
    sf = StandaloneFeatureWrapper(GroupRelevance, dfAll, obs_fields, param_list, sub_feature_dir, logger)
    sf.go()
开发者ID:Anhmike,项目名称:Kaggle_HomeDepot,代码行数:29,代码来源:feature_group_relevance.py


示例5: run_count

def run_count():
    logname = "generate_feature_first_last_ngram_count_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    generators = [
        FirstIntersectCount_Ngram, 
        LastIntersectCount_Ngram, 
        FirstIntersectRatio_Ngram, 
        LastIntersectRatio_Ngram, 
    ]

    obs_fields_list = []
    target_fields_list = []
    ## query in document
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    ## document in query
    obs_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    target_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    ngrams = [1,2,3,12,123][:3]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            for ngram in ngrams:
                param_list = [ngram]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:27,代码来源:feature_first_last_ngram.py


示例6: main

def main(options):
    logname = "[[email protected]%s]_[[email protected]%s]_hyperopt_%s.log"%(
        options.feature_name, options.learner_name, time_utils._timestamp())
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    optimizer = TaskOptimizer(options.task_mode, options.learner_name, 
        options.feature_name, logger, options.max_evals, verbose=True, refit_once=options.refit_once)
    optimizer.run()
开发者ID:yitang,项目名称:Kaggle_HomeDepot,代码行数:7,代码来源:task.py


示例7: main

def main(which):
    logname = "generate_feature_stat_cooc_tfidf_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    generators = []
    for w in which.split(","):
        if w == "tf":
            generators.append( StatCoocTF_Ngram )
        elif w == "norm_tf":
            generators.append( StatCoocNormTF_Ngram )
        elif w == "tfidf":
            generators.append( StatCoocTFIDF_Ngram )
        elif w == "norm_tfidf":
            generators.append( StatCoocNormTFIDF_Ngram )
        elif w == "bm25":
            generators.append( StatCoocBM25_Ngram )


    obs_fields_list = []
    target_fields_list = []
    ## query in document
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    ## document in query
    obs_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    target_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    ngrams = [1,2,3,12,123][:3]
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            for ngram in ngrams:
                param_list = [ngram, aggregation_mode]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()


    obs_fields_list = []
    target_fields_list = []
    ## query in document
    obs_fields_list.append( ["search_term_product_name"] )
    target_fields_list.append( ["product_title_product_name"] )
    ngrams = [1,2]
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            for ngram in ngrams:
                if ngram == 2:
                    # since product_name is of length 2, it makes no difference 
                    # for various aggregation as there is only one item
                    param_list = [ngram, "mean"]
                else:
                    param_list = [ngram, aggregation_mode]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:55,代码来源:feature_stat_cooc_tfidf.py


示例8: __init__

 def __init__(self, feature_dict, feature_name, feature_suffix=".pkl", corr_threshold=0):
     self.feature_name = feature_name
     self.feature_dict = feature_dict
     self.feature_suffix = feature_suffix
     self.corr_threshold = corr_threshold
     self.feature_names_basic = []
     self.feature_names_cv = []
     self.basic_only = 0
     logname = "feature_combiner_%s_%s.log"%(feature_name, time_utils._timestamp())
     self.logger = logging_utils._get_logger(config.LOG_DIR, logname)
     self.splitter = splitter_level1
     self.n_iter = n_iter
开发者ID:MrSnark,项目名称:Kaggle_HomeDepot,代码行数:12,代码来源:feature_combiner.py


示例9: run_compression_distance

def run_compression_distance():
    logname = "generate_feature_compression_distance_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        param_list = []
        pf = PairwiseFeatureWrapper(CompressionDistance, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
        pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:13,代码来源:feature_distance.py


示例10: main

def main():
    logname = "generate_feature_basic_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    ## basic
    generators = [DocId, DocLen, DocFreq, DocEntropy, DigitCount, DigitRatio]
    obs_fields = ["search_term", "product_title", "product_description", 
                "product_attribute", "product_brand", "product_color"]
    for generator in generators:
        param_list = []
        sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
        sf.go()

    ## for product_uid
    generators = [DocIdEcho, DocFreq, ProductUidDummy1, ProductUidDummy2, ProductUidDummy3]
    obs_fields = ["product_uid"]
    for generator in generators:
        param_list = []
        sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
        sf.go()

    ## unique count
    generators = [UniqueCount_Ngram, UniqueRatio_Ngram]
    obs_fields = ["search_term", "product_title", "product_description", 
    "product_attribute", "product_brand", "product_color"]
    ngrams = [1,2,3]
    for generator in generators:
        for ngram in ngrams:
            param_list = [ngram]
            sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
            sf.go()

    ## for product_attribute_list
    generators = [
        AttrCount, 
        AttrBulletCount, 
        AttrBulletRatio, 
        AttrNonBulletCount, 
        AttrNonBulletRatio,
        AttrHasProductHeight,
        AttrHasProductWidth,
        AttrHasProductLength,
        AttrHasProductDepth,
        AttrHasIndoorOutdoor,
    ]
    obs_fields = ["product_attribute_list"]
    for generator in generators:
        param_list = []
        sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
        sf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:51,代码来源:feature_basic.py


示例11: run_char_dist_sim

def run_char_dist_sim():
    logname = "generate_feature_char_dist_sim_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfAll.drop(["product_attribute_list"], inplace=True, axis=1)
    
    generators = [CharDistribution_Ratio, CharDistribution_CosineSim, CharDistribution_KL]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_description", "product_attribute"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            param_list = []
            pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
            pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:16,代码来源:feature_vector_space.py


示例12: main

def main():
    logname = "generate_feature_doc2vec_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    #### NOTE: use data BEFORE STEMMING
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED)

    doc2vec_model_dirs = []
    model_prefixes = []
    ## doc2vec model trained with Homedepot dataset: brand/color/obs/title/description
    doc2vec_model_dirs.append( config.DOC2VEC_MODEL_DIR + "/Homedepot-doc2vec-D%d-min_count%d.model"%(config.EMBEDDING_DIM, config.EMBEDDING_MIN_COUNT) )
    model_prefixes.append( "Homedepot" )
    for doc2vec_model_dir, model_prefix in zip(doc2vec_model_dirs, model_prefixes):
        ## load model
        try:
            if ".bin" in doc2vec_model_dir:
                doc2vec_model = gensim.models.Doc2Vec.load_word2vec_format(doc2vec_model_dir, binary=True)
            if ".txt" in doc2vec_model_dir:
                doc2vec_model = gensim.models.Doc2Vec.load_word2vec_format(doc2vec_model_dir, binary=False)
            else:
                doc2vec_model = gensim.models.Doc2Vec.load(doc2vec_model_dir)
                doc2vec_model_sent_label = pkl_utils._load(doc2vec_model_dir+".sent_label")
        except:
            continue

        # ## standalone (not used in model building)
        # obs_fields = ["search_term", "search_term_alt", "product_title", "product_description", "product_attribute"]
        # generator = Doc2Vec_Vector
        # param_list = [doc2vec_model, doc2vec_model_sent_label, model_prefix]
        # sf = StandaloneFeatureWrapper(generator, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
        # sf.go()

        ## pairwise
        generators = [
            Doc2Vec_CosineSim, 
            Doc2Vec_RMSE, 
            Doc2Vec_Vdiff,
        ]
        obs_fields_list = []
        target_fields_list = []
        obs_fields_list.append( ["search_term", "search_term_alt"] )
        target_fields_list.append( ["product_title", "product_description", "product_attribute", "product_brand", "product_color"] )
        for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
            for generator in generators:
                param_list = [doc2vec_model, doc2vec_model_sent_label, model_prefix]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:MrSnark,项目名称:Kaggle_HomeDepot,代码行数:46,代码来源:feature_doc2vec.py


示例13: run_ngram_jaccard

def run_ngram_jaccard():
    logname = "generate_feature_ngram_jaccard_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    generators = [JaccardCoef_Ngram, DiceDistance_Ngram]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][:2] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    ngrams = [1,2,3,12,123][:3]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            for ngram in ngrams:
                param_list = [ngram]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:Anhmike,项目名称:Kaggle_HomeDepot,代码行数:17,代码来源:feature_distance.py


示例14: run_tfidf_ngram_cosinesim

def run_tfidf_ngram_cosinesim():
    logname = "generate_feature_tfidf_ngram_cosinesim_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfAll.drop(["product_attribute_list"], inplace=True, axis=1)

    generators = [TFIDF_Word_Ngram_CosineSim, TFIDF_Char_Ngram_CosineSim]
    ngrams_list = [[1,2,3], [2,3,4,5]]
    ngrams_list = [[1,2,3], [4]]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_description", "product_attribute"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator,ngrams in zip(generators, ngrams_list):
            for ngram in ngrams:
                param_list = [ngram]
                pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:19,代码来源:feature_vector_space.py


示例15: run_edit_distance

def run_edit_distance():
    logname = "generate_feature_edit_distance_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)

    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"][1:2] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    ngrams = [1,2,3,12,123][:3]
    aggregation_mode_prev = ["mean", "max", "min", "median"]
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        param_list = []
        PairwiseFeatureWrapper(EditDistance, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
        for ngram in ngrams:
            param_list = [ngram, aggregation_mode_prev, aggregation_mode]
            pf = PairwiseFeatureWrapper(EditDistance_Ngram, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
            pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:19,代码来源:feature_distance.py


示例16: main

def main():
    logname = "generate_feature_query_quality_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)

    obs_corpus = []
    query_suffix = []
    # raw
    dfAll = pkl_utils._load(config.ALL_DATA_RAW)
    obs_corpus.append(dfAll["search_term"].values)
    query_suffix.append("raw")
    # after processing    
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED)
    obs_corpus.append(dfAll["search_term"].values)
    query_suffix.append("lemmatized")
    # after extracting product_name in search_term
    obs_corpus.append(dfAll["search_term_product_name"].values)
    query_suffix.append("product_name")
    if "search_term_auto_corrected" in dfAll.columns:
        # after auto correction
        obs_corpus.append(dfAll["search_term_auto_corrected"].values)
        query_suffix.append("corrected")  
    # after stemming
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    obs_corpus.append(dfAll["search_term"].values)
    query_suffix.append("stemmed")

    y_train = dfAll["relevance"].values[:TRAIN_SIZE]
    for i in range(len(query_suffix)-1):
        for j in range(i+1, len(query_suffix)):
            ext = QueryQuality(obs_corpus[i], obs_corpus[j])
            x = ext.transform()
            dim = 1
            fname = "%s_%s_x_%s_%dD"%(ext._get_feat_name(), query_suffix[i], query_suffix[j], dim)
            pkl_utils._save(os.path.join(config.FEAT_DIR, fname+config.FEAT_FILE_SUFFIX), x)
            corr = np_utils._corr(x[:TRAIN_SIZE], y_train)
            logger.info("%s (%dD): corr = %.6f"%(fname, dim, corr))

    # raw
    dfAll = pkl_utils._load(config.ALL_DATA_RAW)
    obs_fields = ["search_term"]
    param_list = []
    sf = StandaloneFeatureWrapper(IsInGoogleDict, dfAll, obs_fields, param_list, config.FEAT_DIR, logger)
    sf.go()
开发者ID:MrSnark,项目名称:Kaggle_HomeDepot,代码行数:43,代码来源:feature_query_quality.py


示例17: run_lsa_ngram_cooc

def run_lsa_ngram_cooc():
    logname = "generate_feature_lsa_ngram_cooc_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfAll.drop(["product_attribute_list"], inplace=True, axis=1)

    generators = [LSA_Word_Ngram_Cooc]
    obs_ngrams = [1, 2]
    target_ngrams = [1, 2]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_description"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for obs_ngram in obs_ngrams:
            for target_ngram in target_ngrams:
                for generator in generators:
                    param_list = [obs_ngram, target_ngram, config.SVD_DIM, config.SVD_N_ITER]
                    pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
                    pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:20,代码来源:feature_vector_space.py


示例18: main

def main():
    logname = "generate_feature_group_distance_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    dfTrain = dfAll.iloc[:TRAIN_SIZE].copy()

    ## run python3 splitter.py first
    split = pkl_utils._load("%s/splits_level1.pkl"%config.SPLIT_DIR)
    n_iter = len(split)

    relevances_complete = [1, 1.25, 1.33, 1.5, 1.67, 1.75, 2, 2.25, 2.33, 2.5, 2.67, 2.75, 3]
    relevances = [1, 1.33, 1.67, 2, 2.33, 2.67, 3]
    ngrams = [1]
    obs_fields = ["search_term"]
    target_fields = ["product_title", "product_description"]
    aggregation_mode = ["mean", "std", "max", "min", "median"]

    ## for cv
    for i in range(n_iter):
        trainInd, validInd = split[i][0], split[i][1]
        dfTrain2 = dfTrain.iloc[trainInd].copy()
        sub_feature_dir = "%s/Run%d" % (config.FEAT_DIR, i+1)

        for target_field in target_fields:
            for relevance in relevances:
                for ngram in ngrams:
                    param_list = [dfAll["id"], dfTrain2, target_field, relevance, ngram, aggregation_mode]
                    pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger)
                    pf.go()

    ## for all
    sub_feature_dir = "%s/All" % (config.FEAT_DIR)
    for target_field in target_fields:
        for relevance in relevances:
            for ngram in ngrams:
                param_list = [dfAll["id"], dfTrain, target_field, relevance, ngram, aggregation_mode]
                pf = PairwiseFeatureWrapper(GroupRelevance_Ngram_Jaccard, dfAll, obs_fields, [target_field], param_list, sub_feature_dir, logger)
                pf.go()
开发者ID:MrSnark,项目名称:Kaggle_HomeDepot,代码行数:38,代码来源:feature_group_distance.py


示例19: main

def main():
    logname = "generate_feature_wordnet_similarity_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    #### NOTE: use data BEFORE STEMMING
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED)

    generators = [
        WordNet_Path_Similarity,
        WordNet_Lch_Similarity,
        WordNet_Wup_Similarity,
    ]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_description", "product_attribute"] )
    # double aggregation
    aggregation_mode_prev = ["mean", "max", "min", "median"]
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            param_list = [aggregation_mode_prev, aggregation_mode]
            pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
            pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:23,代码来源:feature_wordnet_similarity.py


示例20: main

def main():
    logname = "generate_feature_match_%s.log"%time_utils._timestamp()
    logger = logging_utils._get_logger(config.LOG_DIR, logname)
    dfAll = pkl_utils._load(config.ALL_DATA_LEMMATIZED_STEMMED)
    
    generators = [
        MatchQueryCount, 
        MatchQueryRatio, 
        LongestMatchSize,
        LongestMatchRatio
    ]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_product_name", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_title", "product_title_product_name", "product_description", "product_attribute", "product_brand", "product_color"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            param_list = []
            pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
            pf.go()

    # product_attribute_list
    generators = [
        MatchAttrCount, 
        MatchAttrRatio, 
        IsIndoorOutdoorMatch, 
    ]
    obs_fields_list = []
    target_fields_list = []
    obs_fields_list.append( ["search_term", "search_term_alt", "search_term_auto_corrected"] )
    target_fields_list.append( ["product_attribute_list"] )
    for obs_fields, target_fields in zip(obs_fields_list, target_fields_list):
        for generator in generators:
            param_list = []
            pf = PairwiseFeatureWrapper(generator, dfAll, obs_fields, target_fields, param_list, config.FEAT_DIR, logger)
            pf.go()
开发者ID:amsqr,项目名称:Kaggle_HomeDepot,代码行数:36,代码来源:feature_match.py



注:本文中的utils.logging_utils._get_logger函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python logs.getLogger函数代码示例发布时间:2022-05-26
下一篇:
Python logging_helper.config_logger函数代码示例发布时间:2022-05-26
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap