• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.visualize_samples函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中utils.visualize_samples函数的典型用法代码示例。如果您正苦于以下问题:Python visualize_samples函数的具体用法?Python visualize_samples怎么用?Python visualize_samples使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了visualize_samples函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: visualize_attention

 def visualize_attention(result, pre_tag="AAA", post_tag="AAA"):
     seq_len = result[0].shape[0]
     samp_count = result[0].shape[1]
     # get generated predictions
     x_samps = np.zeros((seq_len*samp_count, obs_dim))
     y_samps = np.zeros((seq_len*samp_count, label_dim))
     idx = 0
     for s1 in range(samp_count):
         for s2 in range(seq_len):
             x_samps[idx] = result[0][s2,s1,:obs_dim]
             y_samps[idx] = result[0][s2,s1,obs_dim:]
             idx += 1
     file_name = "{0:s}_traj_xs_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(x_samps, file_name, num_rows=20)
     file_name = "{0:s}_traj_ys_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(y_samps, file_name, num_rows=20)
     # get sequential attention maps
     seq_samps = np.zeros((seq_len*samp_count, x_dim))
     idx = 0
     for s1 in range(samp_count):
         for s2 in range(seq_len):
             seq_samps[idx] = result[1][s2,s1,:x_dim] + result[1][s2,s1,x_dim:]
             idx += 1
     file_name = "{0:s}_traj_att_maps_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=20)
     # get sequential attention maps (read out values)
     seq_samps = np.zeros((seq_len*samp_count, x_dim))
     idx = 0
     for s1 in range(samp_count):
         for s2 in range(seq_len):
             seq_samps[idx] = result[2][s2,s1,:x_dim] + result[2][s2,s1,x_dim:]
             idx += 1
     file_name = "{0:s}_traj_read_outs_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=20)
     return
开发者ID:capybaralet,项目名称:Sequential-Generation,代码行数:35,代码来源:TestRAMBlocks.py


示例2: test_mnist_img

def test_mnist_img(occ_dim=15, drop_prob=0.0):
    #########################################
    # Format the result tag more thoroughly #
    #########################################
    dp_int = int(100.0 * drop_prob)
    result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int)

    ##########################
    # Get some training data #
    ##########################
    rng = np.random.RandomState(1234)
    dataset = 'data/mnist.pkl.gz'
    datasets = load_udm(dataset, as_shared=False, zero_mean=False)
    Xtr = datasets[0][0]
    Xva = datasets[1][0]
    Xtr = to_fX(shift_and_scale_into_01(Xtr))
    Xva = to_fX(shift_and_scale_into_01(Xva))
    tr_samples = Xtr.shape[0]
    va_samples = Xva.shape[0]
    batch_size = 200
    batch_reps = 1
    all_pix_mean = np.mean(np.mean(Xtr, axis=1))
    data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1],)))

    TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli')

    Xva = row_shuffle(Xva)
    # record an estimate of performance on the test set
    xi, xo, xm = construct_masked_data(Xva[:500], drop_prob=drop_prob, \
                                       occ_dim=occ_dim, data_mean=data_mean)
    img_match_on_known, img_match_on_unknown = TM.best_match_img(xo, xm)

    display_count = 100
    # visualize matches on known elements
    Xs = np.zeros((2*display_count, Xva.shape[1]))
    for idx in range(display_count):
        Xs[2*idx] = xi[idx]
        Xs[(2*idx)+1] = img_match_on_known[idx]
    file_name = "{0:s}_SAMPLES_MOK.png".format(result_tag)
    utils.visualize_samples(Xs, file_name, num_rows=20)
    # visualize matches on unknown elements
    Xs = np.zeros((2*display_count, Xva.shape[1]))
    for idx in range(display_count):
        Xs[2*idx] = xi[idx]
        Xs[(2*idx)+1] = img_match_on_unknown[idx]
    file_name = "{0:s}_SAMPLES_MOU.png".format(result_tag)
    utils.visualize_samples(Xs, file_name, num_rows=20)
    return
开发者ID:AjayTalati,项目名称:Sequential-Generation,代码行数:48,代码来源:TestImpTM.py


示例3: process_samples

def process_samples(step_type='add', data_name='MNIST'):
    # sample several interchangeable versions of the model
    if data_name == 'MNIST':
        conditions = [{'occ_dim': 0, 'drop_prob': 0.8}, \
                      {'occ_dim': 16, 'drop_prob': 0.0}]
    if data_name == 'SVHN':
        conditions = [{'occ_dim': 0, 'drop_prob': 0.8}, \
                      {'occ_dim': 17, 'drop_prob': 0.0}]
    if data_name == 'TFD':
        conditions = [{'occ_dim': 0, 'drop_prob': 0.8}, \
                      {'occ_dim': 25, 'drop_prob': 0.0}]
    for cond_dict in conditions:
        occ_dim = cond_dict['occ_dim']
        drop_prob = cond_dict['drop_prob']
        dp_int = int(100.0 * drop_prob)

        # save the samples to a pkl file, in their numpy array form
        sample_pkl_name = "IMP-{}-OD{}-DP{}-{}.pkl".format(data_name, occ_dim, dp_int, step_type)
        pickle_file = open(sample_pkl_name)
        samples = cPickle.load(pickle_file)
        pickle_file.close()
        print("Loaded some samples from: {}".format(sample_pkl_name))

        sample_list = []
        for i in range(samples.shape[0]):
            sample_list.append(samples[i,:,:])
        # downsample the sequence....
        #keep_idx = range(len(sample_list))
        keep_idx = [0, 2, 4, 6, 9, 12, 15]
        sample_list = [sample_list[i] for i in keep_idx]

        seq_len = len(sample_list)
        samp_count = sample_list[0].shape[0]
        obs_dim = sample_list[0].shape[1]

        seq_samps = np.zeros((seq_len*samp_count, obs_dim))
        idx = 0
        for s1 in range(samp_count):
            for s2 in range(seq_len):
                seq_samps[idx] = sample_list[s2][s1,:].ravel()
                idx += 1
        sample_img_name = "IMP-{}-OD{}-DP{}-{}.png".format(data_name, occ_dim, dp_int, step_type)

        row_count = int(samp_count / 16)
        print("row_count: {}".format(row_count))
        utils.visualize_samples(seq_samps, sample_img_name, num_rows=row_count)
    return
开发者ID:AjayTalati,项目名称:Sequential-Generation,代码行数:47,代码来源:TestBlocksImpSamplesProcessing.py


示例4: visualize_attention_joint

 def visualize_attention_joint(result, pre_tag="AAA", post_tag="AAA"):
     seq_len = result[0].shape[0]
     samp_count = result[0].shape[1]
     # get generated predictions
     seq_samps = np.zeros((3*seq_len*samp_count, obs_dim))
     idx = 0
     for s1 in range(samp_count):
         for s2 in range(seq_len):
             seq_samps[idx] = result[3][s2,s1,:]
             idx += 1
         for s2 in range(seq_len):
             seq_samps[idx] = result[0][s2,s1,:]
             idx += 1
         for s2 in range(seq_len):
             seq_samps[idx] = result[1][s2,s1,:]
             idx += 1
     file_name = "{0:s}_traj_joint_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=(3*samp_count))
     return
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:19,代码来源:TestRAMVideoFT.py


示例5: visualize_attention

 def visualize_attention(sampler_result, pre_tag="AAA", post_tag="AAA"):
     # get generated predictions
     seq_len = sampler_result[0].shape[0]
     samp_count = sampler_result[0].shape[1]
     x_dim = sampler_result[0].shape[2]
     seq_samps = np.zeros((samp_count, 28*28))
     for samp in range(samp_count):
         step = 0
         samp_vals = np.zeros((28,28))
         for col in range(28):
             col_vals = np.zeros((28,))
             for rep in range(step_reps):
                 if (rep == (step_reps-1)):
                     col_vals = sampler_result[0][step,samp,:]
                 step += 1
             samp_vals[:,col] = col_vals
         seq_samps[samp,:] = samp_vals.ravel()
     file_name = "{0:s}_traj_xs_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=10)
     # get sequential attention maps
     seq_samps = np.zeros((samp_count, 28*28))
     for samp in range(samp_count):
         step = 0
         samp_vals = np.zeros((28,28))
         for col in range(28):
             col_vals = np.zeros((28,))
             for rep in range(step_reps):
                 col_vals = col_vals + sampler_result[1][step,samp,:x_dim]
                 col_vals = col_vals + sampler_result[1][step,samp,x_dim:]
                 step += 1
             samp_vals[:,col] = col_vals / (2.0*step_reps)
         seq_samps[samp,:] = samp_vals.ravel()
     file_name = "{0:s}_traj_att_maps_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=10)
     # get sequential attention maps (read out values)
     seq_samps = np.zeros((samp_count, 28*28))
     for samp in range(samp_count):
         step = 0
         samp_vals = np.zeros((28,28))
         for col in range(28):
             col_vals = np.zeros((28,))
             for rep in range(step_reps):
                 col_vals = col_vals + sampler_result[2][step,samp,:x_dim]
                 col_vals = col_vals + sampler_result[2][step,samp,x_dim:]
                 step += 1
             samp_vals[:,col] = col_vals / (2.0*step_reps)
         seq_samps[samp,:] = samp_vals.ravel()
     file_name = "{0:s}_traj_read_outs_{1:s}.png".format(pre_tag, post_tag)
     utils.visualize_samples(seq_samps, file_name, num_rows=10)
     return
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:50,代码来源:TestRAMBlocks.py


示例6: train_walk_from_pretrained_osm


#.........这里部分代码省略.........
    dn_params['spawn_configs'] = [sc0]
    dn_params['spawn_weights'] = [1.0]
    # Set remaining params
    dn_params['init_scale'] = 1.0
    dn_params['lam_l2a'] = 1e-2
    dn_params['vis_drop'] = 0.2
    dn_params['hid_drop'] = 0.5
    # Initialize a network object to use as the discriminator
    DN = PeaNet(rng=rng, Xd=Xd, params=dn_params)
    DN.init_biases(0.0)

    #######################################################
    # Load inferencer and generator from saved parameters #
    #######################################################
    gn_fname = RESULT_PATH+"pt_osm_params_b100000_GN.pkl"
    in_fname = RESULT_PATH+"pt_osm_params_b100000_IN.pkl"
    IN = load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd)
    GN = load_infnet_from_file(f_name=gn_fname, rng=rng, Xd=Xd)

    ########################################################
    # Define parameters for the VCGLoop, and initialize it #
    ########################################################
    print("Building the VCGLoop...")
    vcgl_params = {}
    vcgl_params['x_type'] = 'gaussian'
    vcgl_params['xt_transform'] = 'sigmoid'
    vcgl_params['logvar_bound'] = LOGVAR_BOUND
    vcgl_params['cost_decay'] = 0.1
    vcgl_params['chain_type'] = 'walkout'
    vcgl_params['lam_l2d'] = 5e-2
    VCGL = VCGLoop(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, Xt=Xt, \
                 i_net=IN, g_net=GN, d_net=DN, chain_len=5, \
                 data_dim=data_dim, prior_dim=PRIOR_DIM, params=vcgl_params)

    out_file = open(RESULT_PATH+"pt_walk_results.txt", 'wb')
    ####################################################
    # Train the VCGLoop by unrolling and applying BPTT #
    ####################################################
    learn_rate = 0.0005
    cost_1 = [0. for i in range(10)]
    for i in range(100000):
        scale = float(min((i+1), 5000)) / 5000.0
        if ((i+1 % 25000) == 0):
            learn_rate = learn_rate * 0.8
        ########################################
        # TRAIN THE CHAIN IN FREE-RUNNING MODE #
        ########################################
        VCGL.set_all_sgd_params(learn_rate=(scale*learn_rate), \
                mom_1=0.9, mom_2=0.99)
        VCGL.set_disc_weights(dweight_gn=25.0, dweight_dn=25.0)
        VCGL.set_lam_chain_nll(1.0)
        VCGL.set_lam_chain_kld(lam_kld)
        # get some data to train with
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,))
        Xd_batch = Xtr.take(tr_idx, axis=0)
        Xc_batch = 0.0 * Xd_batch
        Xm_batch = 0.0 * Xd_batch
        # examples from the target distribution, to train discriminator
        tr_idx = npr.randint(low=0,high=tr_samples,size=(2*batch_size,))
        Xt_batch = Xtr.take(tr_idx, axis=0)
        # do a minibatch update of the model, and compute some costs
        outputs = VCGL.train_joint(Xd_batch, Xc_batch, Xm_batch, Xt_batch, batch_reps)
        cost_1 = [(cost_1[k] + 1.*outputs[k]) for k in range(len(outputs))]
        if ((i % 500) == 0):
            cost_1 = [(v / 500.0) for v in cost_1]
            o_str_1 = "batch: {0:d}, joint_cost: {1:.4f}, chain_nll_cost: {2:.4f}, chain_kld_cost: {3:.4f}, disc_cost_gn: {4:.4f}, disc_cost_dn: {5:.4f}".format( \
                    i, cost_1[0], cost_1[1], cost_1[2], cost_1[5], cost_1[6])
            print(o_str_1)
            cost_1 = [0. for v in cost_1]
        if ((i % 1000) == 0):
            tr_idx = npr.randint(low=0,high=Xtr.shape[0],size=(5,))
            va_idx = npr.randint(low=0,high=Xva.shape[0],size=(5,))
            Xd_batch = np.vstack([Xtr.take(tr_idx, axis=0), Xva.take(va_idx, axis=0)])
            # draw some chains of samples from the VAE loop
            file_name = RESULT_PATH+"pt_walk_chain_samples_b{0:d}.png".format(i)
            Xd_samps = np.repeat(Xd_batch, 3, axis=0)
            sample_lists = VCGL.OSM.sample_from_chain(Xd_samps, loop_iters=20)
            Xs = np.vstack(sample_lists["data samples"])
            utils.visualize_samples(Xs, file_name, num_rows=20)
            # draw some masked chains of samples from the VAE loop
            file_name = RESULT_PATH+"pt_walk_mask_samples_b{0:d}.png".format(i)
            Xd_samps = np.repeat(Xc_mean[0:Xd_batch.shape[0],:], 3, axis=0)
            Xc_samps = np.repeat(Xd_batch, 3, axis=0)
            Xm_rand = sample_masks(Xc_samps, drop_prob=0.0)
            Xm_patch = sample_patch_masks(Xc_samps, (48,48), (25,25))
            Xm_samps = Xm_rand * Xm_patch
            sample_lists = VCGL.OSM.sample_from_chain(Xd_samps, \
                    X_c=Xc_samps, X_m=Xm_samps, loop_iters=20)
            Xs = np.vstack(sample_lists["data samples"])
            utils.visualize_samples(Xs, file_name, num_rows=20)
            # draw some samples independently from the GenNet's prior
            file_name = RESULT_PATH+"pt_walk_prior_samples_b{0:d}.png".format(i)
            Xs = VCGL.sample_from_prior(20*20)
            utils.visualize_samples(Xs, file_name, num_rows=20)
        # DUMP PARAMETERS FROM TIME-TO-TIME
        if (i % 5000 == 0):
            DN.save_to_file(f_name=RESULT_PATH+"pt_walk_params_b{0:d}_DN.pkl".format(i))
            IN.save_to_file(f_name=RESULT_PATH+"pt_walk_params_b{0:d}_IN.pkl".format(i))
            GN.save_to_file(f_name=RESULT_PATH+"pt_walk_params_b{0:d}_GN.pkl".format(i))
    return
开发者ID:Philip-Bachman,项目名称:ICML-2015,代码行数:101,代码来源:TFDWalkoutTest.py


示例7: pretrain_osm


#.........这里部分代码省略.........
    shared_config = [data_dim, 1000, 1000]
    top_config = [shared_config[-1], PRIOR_DIM]
    in_params['shared_config'] = shared_config
    in_params['mu_config'] = top_config
    in_params['sigma_config'] = top_config
    in_params['activation'] = relu_actfun
    in_params['init_scale'] = 1.4
    in_params['lam_l2a'] = 0.0
    in_params['vis_drop'] = 0.0
    in_params['hid_drop'] = 0.0
    in_params['bias_noise'] = 0.0
    in_params['input_noise'] = 0.0
    # Initialize the base networks for this OneStageModel
    IN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \
            params=in_params, shared_param_dicts=None)
    GN = InfNet(rng=rng, Xd=Xd, prior_sigma=prior_sigma, \
            params=gn_params, shared_param_dicts=None)
    # Initialize biases in IN and GN
    IN.init_biases(0.2)
    GN.init_biases(0.2)

    #########################
    # INITIALIZE THE GIPAIR #
    #########################
    osm_params = {}
    osm_params['x_type'] = 'bernoulli'
    osm_params['xt_transform'] = 'sigmoid'
    osm_params['logvar_bound'] = LOGVAR_BOUND
    OSM = OneStageModel(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, \
            p_x_given_z=GN, q_z_given_x=IN, \
            x_dim=data_dim, z_dim=PRIOR_DIM, params=osm_params)
    OSM.set_lam_l2w(1e-5)
    safe_mean = (0.9 * Xtr_mean) + 0.05
    safe_mean_logit = np.log(safe_mean / (1.0 - safe_mean))
    OSM.set_output_bias(safe_mean_logit)
    OSM.set_input_bias(-Xtr_mean)

    ######################
    # BASIC VAE TRAINING #
    ######################
    out_file = open(RESULT_PATH+"pt_osm_results.txt", 'wb')
    # Set initial learning rate and basic SGD hyper parameters
    obs_costs = np.zeros((batch_size,))
    costs = [0. for i in range(10)]
    learn_rate = 0.0005
    for i in range(150000):
        scale = min(1.0, float(i) / 10000.0)
        if ((i > 1) and ((i % 20000) == 0)):
            learn_rate = learn_rate * 0.9
        # do a minibatch update of the model, and compute some costs
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,))
        Xd_batch = Xtr.take(tr_idx, axis=0)
        Xc_batch = 0.0 * Xd_batch
        Xm_batch = 0.0 * Xd_batch
        # do a minibatch update of the model, and compute some costs
        OSM.set_sgd_params(lr_1=(scale*learn_rate), mom_1=0.5, mom_2=0.98)
        OSM.set_lam_nll(1.0)
        OSM.set_lam_kld(lam_kld_1=(1.0 + (scale*(lam_kld-1.0))), lam_kld_2=0.0)
        result = OSM.train_joint(Xd_batch, Xc_batch, Xm_batch, batch_reps)
        costs = [(costs[j] + result[j]) for j in range(len(result))]
        if ((i % 1000) == 0):
            # record and then reset the cost trackers
            costs = [(v / 1000.0) for v in costs]
            str_1 = "-- batch {0:d} --".format(i)
            str_2 = "    joint_cost: {0:.4f}".format(costs[0])
            str_3 = "    nll_cost  : {0:.4f}".format(costs[1])
            str_4 = "    kld_cost  : {0:.4f}".format(costs[2])
            str_5 = "    reg_cost  : {0:.4f}".format(costs[3])
            costs = [0.0 for v in costs]
            # print out some diagnostic information
            joint_str = "\n".join([str_1, str_2, str_3, str_4, str_5])
            print(joint_str)
            out_file.write(joint_str+"\n")
            out_file.flush()
        if ((i % 2000) == 0):
            Xva = row_shuffle(Xva)
            model_samps = OSM.sample_from_prior(500)
            file_name = RESULT_PATH+"pt_osm_samples_b{0:d}_XG.png".format(i)
            utils.visualize_samples(model_samps, file_name, num_rows=20)
            # compute information about free-energy on validation set
            file_name = RESULT_PATH+"pt_osm_free_energy_b{0:d}.png".format(i)
            fe_terms = OSM.compute_fe_terms(Xva[0:2500], 20)
            fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1])
            fe_str = "    nll_bound : {0:.4f}".format(fe_mean)
            print(fe_str)
            out_file.write(fe_str+"\n")
            utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \
                    x_label='Posterior KLd', y_label='Negative Log-likelihood')
            # compute information about posterior KLds on validation set
            file_name = RESULT_PATH+"pt_osm_post_klds_b{0:d}.png".format(i)
            post_klds = OSM.compute_post_klds(Xva[0:2500])
            post_dim_klds = np.mean(post_klds, axis=0)
            utils.plot_stem(np.arange(post_dim_klds.shape[0]), post_dim_klds, \
                    file_name)
        if ((i % 5000) == 0):
            IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_IN.pkl".format(i))
            GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_b{0:d}_GN.pkl".format(i))
    IN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_IN.pkl")
    GN.save_to_file(f_name=RESULT_PATH+"pt_osm_params_GN.pkl")
    return
开发者ID:Philip-Bachman,项目名称:ICML-2015,代码行数:101,代码来源:MnistWalkoutTest.py


示例8: test_with_model_init


#.........这里部分代码省略.........
        batch_idx += batch_size
        if (np.max(batch_idx) >= tr_samples):
            # we finished an "epoch", so we rejumble the training set
            Xtr = row_shuffle(Xtr)
            batch_idx = np.arange(batch_size)
        # set sgd and objective function hyperparams for this update
        MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \
                mom_1=scale*momentum, mom_2=0.99)
        MSM.set_train_switch(1.0)
        MSM.set_lam_nll(lam_nll=1.0)
        MSM.set_lam_kld(lam_kld_z=1.0, lam_kld_q2p=0.8, lam_kld_p2q=0.2)
        MSM.set_lam_kld_l1l2(lam_kld_l1l2=1.0)
        MSM.set_lam_l2w(1e-4)
        MSM.set_drop_rate(0.0)
        MSM.q_hi_given_x_si.set_bias_noise(0.0)
        MSM.p_hi_given_si.set_bias_noise(0.0)
        MSM.p_sip1_given_si_hi.set_bias_noise(0.0)
        # perform a minibatch update and record the cost for this batch
        Xb_tr = to_fX( Xtr.take(batch_idx, axis=0) )
        result = MSM.train_joint(Xb_tr, Xb_tr, batch_reps)
        costs = [(costs[j] + result[j]) for j in range(len(result)-1)]
        if ((i % 500) == 0):
            costs = [(v / 500.0) for v in costs]
            str1 = "-- batch {0:d} --".format(i)
            str2 = "    joint_cost: {0:.4f}".format(costs[0])
            str3 = "    nll_cost  : {0:.4f}".format(costs[1])
            str4 = "    kld_cost  : {0:.4f}".format(costs[2])
            str5 = "    reg_cost  : {0:.4f}".format(costs[3])
            joint_str = "\n".join([str1, str2, str3, str4, str5])
            print(joint_str)
            out_file.write(joint_str+"\n")
            out_file.flush()
            costs = [0.0 for v in costs]
        if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))):
            MSM.set_drop_rate(0.0)
            MSM.q_hi_given_x_si.set_bias_noise(0.0)
            MSM.p_hi_given_si.set_bias_noise(0.0)
            MSM.p_sip1_given_si_hi.set_bias_noise(0.0)
            # Get some validation samples for computing diagnostics
            Xva = row_shuffle(Xva)
            Xb_va = to_fX( Xva[0:2000] )
            # draw some independent random samples from the model
            samp_count = 200
            model_samps = MSM.sample_from_prior(samp_count)
            seq_len = len(model_samps)
            seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1]))
            idx = 0
            for s1 in range(samp_count):
                for s2 in range(seq_len):
                    seq_samps[idx] = model_samps[s2][s1]
                    idx += 1
            file_name = "MSM_A_SAMPLES_IND_b{0:d}.png".format(i)
            utils.visualize_samples(seq_samps, file_name, num_rows=20)
            # draw some conditional random samples from the model
            samp_count = 200
            Xs = np.vstack((Xb_tr[0:(samp_count/4)], Xb_va[0:(samp_count/4)]))
            Xs = np.repeat(Xs, 2, axis=0)
            # draw some conditional random samples from the model
            model_samps = MSM.sample_from_input(Xs, guided_decoding=False)
            model_samps.append(Xs)
            seq_len = len(model_samps)
            seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1]))
            idx = 0
            for s1 in range(samp_count): 
                for s2 in range(seq_len):
                    seq_samps[idx] = model_samps[s2][s1]
                    idx += 1
            file_name = "MSM_A_SAMPLES_CND_b{0:d}.png".format(i)
            utils.visualize_samples(seq_samps, file_name, num_rows=20)
            # compute information about posterior KLds on validation set
            raw_klds = MSM.compute_raw_klds(Xb_va, Xb_va)
            init_kld, q2p_kld, p2q_kld = raw_klds
            file_name = "MSM_A_H0_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(init_kld.shape[1]), \
                    np.mean(init_kld, axis=0), file_name)
            file_name = "MSM_A_HI_Q2P_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(q2p_kld.shape[1]), \
                    np.mean(q2p_kld, axis=0), file_name)
            file_name = "MSM_A_HI_P2Q_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(p2q_kld.shape[1]), \
                    np.mean(p2q_kld, axis=0), file_name)
            Xb_tr = to_fX( Xtr[0:2000] )
            fe_terms = MSM.compute_fe_terms(Xb_tr, Xb_tr, 30)
            fe_nll = np.mean(fe_terms[0])
            fe_kld = np.mean(fe_terms[1])
            fe_joint = fe_nll + fe_kld
            joint_str = "    vfe-tr: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \
                    fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1]))
            print(joint_str)
            out_file.write(joint_str+"\n")
            out_file.flush()
            fe_terms = MSM.compute_fe_terms(Xb_va, Xb_va, 30)
            fe_nll = np.mean(fe_terms[0])
            fe_kld = np.mean(fe_terms[1])
            fe_joint = fe_nll + fe_kld
            joint_str = "    vfe-va: {0:.4f}, nll: ({1:.4f}, {2:.4f}, {3:.4f}), kld: ({4:.4f}, {5:.4f}, {6:.4f})".format( \
                    fe_joint, fe_nll, np.min(fe_terms[0]), np.max(fe_terms[0]), fe_kld, np.min(fe_terms[1]), np.max(fe_terms[1]))
            print(joint_str)
            out_file.write(joint_str+"\n")
            out_file.flush()
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:101,代码来源:TestMSM.py


示例9: test_with_model_init


#.........这里部分代码省略.........
    msm_params['x_type'] = x_type
    msm_params['obs_transform'] = 'sigmoid'
    MSM = MultiStageModel(rng=rng, x_in=X_sym, \
            p_s0_obs_given_z_obs=p_s0_obs_given_z_obs, \
            p_hi_given_si=p_hi_given_si, \
            p_sip1_given_si_hi=p_sip1_given_si_hi, \
            q_z_given_x=q_z_given_x, \
            q_hi_given_x_si=q_hi_given_x_si, \
            obs_dim=obs_dim, z_dim=z_dim, h_dim=h_dim, \
            model_init_obs=True, ir_steps=2, \
            params=msm_params)
    obs_mean = (0.9 * np.mean(Xtr, axis=0)) + 0.05
    obs_mean_logit = np.log(obs_mean / (1.0 - obs_mean))
    MSM.set_input_bias(-obs_mean)
    MSM.set_obs_bias(0.1*obs_mean_logit)

    ################################################################
    # Apply some updates, to check that they aren't totally broken #
    ################################################################
    costs = [0. for i in range(10)]
    learn_rate = 0.0003
    momentum = 0.8
    for i in range(300000):
        scale = min(1.0, ((i+1) / 10000.0))
        extra_kl = max(0.0, ((50000.0 - i) / 50000.0))
        if (((i + 1) % 10000) == 0):
            learn_rate = learn_rate * 0.95
        # randomly sample a minibatch
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,))
        Xb = binarize_data(Xtr.take(tr_idx, axis=0))
        Xb = Xb.astype(theano.config.floatX)
        # set sgd and objective function hyperparams for this update
        MSM.set_sgd_params(lr_1=scale*learn_rate, lr_2=scale*learn_rate, \
                           mom_1=(scale*momentum), mom_2=0.98)
        MSM.set_train_switch(1.0)
        MSM.set_l1l2_weight(1.0)
        MSM.set_lam_nll(lam_nll=1.0)
        MSM.set_lam_kld(lam_kld_1=(1.0+extra_kl), lam_kld_2=(1.0+extra_kl))
        MSM.set_lam_l2w(1e-6)
        MSM.set_kzg_weight(0.01)
        # perform a minibatch update and record the cost for this batch
        result = MSM.train_joint(Xb, batch_reps)
        costs = [(costs[j] + result[j]) for j in range(len(result))]
        if ((i % 500) == 0):
            costs = [(v / 500.0) for v in costs]
            print("-- batch {0:d} --".format(i))
            print("    joint_cost: {0:.4f}".format(costs[0]))
            print("    nll_cost  : {0:.4f}".format(costs[1]))
            print("    kld_cost  : {0:.4f}".format(costs[2]))
            print("    reg_cost  : {0:.4f}".format(costs[3]))
            costs = [0.0 for v in costs]
        if (((i % 2000) == 0) or ((i < 10000) and ((i % 1000) == 0))):
            Xva = row_shuffle(Xva)
            # draw some independent random samples from the model
            samp_count = 200
            model_samps = MSM.sample_from_prior(samp_count)
            seq_len = len(model_samps)
            seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1]))
            idx = 0
            for s1 in range(samp_count): 
                for s2 in range(seq_len):
                    seq_samps[idx] = model_samps[s2][s1]
                    idx += 1
            file_name = "MX_SAMPLES_b{0:d}.png".format(i)
            utils.visualize_samples(seq_samps, file_name, num_rows=20)
            # visualize some important weights in the model
            file_name = "MX_INF_1_WEIGHTS_b{0:d}.png".format(i)
            W = MSM.inf_1_weights.get_value(borrow=False).T
            utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
            file_name = "MX_INF_2_WEIGHTS_b{0:d}.png".format(i)
            W = MSM.inf_2_weights.get_value(borrow=False).T
            utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
            file_name = "MX_GEN_1_WEIGHTS_b{0:d}.png".format(i)
            W = MSM.gen_1_weights.get_value(borrow=False)
            utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
            file_name = "MX_GEN_2_WEIGHTS_b{0:d}.png".format(i)
            W = MSM.gen_2_weights.get_value(borrow=False)
            utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
            file_name = "MX_GEN_INF_WEIGHTS_b{0:d}.png".format(i)
            W = MSM.gen_inf_weights.get_value(borrow=False).T
            utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
            # compute information about posterior KLds on validation set
            post_klds = MSM.compute_post_klds(Xva[0:5000])
            file_name = "MX_H0_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(post_klds[0].shape[1]), \
                    np.mean(post_klds[0], axis=0), file_name)
            file_name = "MX_HI_COND_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(post_klds[1].shape[1]), \
                    np.mean(post_klds[1], axis=0), file_name)
            file_name = "MX_HI_GLOB_KLDS_b{0:d}.png".format(i)
            utils.plot_stem(np.arange(post_klds[2].shape[1]), \
                    np.mean(post_klds[2], axis=0), file_name)
            # compute information about free-energy on validation set
            file_name = "MX_FREE_ENERGY_b{0:d}.png".format(i)
            fe_terms = MSM.compute_fe_terms(binarize_data(Xva[0:5000]), 20)
            fe_mean = np.mean(fe_terms[0]) + np.mean(fe_terms[1])
            print("    nll_bound : {0:.4f}".format(fe_mean))
            utils.plot_scatter(fe_terms[1], fe_terms[0], file_name, \
                    x_label='Posterior KLd', y_label='Negative Log-likelihood')
    return
开发者ID:AjayTalati,项目名称:Sequential-Generation,代码行数:101,代码来源:TestMSM.py


示例10: print

            out_file.write("{}\n".format(o_str_su))
            if ((i % 2000) == 0):
                # check classification error on training and validation set
                train_err = GIS.classification_error(Xtr_su, Ytr_su)
                va_err = GIS.classification_error(Xva, Yva)
                o_str = "    tr_err: {0:.4f}, va_err: {1:.4f}".format(train_err, va_err)
                print(o_str)
                out_file.write("{}\n".format(o_str))
            out_file.flush()
        if ((i % 5000) == 0):
            file_name = "GIS_SAMPLES_b{0:d}.png".format(i)
            tr_idx = npr.randint(low=0,high=un_samples,size=(5,))
            va_idx = npr.randint(low=0,high=va_samples,size=(5,))
            Xd_samps = np.vstack([Xtr_un[tr_idx,:], Xva[va_idx,:]])
            Xd_samps = np.repeat(Xd_samps, 3, axis=0)
            sample_lists = GIS.sample_gis_from_data(Xd_samps, loop_iters=20)
            Xs = np.vstack(sample_lists["data samples"])
            Ys = GIS.class_probs(Xs)
            Xs = mnist_prob_embed(Xs, Ys)
            utils.visualize_samples(Xs, file_name, num_rows=20)
    out_file.close()
    print("TESTING COMPLETE!")




##############
# EYE BUFFER #
##############

开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:29,代码来源:GIStack.py


示例11: test_lstm_structpred


#.........这里部分代码省略.........
                pol_mlp_in=pol_mlp_in,
                pol_mlp_out=pol_mlp_out,
                pol_rnn=pol_rnn,
                var_mlp_in=var_mlp_in,
                var_mlp_out=var_mlp_out,
                var_rnn=var_rnn,
                dec_mlp_in=dec_mlp_in,
                dec_mlp_out=dec_mlp_out,
                dec_rnn=dec_rnn)
    model.initialize()

    compile_start_time = time.time()

    # build the cost gradients, training function, samplers, etc.
    model.build_sampling_funcs()
    print("Testing model sampler...")
    # draw some independent samples from the model
    samp_count = 10
    samp_reps = 3
    x_in = Xtr[:10,:].repeat(samp_reps, axis=0)
    y_in = Ytr[:10,:].repeat(samp_reps, axis=0)
    x_samps, y_samps = model.sample_model(x_in, y_in, sample_source='p')
    # TODO: visualize sample prediction trajectories
    img_seq = seq_img_join(x_samps, y_samps, im_dim=(28,28), transposed=True)
    seq_len = len(img_seq)
    samp_count = img_seq[0].shape[0]
    seq_samps = np.zeros((seq_len*samp_count, img_seq[0].shape[1]))
    idx = 0
    for s1 in range(samp_count):
        for s2 in range(seq_len):
            seq_samps[idx] = img_seq[s2][s1]
            idx += 1
    file_name = "{0:s}_samples_b{1:d}.png".format(res_tag, 0)
    utils.visualize_samples(seq_samps, file_name, num_rows=samp_count)

    model.build_model_funcs()

    compile_end_time = time.time()
    compile_minutes = (compile_end_time - compile_start_time) / 60.0
    print("THEANO COMPILE TIME (MIN): {}".format(compile_minutes))

    ################################################################
    # Apply some updates, to check that they aren't totally broken #
    ################################################################
    print("Beginning to train the model...")
    out_file = open("{}_results.txt".format(res_tag), 'wb')
    costs = [0. for i in range(10)]
    learn_rate = 0.0002
    momentum = 0.9
    batch_idx = np.arange(batch_size) + tr_samples
    for i in range(300000):
        scale = min(1.0, ((i+1) / 5000.0))
        if (((i + 1) % 10000) == 0):
            learn_rate = learn_rate * 0.95
        # get the indices of training samples for this batch update
        batch_idx += batch_size
        if (np.max(batch_idx) >= tr_samples):
            # we finished an "epoch", so we rejumble the training set
            Xtr, Ytr = row_shuffle(Xtr, Ytr)
            batch_idx = np.arange(batch_size)
        # set sgd and objective function hyperparams for this update
        model.set_sgd_params(lr=scale*learn_rate, mom_1=scale*momentum, mom_2=0.98)
        model.set_lam_kld(lam_kld_q2p=1.0, lam_kld_p2q=0.1)
        model.set_grad_noise(grad_noise=0.02)
        # perform a minibatch update and record the cost for this batch
        Xb = to_fX(Xtr.take(batch_idx, axis=0))
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:67,代码来源:TestStructPred.py


示例12: range

    for i in range(MCS.chain_len):
        Xtr_chains.append(0.0*Xtr)

    print("Testing chain sampler....")
    loop_times = []
    # TESTING SAMPLING SPEED!
    for i in range(batch_count):
        start_time = time.clock()
        batch_start = i * batch_size
        batch_end = min(tr_samples, (batch_start + batch_size))
        Xd_batch = Xtr[batch_start:batch_end]
        Xd_chain = MCS.sample_from_chain(Xd_batch)
        Xs = [Xd_batch[0:50]]
        Xs.extend([xd[0:50] for xd in Xd_chain])
        file_name = "MCS_TEST_{0:d}.png".format(i)
        utils.visualize_samples(np.vstack(Xs), file_name, num_rows=10)
        loop_times.append((time.clock() - start_time))
    total_time = sum(loop_times)
    mean_time = total_time / batch_count
    time_std = sum([(t - mean_time)**2.0 for t in loop_times]) / batch_count
    print("total_time: {0:.4f}".format(total_time))
    print("mean_time: {0:.4f}, time_std: {1:.4f}".format(mean_time, time_std))
    start_time = time.clock()
    Xtr_chains = resample_chain_steps(MCS, Xtr_chains)
    total_time = time.clock() - start_time
    print("total_time: {0:.4f}".format(total_time))




开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:26,代码来源:MCSampler.py


示例13: pretrain_gip


#.........这里部分代码省略.........
    # IN = INet.load_infnet_from_file(f_name=in_fname, rng=rng, Xd=Xd, \
    #         Xc=Xc, Xm=Xm, new_params=new_in_params)
    # GN = GNet.load_gennet_from_file(f_name=gn_fname, rng=rng, Xp=Xp, \
    #         new_params=new_gn_params)
    # in_params = IN.params
    # gn_params = GN.params

    #########################
    # INITIALIZE THE GIPAIR #
    #########################
    GIP = GIPair(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, g_net=GN, i_net=IN, \
            data_dim=data_dim, prior_dim=PRIOR_DIM, params=None)
    GIP.set_lam_l2w(1e-4)

    ####################
    # RICA PRETRAINING #
    ####################
    IN.W_rica.set_value(0.05 * IN.W_rica.get_value(borrow=False))
    GN.W_rica.set_value(0.05 * GN.W_rica.get_value(borrow=False))
    for i in range(6000):
        scale = min(1.0, (float(i+1) / 6000.0))
        l_rate = 0.0001 * scale
        lam_l1 = 0.025
        tr_idx = npr.randint(low=0,high=tr_samples,size=(1000,))
        Xd_batch = Xtr.take(tr_idx, axis=0)
        inr_out = IN.train_rica(Xd_batch, l_rate, lam_l1)
        gnr_out = GN.train_rica(Xd_batch, l_rate, lam_l1)
        inr_out = [v for v in gnr_out]
        if ((i % 1000) == 0):
            print("rica batch {0:d}: in_recon={1:.4f}, in_spars={2:.4f}, gn_recon={3:.4f}, gn_spars={4:.4f}".format( \
                    i, 1.*inr_out[1], 1.*inr_out[2], 1.*gnr_out[1], 1.*gnr_out[2]))
                        # draw inference net first layer weights
    file_name = RESULT_PATH+"pt_rica_inf_weights.png".format(i)
    utils.visualize_samples(IN.W_rica.get_value(borrow=False).T, file_name, num_rows=20)
    # draw generator net final layer weights
    file_name = RESULT_PATH+"pt_rica_gen_weights.png".format(i)
    if ('gaussian' in gn_params['out_type']):
        lay_num = -2
    else:
        lay_num = -1
    utils.visualize_samples(GN.W_rica.get_value(borrow=False), file_name, num_rows=20)

    ######################
    # BASIC VAE TRAINING #
    ######################
    out_file = open(RESULT_PATH+"pt_gip_results.txt", 'wb')
    # Set initial learning rate and basic SGD hyper parameters
    cost_1 = [0. for i in range(10)]
    learn_rate = 0.0002
    for i in range(300000):
        scale = min(1.0, float(i) / 40000.0)
        if ((i + 1) % 100000 == 0):
            learn_rate = learn_rate * 0.8
        # do a minibatch update of the model, and compute some costs
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,))
        Xd_batch = Xtr.take(tr_idx, axis=0)
        Xd_batch = np.repeat(Xd_batch, batch_reps, axis=0)
        Xc_batch = 0.0 * Xd_batch
        Xm_batch = 0.0 * Xd_batch
        # do a minibatch update of the model, and compute some costs
        GIP.set_all_sgd_params(lr_gn=(scale*learn_rate), \
                lr_in=(scale*learn_rate), mom_1=0.9, mom_2=0.999)
        GIP.set_lam_nll(1.0)
        GIP.set_lam_kld(1.0 + extra_lam_kld*scale)
        outputs = GIP.train_joint(Xd_batch, Xc_batch, Xm_batch)
        cost_1 = [(cost_1[k] + 1.*outputs[k]) for k in range(len(outputs))]
开发者ID:Philip-Bachman,项目名称:NN-Python,代码行数:67,代码来源:SVHNWalkoutTest.py


示例14: train_walk_from_pretrained_gip


#.........这里部分代码省略.........
    vcgl_params['lam_l2d'] = 5e-2
    VCGL = VCGLoop(rng=rng, Xd=Xd, Xc=Xc, Xm=Xm, Xt=Xt, i_net=IN, \
                 g_net=GN, d_net=DN, chain_len=6, data_dim=data_dim, \
                 prior_dim=PRIOR_DIM, params=vcgl_params)
    VCGL.set_lam_l2w(1e-4)

    out_file = open(RESULT_PATH+"pt_walk_results.txt", 'wb')
    ####################################################
    # Train the VCGLoop by unrolling and applying BPTT #
    ####################################################
    learn_rate = 0.0002
    cost_1 = [0. for i in range(10)]
    for i in range(1000000):
        scale = float(min((i+1), 25000)) / 25000.0
        if ((i+1 % 50000) == 0):
            learn_rate = learn_rate * 0.8
        ########################################
        # TRAIN THE CHAIN IN FREE-RUNNING MODE #
        ########################################
        VCGL.set_all_sgd_params(learn_rate=(scale*learn_rate), \
                mom_1=0.9, mom_2=0.999)
        VCGL.set_disc_weights(dweight_gn=20.0, dweight_dn=4.0)
        VCGL.set_lam_chain_nll(1.0)
        VCGL.set_lam_chain_kld(1.0 + extra_lam_kld)
        VCGL.set_lam_chain_vel(0.0)
        VCGL.set_lam_mask_nll(0.0)
        VCGL.set_lam_mask_kld(0.0)
        # get some data to train with
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_size,))
        Xd_batch = Xtr.take(tr_idx, axis=0)
        Xc_batch = 0.0 * Xd_batch
        Xm_batch = 0.0 * Xd_batch
        # do 5 repetitions of the batch
        Xd_batch = np.repeat(Xd_batch, batch_reps, axis=0)
        Xc_batch = np.repeat(Xc_batch, batch_reps, axis=0)
        Xm_batch = np.repeat(Xm_batch, batch_reps, axis=0)
        # examples from the target distribution, to train discriminator
        tr_idx = npr.randint(low=0,high=tr_samples,size=(batch_reps*batch_size,))
        Xt_batch = Xtr.take(tr_idx, axis=0)
        # do a minibatch update of the model, and compute some costs
        outputs = VCGL.train_joint(Xd_batch, Xc_batch, Xm_batch, Xt_batch)
        cost_1 = [(cost_1[k] + 1.*outputs[k]) for k in range(len(outputs))]
        if ((i % 1000) == 0):
            cost_1 = [(v / 1000.0) for v in cost_1]
            o_str_1 = "batch: {0:d}, joint_cost: {1:.4f}, chain_nll_cost: {2:.4f}, chain_kld_cost: {3:.4f}, disc_cost_gn: {4:.4f}, disc_cost_dn: {5:.4f}".format( \
                    i, cost_1[0], cost_1[1], cost_1[2], cost_1[6], cost_1[7])
            print(o_str_1)
            out_file.write(o_str_1+"\n")
            out_file.flush()
            cost_1 = [0. for v in cost_1]
        if ((i % 5000) == 0):
            tr_idx = npr.randint(low=0,high=Xtr.shape[0],size=(5,))
            va_idx = npr.randint(low=0,high=Xva.shape[0],size=(5,))
            Xd_batch = np.vstack([Xtr.take(tr_idx, axis=0), Xva.take(va_idx, axis=0)])
            # draw some chains of samples from the VAE loop
            file_name = RESULT_PATH+"pt_walk_chain_samples_b{0:d}.png".format(i)
            Xd_samps = np.repeat(Xd_batch, 3, axis=0)
            sample_lists = VCGL.GIP.sample_from_chain(Xd_samps, loop_iters=20)
            Xs = np.vstack(sample_lists["data samples"])
            utils.visualize_samples(Xs, file_name, num_rows=20)
            # draw some masked chains of samples from the VAE loop
            file_name = RESULT_PATH+"pt_walk_mask_samples_b{0:d}.png".format(i)
            Xd_samps = np.repeat(Xc_mean[0:Xd_batch.shape[0],:], 3, axis=0)
            Xc_samps = np.repeat(Xd_batch, 3, axis=0)
            Xm_rand = sample_masks(Xc_samps, drop_prob=0.2)
            Xm_patch = sample_patch_masks(Xc_samps, (32,32), (16,16))
            Xm_samps = Xm_rand * Xm_patch
            sample_lists = VCGL.GIP.sample_from_chain(Xd_samps, \
                    X_c=Xc_samps, X_m=Xm_samps, loop_iters=20)
            Xs = np.vstack(sample_lists["data samples"])
            utils.visualize_samples(Xs, file_name, num_rows=20)
            # draw some samples independently from the GenNet's prior
            file_name = RESULT_PATH+"pt_walk_prior_samples_b{0:d}.png".format(i)
            Xs = VCGL.sample_from_prior(20*20)
            utils.visualize_samples(Xs, file_name, num_rows=20)
            # draw discriminator network's weights
            file_name = RESULT_PATH+"pt_walk_dis_weights_b{0:d}.png".format(i)
            utils.visualize_net_layer(VCGL.DN.proto_nets[0][0], file_name)
            # draw inference net first layer weights
            file_name = RESULT_PATH+"pt_walk_inf_weights_b{0:d}.png".format(i)
            utils.visualize_net_layer(VCGL.IN.shared_layers[0], file_name)
            # draw generator net final layer weights
            file_name = RESULT_PATH+"pt_walk_gen_weights_b{0:d}.png".format(i)
            if GN.out_type == 'sigmoid':
                utils.visualize_net_layer(VCGL.GN.mlp_layers[-1], file_name, use_transpose=True)
            else:
                utils.visualize_net_layer(VCGL.GN.mlp_layers[-2], file_name, use_transpose=True)
            #########################
            # Check posterior KLds. #
            #########################
            post_klds = posterior_klds(IN, Xtr, 5000, 5)
            file_name = RESULT_PATH+"pt_walk_post_klds_b{0:d}.png".format(i)
            utils.plot_kde_histogram2( \
                    np.asarray(post_klds), np.asarray(post_klds), file_name, bins=30)
        # DUMP PARA 

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.vtclient2函数代码示例发布时间:2022-05-26
下一篇:
Python utils.vector_add函数代码示例发布时间:2022-05-26
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap