• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.AttributeDict类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中utils.AttributeDict的典型用法代码示例。如果您正苦于以下问题:Python AttributeDict类的具体用法?Python AttributeDict怎么用?Python AttributeDict使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了AttributeDict类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: encoder

        def encoder(input_, path_name, input_noise_std=0, noise_std=[]):
            h = input_

            logger.info('  0: noise %g' % input_noise_std)
            if input_noise_std > 0.:
                h = h + self.noise_like(h) * input_noise_std

            d = AttributeDict()
            d.unlabeled = self.new_activation_dict()
            d.labeled = self.new_activation_dict()
            d.labeled.z[0] = self.labeled(h)
            d.unlabeled.z[0] = self.unlabeled(h)
            prev_dim = input_dim
            for i, (spec, _, act_f) in layers[1:]:
                d.labeled.h[i - 1], d.unlabeled.h[i - 1] = self.split_lu(h)
                noise = noise_std[i] if i < len(noise_std) else 0.
                curr_dim, z, m, s, h = self.f(h, prev_dim, spec, i, act_f,
                                              path_name=path_name,
                                              noise_std=noise)
                assert self.layer_dims.get(i) in (None, curr_dim)
                self.layer_dims[i] = curr_dim
                d.labeled.z[i], d.unlabeled.z[i] = self.split_lu(z)
                d.unlabeled.s[i] = s
                d.unlabeled.m[i] = m
                prev_dim = curr_dim
            d.labeled.h[i], d.unlabeled.h[i] = self.split_lu(h)
            return d
开发者ID:fulldecent,项目名称:LRE,代码行数:27,代码来源:ladder.py


示例2: decoder

    def decoder(self, clean, corr):
        est = self.new_activation_dict()
        costs = AttributeDict()
        costs.denois = AttributeDict()
        for i, ((_, spec), act_f) in self.layers[::-1]:
            z_corr = corr.unlabeled.z[i]
            z_clean = clean.unlabeled.z[i]
            z_clean_s = clean.unlabeled.s.get(i)
            z_clean_m = clean.unlabeled.m.get(i)

            # It's the last layer
            if i == len(self.layers) - 1:
                fspec = (None, None)
                ver = corr.unlabeled.h[i]
                ver_dim = self.layer_dims[i]
                top_g = True
            else:
                fspec = self.layers[i + 1][1][0]
                ver = est.z.get(i + 1)
                ver_dim = self.layer_dims.get(i + 1)
                top_g = False

            z_est = self.g(z_lat=z_corr,
                           z_ver=ver,
                           in_dims=ver_dim,
                           out_dims=self.layer_dims[i],
                           num=i,
                           fspec=fspec,
                           top_g=top_g)

            # The first layer
            if z_clean_s:
                z_est_norm = (z_est - z_clean_m) / z_clean_s
            else:
                z_est_norm = z_est

            se = SquaredError('denois' + str(i))
            costs.denois[i] = se.apply(z_est_norm.flatten(2),
                                       z_clean.flatten(2)) \
                / np.prod(self.layer_dims[i], dtype=floatX)
            costs.denois[i].name = 'denois' + str(i)

            # Store references for later use
            est.z[i] = z_est
            est.h[i] = apply_act(z_est, act_f)
            est.s[i] = None
            est.m[i] = None
        return est, costs
开发者ID:codeaudit,项目名称:ladder_network,代码行数:48,代码来源:ladder.py


示例3: decoder

    def decoder(self, clean, corr, batch_size):
        get_unlabeled = lambda x: x[batch_size:] if x is not None else x
        est = self.new_activation_dict()
        costs = AttributeDict()
        costs.denois = AttributeDict()
        for i, ((_, spec), act_f) in self.layers[::-1]:
            z_corr = get_unlabeled(corr.z[i])
            z_clean = get_unlabeled(clean.z[i])
            z_clean_s = get_unlabeled(clean.s.get(i))
            z_clean_m = get_unlabeled(clean.m.get(i))

            # It's the last layer
            if i == len(self.layers) - 1:
                fspec = (None, None)
                ver = get_unlabeled(corr.h[i])
                ver_dim = self.layer_dims[i]
                top_g = True
            else:
                fspec = self.layers[i + 1][1][0]
                ver = est.z.get(i + 1)
                ver_dim = self.layer_dims.get(i + 1)
                top_g = False

            z_est = self.g(
                z_lat=z_corr, z_ver=ver, in_dims=ver_dim, out_dims=self.layer_dims[i], num=i, fspec=fspec, top_g=top_g
            )

            # For semi-supervised version
            if z_clean_s:
                z_est_norm = (z_est - z_clean_m) / z_clean_s
            else:
                z_est_norm = z_est
            z_est_norm = z_est

            se = SquaredError("denois" + str(i))
            costs.denois[i] = se.apply(z_est_norm.flatten(2), z_clean.flatten(2)) / np.prod(
                self.layer_dims[i], dtype=floatX
            )
            costs.denois[i].name = "denois" + str(i)

            # Store references for later use
            est.z[i] = z_est
            est.h[i] = apply_act(z_est, act_f)
            est.s[i] = None
            est.m[i] = None
        return est, costs
开发者ID:mohammadpz,项目名称:ladder_network,代码行数:46,代码来源:ladder.py


示例4: get_mnist_data_dict

def get_mnist_data_dict(unlabeled_samples, valid_set_size, test_set=False):
    train_set = MNIST(("train",))
    # Make sure the MNIST data is in right format
    train_set.data_sources = (
        (train_set.data_sources[0] / 255.).astype(numpy.float32),
        train_set.data_sources[1])

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    rng = numpy.random.RandomState(seed=1)
    rng.shuffle(all_ind)

    data = AttributeDict()

    # Choose the training set
    data.train = train_set
    data.train_ind = all_ind[:unlabeled_samples]

    # Then choose validation set from the remaining indices
    data.valid = train_set
    data.valid_ind = numpy.setdiff1d(all_ind, data.train_ind)[:valid_set_size]
    logger.info('Using %d examples for validation' % len(data.valid_ind))
    # Only touch test data if requested
    if test_set:
        data.test = MNIST(("test",))
        data.test_ind = numpy.arange(data.test.num_examples)

    return data
开发者ID:codeaudit,项目名称:ladder_network,代码行数:28,代码来源:datasets.py


示例5: load_and_log_params

def load_and_log_params(cli_params):
    cli_params = AttributeDict(cli_params)
    if cli_params.get('load_from'):
        p = load_df(cli_params.load_from, 'params').to_dict()[0]
        p = AttributeDict(p)
        for key in cli_params.iterkeys():
            if key not in p:
                p[key] = None
        new_params = cli_params
        loaded = True
    else:
        p = cli_params
        new_params = {}
        loaded = False

        # Make dseed seed unless specified explicitly
        if p.get('dseed') is None and p.get('seed') is not None:
            p['dseed'] = p['seed']

    logger.info('== COMMAND LINE ==')
    logger.info(' '.join(sys.argv))

    logger.info('== PARAMETERS ==')
    for k, v in p.iteritems():
        if new_params.get(k) is not None:
            p[k] = new_params[k]
            replace_str = "<- " + str(new_params.get(k))
        else:
            replace_str = ""
        logger.info(" {:20}: {:<20} {}".format(k, v, replace_str))
    return p, loaded
开发者ID:lude-ma,项目名称:ladder,代码行数:31,代码来源:run.py


示例6: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {"cifar10": (CIFAR10, 40000), "mnist": (MNIST, 50000)}[p.dataset]

    # Allow overriding the default from command line
    if p.get("unlabeled_samples") is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class("train")

    # Make sure the MNIST data is in right format
    if p.dataset == "mnist":
        d = train_set.data_sources[train_set.sources.index("features")]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), "Make sure data is in float format and in range 0 to 1"

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get("dseed"):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[: p.valid_set_size]
    logger.info("Using %d examples for validation" % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class("test")
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index("features")].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, "Need %d whitening dimensions, not %d" % (
            numpy.product(in_dim),
            p.whiten_zca,
        )
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index("features")]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info("Whitening using %d ZCA components" % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
开发者ID:MultiPath,项目名称:ladder,代码行数:59,代码来源:run.py


示例7: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {
        'cifar10': (CIFAR10, 40000),
        'mnist': (MNIST, 50000),
        'reddit': (SubredditTopPhotosFeatures22, 20000)
    }[p.dataset]

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class(("train",))

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class(("test",))
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
开发者ID:youralien,项目名称:ladder,代码行数:57,代码来源:run.py


示例8: _load_extends_settings

    def _load_extends_settings(self, section_name, store):
        """
        Loads all settings from other template(s) specified by a section's
        'extends' setting.

        This method walks a dependency tree of sections from bottom up. Each
        step is a group of settings for a section in the form of a dictionary.
        A 'master' dictionary is updated with the settings at each step. This
        causes the next group of settings to override the previous, and so on.
        The 'section_name' settings are at the top of the dependency tree.
        """
        section = store[section_name]
        extends = section.get('extends')
        if extends is None:
            return
        if DEBUG_CONFIG:
            log.debug('%s extends %s' % (section_name, extends))
        extensions = [section]
        while True:
            extends = section.get('extends', None)
            if not extends:
                break
            try:
                section = store[extends]
                if section in extensions:
                    exts = ', '.join([self._get_section_name(x['__name__'])
                                      for x in extensions])
                    raise exception.ConfigError(
                        "Cyclical dependency between sections %s. "
                        "Check your EXTENDS settings." % exts)
                extensions.insert(0, section)
            except KeyError:
                raise exception.ConfigError(
                    "%s can't extend non-existent section %s" %
                    (section_name, extends))
        transform = AttributeDict()
        for extension in extensions:
            transform.update(extension)
        store[section_name] = transform
开发者ID:fauziharoon,项目名称:metapathways2,代码行数:39,代码来源:config.py


示例9: doPreprocessing

    def doPreprocessing(self):
        results = AttributeDict()
        results.dataset = []
        for i in range(len(self.params.dataset)):
            # shall we just load it?
            filename = '%s/preprocessing-%s%s.mat' % (self.params.dataset[i].savePath, self.params.dataset[i].saveFile, self.params.saveSuffix)
            if self.params.dataset[i].preprocessing.load and os.path.isfile(filename):         
                r = loadmat(filename)
                print('Loading file %s ...' % filename)
                results.dataset[i].preprocessing = r.results_preprocessing
            else:
                # or shall we actually calculate it?
                p = deepcopy(self.params)    
                p.dataset = self.params.dataset[i]
                d = AttributeDict()
                d.preprocessing = np.copy(SeqSLAM.preprocessing(p))
                results.dataset.append(d)
    
                if self.params.dataset[i].preprocessing.save:
                    results_preprocessing = results.dataset[i].preprocessing
                    savemat(filename, {'results_preprocessing': results_preprocessing})

        return results
开发者ID:breezeflutter,项目名称:pySeqSLAM,代码行数:23,代码来源:seqslam.py


示例10: encoder

    def encoder(self, input_, path_name, input_noise_std, noise_std):
        h = input_
        h = h + (self.rstream.normal(size=h.shape).astype(floatX) *
                 input_noise_std)

        d = AttributeDict()
        d.unlabeled = self.new_activation_dict()
        d.labeled = self.new_activation_dict()
        d.labeled.z[0], d.unlabeled.z[0] = self.split_lu(h)
        prev_dim = self.input_dim
        for i, (spec, act_f) in self.layers[1:]:
            d.labeled.h[i - 1], d.unlabeled.h[i - 1] = self.split_lu(h)
            noise = noise_std[i] if i < len(noise_std) else 0.
            curr_dim, z, m, s, h = self.f(h, prev_dim, spec, i, act_f,
                                          path_name=path_name,
                                          noise_std=noise)
            self.layer_dims[i] = curr_dim
            d.labeled.z[i], d.unlabeled.z[i] = self.split_lu(z)
            d.unlabeled.s[i] = s
            d.unlabeled.m[i] = m
            prev_dim = curr_dim
        d.labeled.h[i], d.unlabeled.h[i] = self.split_lu(h)

        return d
开发者ID:codeaudit,项目名称:ladder_network,代码行数:24,代码来源:ladder.py


示例11: setup_data

def setup_data(p, test_set=False):
    dataset_class, training_set_size = {
        'cifar10': (CIFAR10, 40000),
        'mnist': (MNIST, 50000),
    }[p.dataset]

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class("train")

    # Make sure the MNIST data is in right format
    if p.dataset == 'mnist':
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class("test")
        d.test_ind = numpy.arange(d.test.num_examples)

    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    return in_dim, d
开发者ID:msevrens,项目名称:ladder-1,代码行数:49,代码来源:run.py


示例12: AttributeDict

import sys
from utils import AttributeDict
from tagger_exp import TaggerExperiment

p = AttributeDict()

p.encoder_proj = (3000, 2000, 1000)
p.input_noise = 0.2
p.class_cost_x = 0.
p.zhat_init_value = 0.5

p.n_iterations = 3
p.n_groups = 4
p.lr = 0.001
p.labeled_samples = 1000
p.save_freq = 50
p.seed = 1
p.num_epochs = 150
p.batch_size = 100
p.valid_batch_size = 100
p.objects_per_sample = 2

p.dataset = 'freq20-2mnist'
p.input_type = 'continuous'

if __name__ == '__main__':
    if len(sys.argv) == 2 and sys.argv[1] == '--pretrain':
        p.save_to = 'freq20-2mnist-pretraining'
        experiment = TaggerExperiment(p)
        experiment.train()
    elif len(sys.argv) == 3 and sys.argv[1] == '--continue':
开发者ID:CuriousAI,项目名称:tagger,代码行数:31,代码来源:runner-freq20-2mnist.py


示例13: AttributeDict

from utils import AttributeDict
from tagger_exp import TaggerExperiment

p = AttributeDict()

p.encoder_proj = (2000, 1000, 500)
p.input_noise = 0.2
p.class_cost_x = 0
p.zhat_init_value = 0.26  # mean of the input data.

p.n_iterations = 3
p.n_groups = 4
p.lr = 0.0004
p.seed = 10
p.num_epochs = 100
p.batch_size = 100
p.valid_batch_size = 100

p.dataset = 'shapes50k20x20'
p.input_type = 'binary'

p.save_to = 'shapes50k20x20'

if __name__ == '__main__':
    experiment = TaggerExperiment(p)
    experiment.train()
开发者ID:CuriousAI,项目名称:tagger,代码行数:26,代码来源:runner-shapes50k20x20.py


示例14: demo

def demo():

    # set the parameters

    # start with default parameters
    params = defaultParameters()    
    
    # Nordland spring dataset
    ds = AttributeDict()
    ds.name = 'spring'
    
    try:
        path = os.environ['DATASET_1_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/spring'
        print "Warning: Environment variable DATASET_1_PATH not found! Trying '"+path+"'"
    ds.imagePath = path
    
    ds.prefix='images-'
    ds.extension='.png'
    ds.suffix=''
    ds.imageSkip = 100     # use every n-nth image
    ds.imageIndices = range(1, 35700, ds.imageSkip)    
    ds.savePath = 'results'
    ds.saveFile = '%s-%d-%d-%d' % (ds.name, ds.imageIndices[0], ds.imageSkip, ds.imageIndices[-1])
    
    ds.preprocessing = AttributeDict()
    ds.preprocessing.save = 1
    ds.preprocessing.load = 0 #1
    #ds.crop=[1 1 60 32]  # x0 y0 x1 y1  cropping will be done AFTER resizing!
    ds.crop=[]
    
    spring=ds

    ds2 = deepcopy(ds)
    # Nordland winter dataset
    ds2.name = 'winter'
    #ds.imagePath = '../datasets/nordland/64x32-grayscale-1fps/winter'
    try:
        path = os.environ['DATASET_2_PATH']
    except:
        path = '../datasets/nordland/64x32-grayscale-1fps/winter'
        print "Warning: Environment variable DATASET_2_PATH not found! Trying '"+path+"'"
    ds2.saveFile = '%s-%d-%d-%d' % (ds2.name, ds2.imageIndices[0], ds2.imageSkip, ds2.imageIndices[-1])
    # ds.crop=[5 1 64 32]
    ds2.crop=[]
    
    winter=ds2      

    params.dataset = [spring, winter]

    # load old results or re-calculate?
    params.differenceMatrix.load = 0
    params.contrastEnhanced.load = 0
    params.matching.load = 0
    
    # where to save / load the results
    params.savePath='results'
              
    ## now process the dataset
    ss = SeqSLAM(params)  
    t1=time.time()
    results = ss.run()
    t2=time.time()          
    print "time taken: "+str(t2-t1)
    
    ## show some results
    if len(results.matches) > 0:
        m = results.matches[:,0] # The LARGER the score, the WEAKER the match.
        thresh=0.9  # you can calculate a precision-recall plot by varying this threshold
        m[results.matches[:,1]>thresh] = np.nan # remove the weakest matches
        plt.plot(m,'.')      # ideally, this would only be the diagonal
        plt.title('Matchings')   
        plt.show()    
    else:
        print "Zero matches"          
开发者ID:breezeflutter,项目名称:pySeqSLAM,代码行数:76,代码来源:demo.py


示例15: setup_data

def setup_data(p, test_set=False):
    if p.dataset in ['cifar10','mnist']:
        dataset_class, training_set_size = {
            'cifar10': (CIFAR10, 40000),
            'mnist': (MNIST, 50000),
        }[p.dataset]
    else:
        from fuel.datasets import H5PYDataset
        from fuel.utils import find_in_data_path
        from functools import partial
        fn=p.dataset
        fn=os.path.join(fn, fn + '.hdf5')
        def dataset_class(which_sets):
            return H5PYDataset(file_or_path=find_in_data_path(fn),
                               which_sets=which_sets,
                               load_in_memory=True)
        training_set_size = None

    train_set = dataset_class(["train"])

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None and p.unlabeled_samples >= 0:
        training_set_size = p.unlabeled_samples
    elif training_set_size is None:
        training_set_size = train_set.num_examples

    # Make sure the MNIST data is in right format
    if p.dataset == 'mnist':
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class(["test"])
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
开发者ID:fulldecent,项目名称:LRE,代码行数:76,代码来源:run.py


示例16: setup_data

def setup_data(p, test_set=False):
    dataset_class = {
        'cifar10': (CIFAR10),
        'jos' : (JOS),
        'mnist': (MNIST),
    }[p.dataset]

    training_set_size = p.unlabeled_samples 

    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    train_set = dataset_class(["train"])

    # Make sure the MNIST data is in right format
    if p.dataset == 'mnist':
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    d.train_ind = all_ind[:training_set_size]

    # Then choose validation set from the remaining indices
    d.valid = train_set
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]
    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # Only touch test data if requested
    if test_set:
        d.test = dataset_class(["test"])
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    fn = find_in_data_path(train_set.filename)
    #iprint(fn)
    s1 = H5PYDataset(fn, ("train",))
    handle = s1.open()
    in_dim =  s1.get_data(handle,slice(0,1))[0].shape[1:]
    s1.close(handle)
    #in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=list(i))[d.sources.index('features')]
        # Fuel provides Cifar in uint8, convert to float32
        data = numpy.require(data, dtype=numpy.float32)
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
开发者ID:josvr,项目名称:ladder,代码行数:71,代码来源:run.py


示例17: setup_data

def setup_data(p, test_set=False):

    # CIFAR10与MNIST都是封装过后的HDF5数据集
    # p.dataset为命令行传入的参数,在cifar10与mnist之间选择其一
    dataset_class, training_set_size = {
        'cifar10': (CIFAR10, 40000),
        'mnist': (MNIST, 50000),
    }[p.dataset]

    # 可以通过命令行指定为标注样本的大小
    # Allow overriding the default from command line
    if p.get('unlabeled_samples') is not None:
        training_set_size = p.unlabeled_samples

    # 选出mnist数据集里面的train子集
    train_set = dataset_class("train")

    # Make sure the MNIST data is in right format
    # 对minst进行数据检查,查看是否所有值都在0-1之间且都为float
    if p.dataset == 'mnist':
        # features大小为60000*1*28*28,num_examples*channel*height*weight,minst为灰度图片所以channel=1
        d = train_set.data_sources[train_set.sources.index('features')]
        assert numpy.all(d <= 1.0) and numpy.all(d >= 0.0), \
            'Make sure data is in float format and in range 0 to 1'

    # 随机打乱样本顺序
    # Take all indices and permutate them
    all_ind = numpy.arange(train_set.num_examples)
    if p.get('dseed'):
        # 通过dseed制作一个随机器,用于打乱样本编号
        rng = numpy.random.RandomState(seed=p.dseed)
        rng.shuffle(all_ind)

    d = AttributeDict()

    # Choose the training set
    d.train = train_set
    # 此时index应该都被打乱
    # 取出前training_set_size个数的样本做为训练集(的index)
    d.train_ind = all_ind[:training_set_size]

    # 选出一部分数据作为验证集
    # Then choose validation set from the remaining indices
    d.valid = train_set
    # 全部的数据集中去掉训练用的样本,剩下的作为验证集
    d.valid_ind = numpy.setdiff1d(all_ind, d.train_ind)[:p.valid_set_size]

    logger.info('Using %d examples for validation' % len(d.valid_ind))

    # 如果有测试数据的话,生成测试数据的index
    # Only touch test data if requested
    if test_set:
        d.test = dataset_class("test")
        d.test_ind = numpy.arange(d.test.num_examples)

    # Setup optional whitening, only used for Cifar-10
    # 计算特征值的维度,shape[1:]:获取第一个样本的维度
    in_dim = train_set.data_sources[train_set.sources.index('features')].shape[1:]
    if len(in_dim) > 1 and p.whiten_zca > 0:
        assert numpy.product(in_dim) == p.whiten_zca, \
            'Need %d whitening dimensions, not %d' % (numpy.product(in_dim),
                                                      p.whiten_zca)

    # 归一化参数如果不为空,创建归一化类
    cnorm = ContrastNorm(p.contrast_norm) if p.contrast_norm != 0 else None

    def get_data(d, i):
        data = d.get_data(request=i)[d.sources.index('features')]

        # Fuel provides Cifar in uint8, convert to float32
        # 检查data集合中的item是否符合float32类型
        data = numpy.require(data, dtype=numpy.float32)
        # TODO ContrastNorm.apply
        return data if cnorm is None else cnorm.apply(data)

    if p.whiten_zca > 0:
        logger.info('Whitening using %d ZCA components' % p.whiten_zca)
        # TODO ZCA
        whiten = ZCA()
        whiten.fit(p.whiten_zca, get_data(d.train, d.train_ind))
    else:
        whiten = None

    return in_dim, d, whiten, cnorm
开发者ID:ryukinkou,项目名称:ladder_customized,代码行数:84,代码来源:run.py


示例18: __init__

 def __init__(self, *args, **kwargs):
     AttributeDict.__init__(self)
     
     self.env  = Environment.getInstance()
     self.resourceType = self.__class__.__name__
     self.isUpdated = False
     
     seen = set()
     
     if not hasattr(self, '_schema'):
         raise Fail("Resource failed to define a valid _schema")
     
     # union global schema with local schema
     schema = copy.deepcopy(self._schema)
     for key in self.s_globalSchema:
         if not key in schema:
             schema[key] = self.s_globalSchema[key]
     
     resolvedArgs = { }
     keys = schema.keys()
     keysLen = len(keys)
     index = 0
     
     # resolve unnamed arguments with names corresponding to the order 
     # they were passed to Resource's ctor and their relative definitions 
     # in the subclass' ResourceArgumentSchema (which is an OrderedDict, 
     # so as to retain this ordering information).
     for arg in args:
         if index < keysLen:
             key = keys[index]
             resolvedArgs[keys[index]] = arg
         else:
             raise InvalidArgument("Invalid unnamed argument %s provided to resource %s" % (arg, str(self)))
         
         index += 1
     
     for arg in kwargs:
         if arg in resolvedArgs:
             raise InvalidArgument("Invalid mixture of named and unnamed arguments provided to resource %s, possibly around argument %s" % (str(self), arg))
         else:
             resolvedArgs[arg] = kwargs[arg]
     
     utils.log("Initializing resource '%s' with args: %s" % (self.resourceType, resolvedArgs))
     
     # validate resource arguments
     output = schema.validate(resolvedArgs)
     for key in output:
         self[key] = output[key]
     
     self.subscriptions = {
         'immediate' : set(), 
         'delayed' : set()
     }
     
     for sub in self.subscribes:
         if len(sub) == 2:
             action, resource = sub
             immediate = False
         else:
             action, resource, immediate = sub
         
         resource.subscribe(action, self, immediate)
     
     for sub in self.notifies:
         self.subscribe(*sub)
     
     self._validate()
     self._register()
     utils.log("Added new resource '%s'" % (str(self), ))
开发者ID:Stamped,项目名称:stamped-bootstrap,代码行数:69,代码来源:resource.py


示例19: apply_tagger

    def apply_tagger(self, x, apply_noise, y=None):
        """ Build one path of Tagger """
        mb_size = x.shape[1]
        input_shape = (self.p.n_groups, mb_size) + self.in_dim
        in_dim = np.prod(self.in_dim)

        # Add noise
        x_corr = self.corrupt(x) if apply_noise else x
        # Repeat input
        x_corr = T.repeat(x_corr, self.p.n_groups, 0)

        # Compute v
        if self.p.input_type == 'binary':
            v = None
        elif self.p.input_type == 'continuous':
            v = self.weight(1., 'v')
            v = v * T.alloc(1., *input_shape)
            # Cap to positive range
            v = nn.exp_inv_sinh(v)

        d = AttributeDict()

        if y:
            d.pred = []
            d.class_error, d.class_cost = [], []
            # here we have the book-keeping of z and m for the visualizations.
            d.z = []
            d.m = []
        else:
            d.denoising_cost, d.ami_score, d.ami_score_per_sample = [], [], []

        assert self.p.n_iterations >= 1

        # z_hat is the value for the next iteration of tagger.
        # z is the current iteration tagger input
        # m is the current iteration mask input
        # m_hat is the value for the next iteration of tagger.
        # m_lh is the mask likelihood.
        # z_delta is the gradient of z, which depends on x, z and m.
        for step in xrange(self.p.n_iterations):
            # Encoder
            # =======

            # Compute m, z and z_hat_pre_bin
            if step == 0:
                # No values from previous iteration, so let's make them up
                m, z = self.init_m_z(input_shape)
                z_hat_pre_bin = None
                # let's keep in the bookkeeping for the visualizations.
                if y:
                    d.z.append(z)
                    d.m.append(m)
            else:
                # Feed in the previous iteration's estimates
                z = z_hat
                m = m_hat

            # Compute m_lh
            m_lh = self.m_lh(x_corr, z, v)
            z_delta = self.f_z_deriv(x_corr, z, m)

            z_tilde = z_hat_pre_bin if z_hat_pre_bin is not None else z
            # Concatenate all inputs
            inputs = [z_tilde, z_delta, m, m_lh]
            inputs = T.concatenate(inputs, axis=2)

            # Projection, batch-normalization and activation to a hidden layer
            z = self.proj(inputs, in_dim * 4, self.p.encoder_proj[0])

            z -= z.mean((0, 1), keepdims=True)
            z /= T.sqrt(z.var((0, 1), keepdims=True) + np.float32(1e-10))

            z += self.bias(0.0 * np.ones(self.p.encoder_proj[0]), 'b')
            h = self.apply_act(z, 'relu')

            # The first dimension is the group. Let's flatten together with
            # minibatch in order to have parametric mapping compute all groups
            # in parallel
            h, undo_flatten = flatten_first_two_dims(h)

            # Parametric Mapping
            # ==================

            self.ladder.apply(None, self.y, h)
            ladder_encoder_output = undo_flatten(self.ladder.act.corr.unlabeled.h[len(self.p.encoder_proj) - 1])
            ladder_decoder_output = undo_flatten(self.ladder.act.est.z[0])

            # Decoder
            # =======

            # compute z_hat
            z_u = self.proj(ladder_decoder_output, self.p.encoder_proj[0], in_dim, scope='z_u')

            z_u -= z_u.mean((0, 1), keepdims=True)
            z_u /= T.sqrt(z_u.var((0, 1), keepdims=True) + np.float32(1e-10))

            z_hat = self.weight(np.ones(in_dim), 'c1') * z_u + self.bias(np.zeros(in_dim), 'b1')
            z_hat = z_hat.reshape(input_shape)

            # compute m_hat
#.........这里部分代码省略.........
开发者ID:CuriousAI,项目名称:tagger,代码行数:101,代码来源:tagger.py


示例20: setup_data

def setup_data(p, use_unlabeled=True, use_labeled=True):
    assert use_unlabeled or use_labeled, 'Cannot train without cost'
    dataset_class = DATASETS[p.dataset]
    dataset = dataset_class(p)
    train_ind = dataset.trn.ind

    if 'labeled_samples' not in p or p.labeled_samples == 0:
        n_labeled = len(train_ind)
    else:
        n_labeled = p.labeled_samples

    if 'unlabeled_samples' not in p:
        n_unlabeled = len(train_ind)
    else:
        n_unlabeled = p.unlabeled_samples

    assert p.batch_size <= n_labeled, "batch size too large"
    assert len(train_ind) >= n_labeled
    assert len(train_ind) >= n_unlabeled, "not enough training samples"
    assert n_labeled <= n_unlabeled, \
        "at least as many unlabeled  

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.BaseWS类代码示例发布时间:2022-05-26
下一篇:
Python utils.Atom_utils类代码示例发布时间:2022-05-26
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap