• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python utils.tokenize函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中utils.tokenize函数的典型用法代码示例。如果您正苦于以下问题:Python tokenize函数的具体用法?Python tokenize怎么用?Python tokenize使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了tokenize函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: predict_answers

def predict_answers(data, word2vec, N):

    stop = stopwords.words('english')

    pred_answs = []
    pred_probs = [["A", "B", "C", "D"]]
    for i in range(data.shape[0]):
        #calculate word2vec for question
        q_vec = np.zeros(N, dtype=float)
        for w in tokenize(data['question'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                w2 = getword2vecval (N,w.lower(),word2vec)
                q_vec = np.add(q_vec, w2)
        q_vec = q_vec / linalg.norm(q_vec)
    
        #calculate word2vec for answers
        A_vec = np.zeros(N, dtype=float)
        B_vec = np.zeros(N, dtype=float)
        C_vec = np.zeros(N, dtype=float)
        D_vec = np.zeros(N, dtype=float)
        for w in tokenize(data['answerA'][i]):
            if w.lower() in word2vec  and w.lower() not in stop:
                w2 = getword2vecval (N,w.lower(),word2vec)
                #print (w2[0:4])
                A_vec = np.add(A_vec,w2)
    
        for w in tokenize(data['answerB'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                w2 = getword2vecval (N,w.lower(),word2vec)
                #print (w2[0:4])
                B_vec = np.add(B_vec,w2)
            
        for w in tokenize(data['answerC'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                w2 = getword2vecval (N,w.lower(),word2vec)
                #print (w2[0:4])
                C_vec = np.add(C_vec,w2)

    
        for w in tokenize(data['answerD'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                w2 = getword2vecval (N,w.lower(),word2vec)
                #print (w2[0:4])
                D_vec = np.add(D_vec,w2)
    
        A_vec = A_vec / linalg.norm(A_vec) 
        B_vec = B_vec / linalg.norm(B_vec)
        C_vec = C_vec / linalg.norm(C_vec)
        D_vec = D_vec / linalg.norm(D_vec)
        
        #choose question based on cosine distance
        idx = np.concatenate((A_vec, B_vec, C_vec, D_vec)).reshape(4, N).dot(q_vec).argmax()
        probs = np.concatenate((A_vec, B_vec, C_vec, D_vec)).reshape(4, N).dot(q_vec)
        pred_answs.append(["A", "B", "C", "D"][idx])
        pred_probs.append(probs)
        
    return pred_answs, pred_probs
开发者ID:Sirorezka,项目名称:a-l-l-e-n-_-m-a-s-t-_-r,代码行数:57,代码来源:0__glove_predict.py


示例2: get_glove_features

def get_glove_features(data, word2vec, N):
    stop = stopwords.words('english')

    scores = []
    for i in range(data.shape[0]):
        #calculate word2vec for question
        q_vec = np.zeros(N)
        for w in tokenize(data['question'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                q_vec += word2vec[w.lower()]
                
#                 # get all synonyms of the word
#                 syns = wn.synsets(w.lower(), pos='n')
#                 if len(syns)>0:
#                     for syn in syns:
#                         sw = syn.lemma_names()[0]
#                         if sw.lower() in word2vec and sw.lower() not in stop:
#                             q_vec += word2vec[sw.lower()]
        
        q_vec = q_vec / linalg.norm(q_vec)
    
        #calculate word2vec for answers
        A_vec = np.zeros(N)
        B_vec = np.zeros(N)
        C_vec = np.zeros(N)
        D_vec = np.zeros(N)
        for w in tokenize(data['answerA'][i]):
            if w.lower() in word2vec  and w.lower() not in stop:
                A_vec += word2vec[w.lower()]
        
    
        for w in tokenize(data['answerB'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                B_vec += word2vec[w.lower()]
        
            
        for w in tokenize(data['answerC'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                C_vec += word2vec[w.lower()]
        
    
        for w in tokenize(data['answerD'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                D_vec += word2vec[w.lower()]
                
    
        A_vec = A_vec / linalg.norm(A_vec) 
        B_vec = B_vec / linalg.norm(B_vec)
        C_vec = C_vec / linalg.norm(C_vec)
        D_vec = D_vec / linalg.norm(D_vec)
                
        scores.append(np.concatenate((A_vec, B_vec, C_vec, D_vec)).reshape(4, N).dot(q_vec))
        
    return scores
开发者ID:johnkorn,项目名称:kaggle_allen,代码行数:54,代码来源:glove_predict.py


示例3: __build_dictionary

def __build_dictionary(synset, hyperhypo):
    lesk_dictionary = []
    # Includes definition.
    lesk_dictionary+= tokenize(synset.definition)
    # Includes lemma_names.
    lesk_dictionary+= synset.lemma_names
    # Optional: includes lemma_names of hypernyms and hyponyms.
    if hyperhypo:
        related_senses = synset.hypernyms()+synset.hyponyms()
        for related_sense in related_senses:
            lesk_dictionary+= tokenize(related_sense.definition)
            lesk_dictionary+= [lemma.name for lemma in related_sense.lemmas]

    without_stop_words = filter(lambda word: word not in english_stopwords , lesk_dictionary)
    return map(lambda word: word.lower(), without_stop_words)
开发者ID:finiteautomata,项目名称:wisdom,代码行数:15,代码来源:lesk.py


示例4: generate_citations

def generate_citations(lines, vocab, index):
    word2idx = dict([(v, k) for k, v in enumerate(vocab)])
    for line in lines[:100]:
        tokenized = list()
        capitalized = list()
        for word, cap in zip(utils.tokenize(line, periods=True), utils.tokenize(line, periods=True, capitalized=True)):
            if word == '.':
                if len(tokenized) > 10:
                    citation = generate_citation([word2idx[w] for w in tokenized if w in word2idx], index)
                    print(' '.join(capitalized) + ' (%s).' % citation)
                tokenized = list()
                capitalized = list()
            else:
                tokenized.append(word)
                capitalized.append(cap)
开发者ID:codekansas,项目名称:citation-generator,代码行数:15,代码来源:execute.py


示例5: predict_segmented_tf_idf

def predict_segmented_tf_idf(data, docs_per_q, ids_and_categories):  
    #index docs
    
    
    res = []
    category_tf_idfs = {}
    for index, row in data.iterrows():


    	current_id = str(row['id'])
    	print current_id
    	current_category = ids_and_categories[current_id]

    	if category_tf_idfs.get(current_category) is None:
    		category_tf_idfs[current_category] = utils.get_docstf_idf(wiki_docs_dir + '/%s' % current_category)

    	docs_tf, words_idf = category_tf_idfs[current_category]

        #get answers words
        w_A = set(utils.tokenize(row['answerA']))
        w_B = set(utils.tokenize(row['answerB']))
        w_C = set(utils.tokenize(row['answerC']))
        w_D = set(utils.tokenize(row['answerD']))
    
        sc_A = 0
        sc_B = 0
        sc_C = 0
        sc_D = 0
    
        q = row['question']
        
        for d in zip(*utils.get_docs_importance_for_question(q, docs_tf, words_idf, docs_per_q))[0]:
            for w in w_A:
                if w in docs_tf[d]:
                    sc_A += 1. * docs_tf[d][w] * words_idf[w] # count of how many times in the document, times log(numberofdocs/word) for each word
            for w in w_B:
                if w in docs_tf[d]:
                    sc_B += 1. * docs_tf[d][w] * words_idf[w]
            for w in w_C:
                if w in docs_tf[d]:
                    sc_C += 1. * docs_tf[d][w] * words_idf[w]
            for w in w_D:
                if w in docs_tf[d]:
                    sc_D += 1. * docs_tf[d][w] * words_idf[w]

        res.append(['A','B','C','D'][np.argmax([sc_A, sc_B, sc_C, sc_D])])
        
    return res
开发者ID:Evanc123,项目名称:allen_ai,代码行数:48,代码来源:doc2vecpredict.py


示例6: testTokens

 def testTokens(self):
     tokens = utils.tokenize(self.str3)
     self.assertEqual(11, len(tokens))
     self.assertEqual('\n  two empty spaces and some escaped chars \\\"\\\' in normal textfollowed by a ', tokens[0]['token'])
     self.assertEqual('"dbl quote"', tokens[1]['token'])
     self.assertEqual(' and then a ', tokens[2]['token'])
     self.assertEqual("'single quote'", tokens[3]['token'])
     self.assertEqual('\nwait there is more!! ', tokens[4]['token'])
     self.assertEqual('"\'signle quotes\' inside a double quote"', tokens[5]['token'])
     self.assertEqual(' and ', tokens[6]['token'])
     self.assertEqual('\'"double quotes" inside a single quote\'', tokens[7]['token'])
     self.assertEqual('\nwait! there\\\'s more!! ', tokens[8]['token'])
     self.assertEqual('"escaped double quotes \\" and escaped single quotes\\\' "', tokens[9]['token'])
     self.assertEqual(' ', tokens[10]['token'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[0]['type'])
     self.assertEqual(utils.TOKEN_DBL_Q, tokens[1]['type'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[2]['type'])
     self.assertEqual(utils.TOKEN_SNG_Q, tokens[3]['type'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[4]['type'])
     self.assertEqual(utils.TOKEN_DBL_Q, tokens[5]['type'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[6]['type'])
     self.assertEqual(utils.TOKEN_SNG_Q, tokens[7]['type'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[8]['type'])
     self.assertEqual(utils.TOKEN_DBL_Q, tokens[9]['type'])
     self.assertEqual(utils.TOKEN_NORMAL, tokens[10]['type'])
开发者ID:engina,项目名称:jn-cpu,代码行数:25,代码来源:TestTokenizer.py


示例7: FrequentWords

def FrequentWords(data_dirs, suffixes, max_key_words):
  """
  Returns a dictionary of min(max_key_words, percentile_key_words), giving key
  word with its count.
  """
  matches = matchingFiles(data_dirs, suffixes)

  token_count = Counter()
  files_done = 0
  for file_name in matches:
    tokens = tokenize(file_name)
    for token in tokens:
      if len(token) == 0:
        continue
      try:
        token_count[token] += 1
      except:
        token_count[token] = 1
    files_done += 1
    if (files_done % 5000 == 0):
      print("Completed parsing %d files ..." % files_done)

#  num_key_words = min(max_key_words,
#                      math.ceil(percentile_key_words * len(token_count)))
  return token_count.most_common(max_key_words)
开发者ID:subhasis256,项目名称:ml_code_completion,代码行数:25,代码来源:key_word_extractor.py


示例8: tag

    def tag(self, text=None):
        """
        Tags the given text.
        
        :param text: a string or unicode object. Strings assumed to be utf-8
        :returns: a list of lists (sentences with tokens).
            Each sentence has (token, tag) tuples.
        """
        result = []
        if text:
            tokens = utils.tokenize(text, clean=False)
            for sent in tokens:
                tags = self.tag_tokens(sent)
                result.append(zip(sent, tags))
        else:
            # read tsv from stdin
            sent = []
            for line in sys.stdin:
                line = line.decode('utf-8').strip()
                if line:
                    sent.append(line.split()[0])
                else:
                    tags = self.tag_tokens(sent)
                    result.append(zip(sent, tags))
                    sent = []

        return result
开发者ID:attardi,项目名称:nlpnet,代码行数:27,代码来源:taggers.py


示例9: bird_info

    def bird_info(self):
        birdv = self.machine.run("echo | birdc | head -1").strip().replace(" ready.", "")
        birdv = birdv.split(" ")
        info = {
            "daemon":  birdv[0],
            "version": birdv[1],
            "ospf": {}
            }

        log.info("[%s] getting OSPF neighbours" % self.hostname())
        output = self.machine.run("echo show ospf neighbors | birdc | sed '/^bird[^ ] .*/d'")
        neighbours = []
        for toks in [tokenize(l) for l in splitlines(output)[2:]]:
            neighbour = {
                "routerid": toks[0]
                }
            if toks[4][0] in ascii_letters:
                neighbour["ifname"] =  toks[4]
                neighbour["v4addr"] =  toks[5]
            else:
                neighbour["v4addr"] =  toks[4]
                neighbour["ifname"] =  toks[5]
            neighbours.append(neighbour)
        info["ospf"]["neighbours"] = neighbours
        return info
开发者ID:tegola-hubs,项目名称:dendria,代码行数:25,代码来源:rlogin.py


示例10: matchUp

    def matchUp(self, token, ingredientRow):
        """
        Returns our best guess of the match between the tags and the
        words from the display text.

        This problem is difficult for the following reasons:
            * not all the words in the display name have associated tags
            * the quantity field is stored as a number, but it appears
              as a string in the display name
            * the comment is often a compilation of different comments in
              the display name

        """
        ret = []

        # strip parens from the token, since they often appear in the
        # display_name, but are removed from the comment.
        token = utils.normalizeToken(token)
        decimalToken = self.parseNumbers(token)

        for key, val in ingredientRow.iteritems():
            if isinstance(val, basestring):

                for n, vt in enumerate(utils.tokenize(val)):
                    if utils.normalizeToken(vt) == token:
                        ret.append(key.upper())

            elif decimalToken is not None:
                try:
                    if val == decimalToken:
                        ret.append(key.upper())
                except:
                    pass

        return ret
开发者ID:NYTimes,项目名称:ingredient-phrase-tagger,代码行数:35,代码来源:cli.py


示例11: generate_data

    def generate_data(self, count, offset):
        """
        Generates training data in the CRF++ format for the ingredient
        tagging task
        """
        df = pd.read_csv(self.opts.data_path)
        df = df.fillna("")

        start = int(offset)
        end = int(offset) + int(count)

        df_slice = df.iloc[start: end]

        for index, row in df_slice.iterrows():
            try:
                # extract the display name
                display_input = utils.cleanUnicodeFractions(row["input"])
                tokens = utils.tokenize(display_input)
                del(row["input"])

                rowData = self.addPrefixes([(t, self.matchUp(t, row)) for t in tokens])

                for i, (token, tags) in enumerate(rowData):
                    features = utils.getFeatures(token, i+1, tokens)
                    print utils.joinLine([token] + features + [self.bestTag(tags)])

            # ToDo: deal with this
            except UnicodeDecodeError:
                pass

            print
开发者ID:NYTimes,项目名称:ingredient-phrase-tagger,代码行数:31,代码来源:cli.py


示例12: classify_proba

 def classify_proba(self, text):
     token_list = tokenize(text)
     token_list = del_stopwords(token_list, self.stopset)
     wordfreq_dict = stat_wordfreq(token_list)
     dictfeats = tfidf(wordfreq_dict, self.idf_dict)
     vecfeats = self.vectorizer.transform(dictfeats).toarray()
     prob = self.classifier.predict_proba(vecfeats)
     return prob[0]
开发者ID:Lonesome-George,项目名称:nlp_project1,代码行数:8,代码来源:jc_model.py


示例13: macaddr

 def macaddr(self, iface):
     output = self.machine.run("ip link show dev %s | grep link/ether" % iface).strip()
     if not output:
         return None
     mac = tokenize(output)[1].upper()
     if len(mac.replace("0", "").replace(":", "")) == 0:
         return None
     return mac
开发者ID:tegola-hubs,项目名称:dendria,代码行数:8,代码来源:rlogin.py


示例14: find_similar_articles

def find_similar_articles(corpus_name, method, content, data_dir=os.getcwd(), index=None):

    """
    - corpus_name : Le nom du corpus sur lequel on travaille (fichier .tsv 
        sans l'extension .tsv)
        
    - method : ldan (n = le nombre de topics), lsin ou tfidf
    
    - content : un texte
    
    Renvoie les 5 articles de corpus_name les plus proches du contenu spécifié 
    
    """

    corpus_file = os.path.join(data_dir, corpus_name + '_' + method + '.mm')
    index_file = os.path.join(data_dir, corpus_name + '_' + method + '_index')
    docid_file = os.path.join(data_dir, corpus_name + '_docid.txt')
    
    # Chargement du corpus
    try:
        corpus = corpora.mmcorpus.MmCorpus(corpus_file)
    except Exception:
        raise IOError('Impossible de charger le fichier %s. Avez-vous bien appliqué le script corpus_to_matrix.py ?' % (corpus_file))

    # Chargement du fichier d'index, s'il n'est pas fourni en argument
    if not index:
        try:
            index = similarities.docsim.Similarity.load(index_file)
        except Exception:
            raise IOError("""Impossible de charger le fichier %s. Avez-vous bien appliqué le script %s avec l'option --saveindex ?""" % (method, index_file))

    dico_file = os.path.join(data_dir, corpus_name + '_wordids.txt')

    # Chargement du dictionnaire
    try:
        id2word = corpora.dictionary.Dictionary.load_from_text(dico_file)
    except Exception:
        raise IOError("Impossible de charger le fichier %s" % (dico_file))

    # Chargement du modèle correspondant à la méthode voulue par l'utilisateur
    if method == 'tfidf':
        model_file = os.path.join(data_dir, corpus_name + '_tfidf_model')
        model = models.tfidfmodel.TfidfModel.load(model_file)

    elif method.startswith('lsi'):
        model_file = os.path.join(data_dir, corpus_name + '_' + args.method + '_model')
        model = models.lsimodel.LsiModel.load(model_file)

    elif method.startswith('lda'):
        model_file = os.path.join(data_dir, corpus_name + '_' + args.method + '_model')
        model = models.ldamodel.LdaModel.load(model_file)

    tokens = model[id2word.doc2bow(utils.tokenize(content))]

    # Renvoi des 5 articles les plus proches 
    sims = index[tokens]   
    sims = sorted(enumerate(sims), key=lambda item: -item[1])
    return json.dumps([{'id': utils.get_article_by_corpus_number(x[0], docid_file), 'score': round(x[1], 2)} for x in sims[:5]])
开发者ID:fchantrel,项目名称:habeascorpus,代码行数:58,代码来源:similar_articles.py


示例15: word_freq

def word_freq(filenames, stopset):
    wordset = set()   # 全部单词集
    freqset_list = [[],[]] # 分别保存负向和正向文本的词频
    npos = 0 # 当前正向文本的数目
    nneg = 0 # 当前负向文本的数目
    icur = 0 # 当前所指向的正向或负向文本的下标
    for filename in filenames:
        fr = file(filename, 'r')
        while True:
            line = fr.readline().decode("utf-8")
            if len(line) == 0: # Zero length indicates EOF
                break
            id,label,text = proc_line(line)
            token_list = tokenize(text)
            token_list = del_stopwords(token_list, stopset)
            wordfreq_dict = {}
            for token in token_list:
                wordset.add(token) # 将单词加入全部单词集
                if wordfreq_dict.has_key(token):
                    wordfreq_dict[token] += 1
                else:
                    wordfreq_dict[token] = 1
            doc = [id, label, wordfreq_dict] # 用列表记录每篇文本的id,label和词频
            # 将文本加入指定列表
            index = 0
            if label == '1':
                index = 1
                freqset_list[1].append(doc)
                icur = npos
                npos += 1
            elif label == '-1':
                index = 0
                freqset_list[0].append(doc)
                icur = nneg
                nneg += 1
            else:
                print 'tag-unknown text'
                continue
        fr.close()
        # 将特征词保存至文件中
        f = open('./Training/WordSet.txt', 'w')
        for word in wordset:
            string = word + '\n'
            f.write(string.encode("utf-8"))
        f.close()
        # 将原始词频保存至文件中
        f = open('./Training/WordFreq_Orig.txt', 'w')
        for i in range(2):
            for freqset in freqset_list[i]:
                id = freqset[0]
                label = freqset[1]
                freq_list = freqset[2]
                string = id + '\t' + label + '\t'
                for word in freq_list:
                    string += word + ',' + str(freq_list[word]) + ';'
                string += '\n'
                f.write(string.encode('utf-8'))
    return wordset, freqset_list
开发者ID:Lonesome-George,项目名称:nlp_project1,代码行数:58,代码来源:extract_features.py


示例16: v4addr

 def v4addr(self, iface):
     output = self.machine.run("ip addr show dev %s | grep '^ *inet '" % iface).strip()
     def parseaddr(a):
         a = a.strip()
         if "/" not in a:
             return a + "/32"
         return a
     tokset = [tokenize(l) for l in splitlines(output)]
     return [parseaddr(toks[1]) for toks in tokset if len(toks) > 0]
开发者ID:tegola-hubs,项目名称:dendria,代码行数:9,代码来源:rlogin.py


示例17: dict_from_file

def dict_from_file(filename, match_case=True):
    d = defaultdict(list)
    with codecs.open(DICTS_DIR + filename, 'rb', encoding='utf8') as f:
        for line in f:
            tokens = tokenize(normalize(line, lowercase=(not match_case)),
                    split_alphanum=split_alphanum)
            for (nb, token) in enumerate(tokens):
                d[token] += [(tokens, nb)]
        return (d, match_case)
开发者ID:donvel,项目名称:affiliations,代码行数:9,代码来源:export.py


示例18: find_word_freq

def find_word_freq(li):
    all_tokens = [normalize(t, lowercase=False)
             for aff in li
             for t in tokenize(text_in_element(aff),
                 split_alphanum=split_alphanum)]
    freq = defaultdict(int)
    for token in all_tokens:
        freq[token] += 1
    return freq
开发者ID:donvel,项目名称:affiliations,代码行数:9,代码来源:export.py


示例19: predict_answers

def predict_answers(data, word2vec, N):

    stop = stopwords.words('english')

    pred_answs = []
    for i in range(data.shape[0]):
        #calculate word2vec for question
        q_vec = np.zeros(N)
        for w in tokenize(data['question'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                q_vec += word2vec[w.lower()]
        q_vec = q_vec / linalg.norm(q_vec)
    
        #calculate word2vec for answers
        A_vec = np.zeros(N)
        B_vec = np.zeros(N)
        C_vec = np.zeros(N)
        D_vec = np.zeros(N)
        for w in tokenize(data['answerA'][i]):
            if w.lower() in word2vec  and w.lower() not in stop:
                A_vec += word2vec[w.lower()]
    
        for w in tokenize(data['answerB'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                B_vec += word2vec[w.lower()]
            
        for w in tokenize(data['answerC'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                C_vec += word2vec[w.lower()]
    
        for w in tokenize(data['answerD'][i]):
            if w.lower() in word2vec and w.lower() not in stop:
                D_vec += word2vec[w.lower()]
    
        A_vec = A_vec / linalg.norm(A_vec) 
        B_vec = B_vec / linalg.norm(B_vec)
        C_vec = C_vec / linalg.norm(C_vec)
        D_vec = D_vec / linalg.norm(D_vec)
        
        #choose question based on cosine distance
        idx = np.concatenate((A_vec, B_vec, C_vec, D_vec)).reshape(4, N).dot(q_vec).argmax()
        pred_answs.append(["A", "B", "C", "D"][idx])
        
    return pred_answs
开发者ID:5vision,项目名称:kaggle_allen,代码行数:44,代码来源:glove_predict.py


示例20: build_vocab

def build_vocab(docs, save_as):
    start = time.time()
    vocab = set()
    for file in utils.iterate_corpus(docs):
        with open(file, 'r') as f:
            tokenized = itertools.chain.from_iterable(utils.tokenize(line) for line in f.readlines())
        vocab.update(tokenized)
    vocab = list(vocab)
    pkl.dump(vocab, open(save_as, 'wb'))
    print('Built vocabulary and saved it to "%s" in %s' % (save_as, utils.strtime(time.time() - start)), file=sys.stderr)
    return vocab
开发者ID:codekansas,项目名称:citation-generator,代码行数:11,代码来源:build.py



注:本文中的utils.tokenize函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python utils.trace函数代码示例发布时间:2022-05-26
下一篇:
Python utils.to_utf8函数代码示例发布时间:2022-05-26
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap