• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python util.tempdir函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tvm.contrib.util.tempdir函数的典型用法代码示例。如果您正苦于以下问题:Python tempdir函数的具体用法?Python tempdir怎么用?Python tempdir使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了tempdir函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_local_save_load

def test_local_save_load():
    if not tvm.module.enabled("opengl"):
        return
    if not tvm.module.enabled("llvm"):
        return

    n = tvm.var("n")
    A = tvm.placeholder((n,), name='A', dtype='int32')
    B = tvm.placeholder((n,), name='B', dtype='int32')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
    s = tvm.create_schedule(C.op)
    s[C].opengl()

    f = tvm.build(s, [A, B, C], "opengl", target_host="llvm", name="myadd")

    ctx = tvm.opengl(0)
    n = 10
    a = tvm.nd.array(np.random.uniform(high=10, size=(n)).astype(A.dtype), ctx)
    b = tvm.nd.array(np.random.uniform(high=10, size=(n)).astype(B.dtype), ctx)
    c = tvm.nd.array(np.zeros((n), dtype=C.dtype), ctx)
    f(a, b, c)

    temp = util.tempdir()
    path_so = temp.relpath("myadd.so")
    f.export_library(path_so)
    f1 = tvm.module.load(path_so)
    f1(a, b, c)
    tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy() + b.asnumpy())
开发者ID:bddppq,项目名称:tvm,代码行数:28,代码来源:test_local_save_load.py


示例2: verify

 def verify(s, check_correctness):
     mod = tvm.build(s, [data, kernel, res],
                     target_host=env.target_host,
                     name="conv2d")
     temp = util.tempdir()
     mod.save(temp.relpath("conv2d.o"))
     remote.upload(temp.relpath("conv2d.o"))
     f = remote.load_module("conv2d.o")
     # verify
     ctx = remote.cpu(0)
     # Data in original format
     data_orig, kernel_orig, res_ref = get_ref_data()
     res_shape = topi.util.get_const_tuple(res.shape)
     res_np = np.zeros(res_shape).astype(res.dtype)
     data_arr = tvm.nd.array(data_orig, ctx)
     kernel_arr = tvm.nd.array(kernel_orig, ctx)
     res_arr = tvm.nd.array(res_np, ctx)
     time_f = f.time_evaluator("conv2d", ctx, number=5)
     cost = time_f(data_arr, kernel_arr, res_arr)
     res_unpack = res_arr.asnumpy()
     if check_correctness:
         assert wl.hpad == wl.wpad
         stride = (wl.hstride, wl.wstride)
         padding = wl.hpad
         res_ref = res_ref >> 8
         res_ref = np.clip(res_ref, 0, 127).astype("int8")
         tvm.testing.assert_allclose(res_unpack, res_ref)
     return cost
开发者ID:LANHUIYING,项目名称:tvm,代码行数:28,代码来源:test_benchmark_topi_conv2d.py


示例3: check_device

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        temp = util.tempdir()
        name = "myadd_%s" % device
        if sys.platform == "darwin" or sys.platform.startswith('linux'):
            f = tvm.build(s, [A, B], device, "llvm -system-lib", name=name)
        elif sys.platform == "win32":
            f = tvm.build(s, [A, B], device, "llvm", name=name)
        else:
            raise ValueError("Unsupported platform")

        path_dso = temp.relpath("dev_lib.so")
        f.export_library(path_dso)

        f1 = tvm.module.load(path_dso)
        a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
        b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
        f1(a, b)
        np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
        if sys.platform != "win32":
            f2 = tvm.module.system_lib()
            f2[name](a, b)
            np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
开发者ID:gwli,项目名称:tvm,代码行数:26,代码来源:test_module_load.py


示例4: check_c

 def check_c():
     if not tvm.module.enabled("llvm"):
         return
     # Specifically allow offset to test codepath when offset is available
     Ab = tvm.decl_buffer(
         A.shape, A.dtype,
         elem_offset=tvm.var('Aoffset'),
         offset_factor=8,
         name='A')
     binds = {A : Ab}
     # BUILD and invoke the kernel.
     f1 = tvm.lower(s, [A,B,C], name="fadd_pipeline")
     fsplits = [x for x in tvm.ir_pass.SplitHostDevice(f1)]
     fsplits[0] = tvm.ir_pass.LowerTVMBuiltin(fsplits[0])
     mhost = tvm.codegen.build_module(fsplits[0], "c")
     temp = util.tempdir()
     path_dso = temp.relpath("temp.so")
     mhost.export_library(path_dso)
     m = tvm.module.load(path_dso)
     fadd = m["fadd_pipeline"]
     ctx = tvm.cpu(0)
     # launch the kernel.
     n = nn
     a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
     b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), ctx)
     c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
     fadd(a, b, c)
     tvm.testing.assert_allclose(
         c.asnumpy(), a.asnumpy() + b.asnumpy())
开发者ID:bddppq,项目名称:tvm,代码行数:29,代码来源:test_codegen_c_host.py


示例5: test_min_repeat_ms

def test_min_repeat_ms():
    tmp = tempdir()
    filename = tmp.relpath("log")

    @tvm.register_func
    def my_debug(filename):
        """one call lasts for 100 ms and writes one character to a file"""
        time.sleep(0.1)
        with open(filename, "a") as fout:
            fout.write("c")

    X = tvm.compute((), lambda : tvm.call_packed("my_debug", filename))
    s = tvm.create_schedule(X.op)
    func = tvm.build(s, [X])

    x = tvm.nd.empty((), dtype="int32")
    ftimer = func.time_evaluator(func.entry_name, tvm.cpu(),
                                 number=1, repeat=1)
    ftimer(x)

    with open(filename, "r") as fin:
        ct = len(fin.readline())

    assert ct == 2


    ftimer = func.time_evaluator(func.entry_name, tvm.cpu(),
                                 number=1, repeat=1, min_repeat_ms=1000)
    ftimer(x)

    # make sure we get more than 10 calls
    with open(filename, "r") as fin:
        ct = len(fin.readline())

    assert ct > 10 + 2
开发者ID:bddppq,项目名称:tvm,代码行数:35,代码来源:test_runtime_measure.py


示例6: test_forward_inception_v1

def test_forward_inception_v1():
    '''test inception V1 model'''
    with tf.Graph().as_default():
        graph_def = nnvm.testing.tf.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = nnvm.testing.tf.ProcessGraphDefParam(graph_def)

        # Build an image from random data.
        from PIL import Image
        from tvm.contrib import util

        img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8")
        img = Image.frombuffer('RGB', (600, 600), img_array.tostring(), 'raw', 'RGB', 0, 1)
        temp = util.tempdir()
        img_path = temp.relpath("tf-test.jpg")
        img.save(img_path);

        import os.path
        if not tf.gfile.Exists(os.path.join(img_path)):
            tf.logging.fatal('File does not exist %s', image)
        data = tf.gfile.FastGFile(os.path.join(img_path), 'rb').read()

        temp.remove()

        # Extract tensorflow decoded image frame for tvm input
        with tf.Session() as sess:
            tvm_data = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'DecodeJpeg:0')

        with tf.Session() as sess:
            tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0')
            tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents')
            tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:32,代码来源:test_forward.py


示例7: build_arm

    def build_arm():
        target = "llvm -target=armv7-none-linux-gnueabihf"
        if not tvm.module.enabled(target):
            print("Skip because %s is not enabled.." % target)
            return
        temp = util.tempdir()
        f = tvm.build(s, [A, B, C], target)
        path = temp.relpath("myadd.o")
        f.save(path)
        verify_elf(path, 0x28)
        asm_path = temp.relpath("myadd.asm")
        f.save(asm_path)
        # Do a RPC verification, launch kernel on Arm Board if available.
        host = os.environ.get('TVM_RPC_ARM_HOST', None)
        remote = None
        if host:
            port = int(os.environ['TVM_RPC_ARM_PORT'])
            try:
                remote = rpc.connect(host, port)
            except tvm.TVMError as e:
                pass

        if remote:
            remote.upload(path)
            farm = remote.load_module("myadd.o")
            ctx = remote.cpu(0)
            n = nn
            a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
            b = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
            c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
            farm(a, b, c)
            tvm.testing.assert_allclose(
                c.asnumpy(), a.asnumpy() + b.asnumpy())
            print("Verification finish on remote..")
开发者ID:LANHUIYING,项目名称:tvm,代码行数:34,代码来源:test_codegen_cross_llvm.py


示例8: main

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, required=True, choices=['resnet', 'mobilenet'],
        help="The model type.")
    parser.add_argument('--host', type=str, required=True, help="The host address of your Raspberry Pi.")
    parser.add_argument('--port', type=int, required=True, help="The port number of your Raspberry Pi.")
    parser.add_argument('--opt-level', type=int, default=1, help="Level of optimization.")
    parser.add_argument('--num-iter', type=int, default=50, help="Number of iteration during benchmark.")
    args = parser.parse_args()

    opt_level = args.opt_level

    num_iter = args.num_iter
    batch_size = 1
    num_classes = 1000
    image_shape = (3, 224, 224)

    data_shape = (batch_size,) + image_shape
    out_shape = (batch_size, num_classes)
    if args.model == 'resnet':
        net, params = nnvm.testing.resnet.get_workload(
            batch_size=1, image_shape=image_shape)
    elif args.model == 'mobilenet':
        net, params = nnvm.testing.mobilenet.get_workload(
            batch_size=1, image_shape=image_shape)
    else:
        raise ValueError('no benchmark prepared for {}.'.format(args.model))


    with nnvm.compiler.build_config(opt_level=opt_level):
        graph, lib, params = nnvm.compiler.build(
            net, tvm.target.rasp(), shape={"data": data_shape}, params=params)

    tmp = util.tempdir()
    lib_fname = tmp.relpath('net.o')
    lib.save(lib_fname)

    remote = rpc.connect(args.host, args.port)
    remote.upload(lib_fname)

    ctx = remote.cpu(0)
    rlib = remote.load_module('net.o')
    rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()}

    module = runtime.create(graph, rlib, ctx)
    module.set_input('data', tvm.nd.array(np.random.uniform(size=(data_shape)).astype("float32")))
    module.set_input(**rparams)
    module.run()
    out = module.get_output(0, tvm.nd.empty(out_shape, ctx=ctx))
    out.asnumpy()

    print('benchmark args: {}'.format(args))
    ftimer = module.module.time_evaluator("run", ctx, num_iter)
    for i in range(3):
        prof_res = ftimer()
        print(prof_res)
        # sleep for avoiding cpu overheat
        time.sleep(45)
开发者ID:masa-ito-fj,项目名称:nnvm,代码行数:58,代码来源:rasp_imagenet_bench.py


示例9: _convert_to_remote

def _convert_to_remote(func, remote):
    """ convert module function to remote rpc function"""
    temp = util.tempdir()
    path_dso = temp.relpath("tmp_func.tar")
    func.export_library(path_dso)

    remote.upload(path_dso)
    func = remote.load_module("tmp_func.tar")
    return func
开发者ID:gwli,项目名称:tvm,代码行数:9,代码来源:peak.py


示例10: test_variable_node_parsed

def test_variable_node_parsed():
    sym = nnvm.sym.Variable('data')
    tempdir = util.tempdir()
    json_filename = 'test_nnvm_symbol.json'
    with open(tempdir.relpath(json_filename), 'w') as fo:
        fo.write(nnvm.graph.create(sym).json())
    sym_str = open(tempdir.relpath(json_filename), 'r').read()
    sym = nnvm.graph.load_json(sym_str).symbol()
    sym = nnvm.sym.relu(sym)
开发者ID:bddppq,项目名称:tvm,代码行数:9,代码来源:test_pass_saveload_json.py


示例11: generate_graph

def generate_graph(graph_fn, params_fn, device="vta"):
    # Measure build start time
    build_start = time.time()

    # Derive the TVM target
    target = tvm.target.create("llvm -device={}".format(device))

    # Derive the LLVM compiler flags
    # When targetting the Pynq, cross-compile to ARMv7 ISA
    if env.TARGET == "sim":
        target_host = "llvm"
    elif env.TARGET == "pynq":
        target_host = "llvm -mtriple=armv7-none-linux-gnueabihf -mcpu=cortex-a9 -mattr=+neon"

    # Load the ResNet-18 graph and parameters
    sym = nnvm.graph.load_json(open(graph_fn).read())
    params = nnvm.compiler.load_param_dict(open(params_fn, 'rb').read())

    # Populate the shape and data type dictionary
    shape_dict = {"data": (1, 3, 224, 224)}
    dtype_dict = {"data": 'float32'}
    shape_dict.update({k: v.shape for k, v in params.items()})
    dtype_dict.update({k: str(v.dtype) for k, v in params.items()})

    # Apply NNVM graph optimization passes
    sym = vta.graph.clean_cast(sym)
    sym = vta.graph.clean_conv_fuse(sym)
    if target.device_name == "vta":
        assert env.BLOCK_IN == env.BLOCK_OUT
        sym = vta.graph.pack(sym, shape_dict, env.BATCH, env.BLOCK_OUT)

    # Compile NNVM graph
    with nnvm.compiler.build_config(opt_level=3):
        if target.device_name != "vta":
            graph, lib, params = nnvm.compiler.build(
                sym, target, shape_dict, dtype_dict,
                params=params, target_host=target_host)
        else:
            with vta.build_config():
                graph, lib, params = nnvm.compiler.build(
                    sym, target, shape_dict, dtype_dict,
                    params=params, target_host=target_host)

    # Save the compiled inference graph library
    assert tvm.module.enabled("rpc")
    temp = util.tempdir()
    lib.save(temp.relpath("graphlib.o"))

    # Send the inference library over to the remote RPC server
    remote.upload(temp.relpath("graphlib.o"))
    lib = remote.load_module("graphlib.o")

    # Measure build time
    build_time = time.time() - build_start
    print("ResNet-18 inference graph built in {0:.2f}s!".format(build_time))

    return graph, lib, params
开发者ID:LANHUIYING,项目名称:tvm,代码行数:57,代码来源:resnet.py


示例12: build_i386

 def build_i386():
     if not tvm.module.enabled("llvm"):
         print("Skip because llvm is not enabled..")
         return
     temp = util.tempdir()
     target = "llvm -target=i386-pc-linux-gnu"
     f = tvm.build(s, [A, B, C], target)
     path = temp.relpath("myadd.o")
     f.save(path)
     verify_elf(path, 0x03)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:10,代码来源:test_codegen_cross_llvm.py


示例13: test_rpc_module

def test_rpc_module():
    # graph
    n = tvm.convert(1024)
    A = tvm.placeholder((n,), name='A')
    B = tvm.compute(A.shape, lambda *i: A(*i) + 1.0, name='B')
    temp = util.tempdir()
    s = tvm.create_schedule(B.op)
    xo, xi = s[B].split(B.op.axis[0], factor=64)
    s[B].bind(xi, tvm.thread_axis("threadIdx.x"))
    s[B].bind(xo, tvm.thread_axis("blockIdx.x"))
    # Build the dynamic lib.
    # If we don't want to do metal and only use cpu, just set target to be target
    f = tvm.build(s, [A, B], "metal", target_host=target, name="myadd")
    path_dso1 = temp.relpath("dev_lib.dylib")
    f.export_library(path_dso1, xcode.create_dylib,
                     arch=arch, sdk=sdk)
    xcode.codesign(path_dso1)

    s = tvm.create_schedule(B.op)
    xo, xi = s[B].split(B.op.axis[0], factor=64)
    s[B].parallel(xi)
    s[B].pragma(xo, "parallel_launch_point")
    s[B].pragma(xi, "parallel_barrier_when_finish")
    f = tvm.build(s, [A, B], target, name="myadd_cpu")
    path_dso2 = temp.relpath("cpu_lib.dylib")
    f.export_library(path_dso2, xcode.create_dylib,
                     arch=arch, sdk=sdk)
    xcode.codesign(path_dso2)

    # Start RPC test server that contains the compiled library.
    server = xcode.popen_test_rpc(proxy_host, proxy_port, key,
                                  destination=destination,
                                  libs=[path_dso1, path_dso2])

    # connect to the proxy
    remote = rpc.connect(proxy_host, proxy_port, key=key)
    ctx = remote.metal(0)
    f1 = remote.load_module("dev_lib.dylib")
    a_np = np.random.uniform(size=1024).astype(A.dtype)
    a = tvm.nd.array(a_np, ctx)
    b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
    time_f = f1.time_evaluator(f1.entry_name, ctx, number=10)
    cost = time_f(a, b).mean
    print('%g secs/op' % cost)
    np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
    # CPU
    ctx = remote.cpu(0)
    f2 = remote.load_module("cpu_lib.dylib")
    a_np = np.random.uniform(size=1024).astype(A.dtype)
    a = tvm.nd.array(a_np, ctx)
    b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
    time_f = f2.time_evaluator(f1.entry_name, ctx, number=10)
    cost = time_f(a, b).mean
    print('%g secs/op' % cost)
    np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
开发者ID:bddppq,项目名称:tvm,代码行数:55,代码来源:ios_rpc_test.py


示例14: try_remote_save_load

def try_remote_save_load():
    if not tvm.module.enabled("rpc"):
        return
    if not tvm.module.enabled("opengl"):
        return
    if not tvm.module.enabled("llvm"):
        return

    # Build the module.
    n = tvm.var("n")
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
    s = tvm.create_schedule(C.op)
    s[C].opengl()
    target_host = "llvm -target=asmjs-unknown-emscripten -system-lib"
    f = tvm.build(s, [A, B, C], "opengl", target_host=target_host, name="myadd")

    remote = rpc.connect(proxy_host, proxy_port, key="js")

    temp = util.tempdir()
    ctx = remote.opengl(0)
    path_obj = temp.relpath("myadd.bc")
    path_dso = temp.relpath("myadd.js")
    path_gl = temp.relpath("myadd.gl")
    path_json = temp.relpath("myadd.tvm_meta.json")

    f.save(path_obj)
    emscripten.create_js(path_dso, path_obj, side_module=True)
    f.imported_modules[0].save(path_gl)

    remote.upload(path_dso, "myadd.dso")
    remote.upload(path_gl)
    remote.upload(path_json)

    remote.download("myadd.dso")
    remote.download("myadd.gl")
    remote.download("myadd.tvm_meta.json")

    print('Loading myadd.dso')
    fhost = remote.load_module("myadd.dso")

    print('Loading myadd.gl')
    fdev = remote.load_module("myadd.gl")

    print('import_module')
    fhost.import_module(fdev)

    print('running...')
    a = tvm.nd.array(np.random.uniform(size=16).astype(A.dtype), ctx)
    b = tvm.nd.array(np.zeros(16, dtype=A.dtype), ctx)
    c = tvm.nd.array(np.zeros(16, dtype=C.dtype), ctx)
    fhost(a, b, c)
    np.testing.assert_allclose(c.asnumpy(), a.asnumpy() + b.asnumpy())
开发者ID:gwli,项目名称:tvm,代码行数:54,代码来源:test_remote_save_load.py


示例15: test_outer_product

def test_outer_product():
    n = tvm.var('n')
    m = tvm.var('m')
    a = tvm.placeholder((n, ), name='a')
    b = tvm.placeholder((m, ), name='b')

    try:
        c = outer_product(n, m, a, b)
        ir = c.op.body
    except IOError as err:
        assert sys.version_info[0] == 2 and str(err) == 'could not get source code'
        return

    #Check for i in (0, n)
    assert isinstance(ir, tvm.stmt.For)
    assert ir.loop_var.name == 'i'
    assert ir.min.value == 0
    assert ir.extent.name == 'n'
    ibody = ir.body
    assert isinstance(ibody, tvm.stmt.For)
    #Check for j in (0, m)
    assert ibody.loop_var.name == 'j'
    assert ibody.min.value == 0
    assert ibody.extent.name == 'm'
    #Check loop body
    jbody = ibody.body
    assert isinstance(jbody, tvm.stmt.AssertStmt)
    assert isinstance(jbody.message, tvm.expr.StringImm)
    assert jbody.message.value == "index out of range!"
    jbody = jbody.body
    assert isinstance(jbody, tvm.stmt.Provide)
    assert jbody.func.name == 'c'
    assert len(jbody.args) == 2
    assert jbody.args[0].name == 'i'
    assert jbody.args[1].name == 'j'
    assert isinstance(jbody.value, tvm.expr.Mul)
    mul = jbody.value
    assert isinstance(mul.a, tvm.expr.Call)
    assert mul.a.name == 'a'
    assert mul.b.name == 'b'

    func, ins, outs = run_and_check(outer_product, [n, m, a, b], {n: 99, m: 101})
    temp = util.tempdir()
    path = temp.relpath('%s.py' % func.name)
    func.save(path)
    func_ = tvm.hybrid.HybridModule()
    func_.load(path)
    run_and_check(func_, ins, {n: 99, m: 101}, outs=outs)

    for key, _ in HYBRID_GLOBALS.items():
        assert key not in globals().keys()
        assert key not in outer_product.__globals__.keys()
开发者ID:bddppq,项目名称:tvm,代码行数:52,代码来源:test_hybrid_script.py


示例16: check_load_module

 def check_load_module():
     temp = util.tempdir()
     path_lib = temp.relpath("deploy.so")
     mhost.export_library(path_lib)
     with open(temp.relpath("deploy.json"), "w") as out_file:
         out_file.write(graph)
     loaded_lib = tvm.module.load(path_lib)
     loaded_graph = open(temp.relpath("deploy.json")).read()
     mod = graph_runtime.create(loaded_graph, loaded_lib, ctx)
     mod.set_input(**params)
     mod.run()
     out = mod.get_output(0, tvm.nd.empty(shape))
     np.testing.assert_equal(
         out.asnumpy(), tensor_a + tensor_b - tensor_c + tensor_d)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:14,代码来源:test_runtime_heterogeneous.py


示例17: tune_and_evaluate

def tune_and_evaluate(tuning_opt):
    # extract workloads from nnvm graph
    print("Extract tasks...")
    net, params, input_shape, out_shape = get_network(network, batch_size=1)
    tasks = autotvm.task.extract_from_graph(net, target=target, target_host=target_host,
                                            shape={'data': input_shape}, dtype=dtype,
                                            symbols=(nnvm.sym.conv2d, nnvm.sym.dense))

    # run tuning tasks
    print("Tuning...")
    tune_tasks(tasks, **tuning_opt)

    # compile kernels with history best records
    with autotvm.apply_history_best(log_file):
        print("Compile...")
        with nnvm.compiler.build_config(opt_level=3):
            graph, lib, params = nnvm.compiler.build(
                net, target=target, target_host=target_host,
                shape={'data': input_shape}, params=params, dtype=dtype)

        # export library
        tmp = tempdir()
        if use_android:
            from tvm.contrib import ndk
            filename = "net.so"
            lib.export_library(tmp.relpath(filename), ndk.create_shared)
        else:
            filename = "net.tar"
            lib.export_library(tmp.relpath(filename))

        # upload module to device
        print("Upload...")
        remote = autotvm.measure.request_remote(device_key, 'localhost', 9190,
                                                timeout=10000)
        remote.upload(tmp.relpath(filename))
        rlib = remote.load_module(filename)

        # upload parameters to device
        ctx = remote.context(str(target), 0)
        module = runtime.create(graph, rlib, ctx)
        data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
        module.set_input('data', data_tvm)
        module.set_input(**params)

        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number==1, repeat=30)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
开发者ID:LANHUIYING,项目名称:tvm,代码行数:50,代码来源:tune_nnvm_mobile_gpu.py


示例18: check_stackvm

 def check_stackvm(device):
     ctx = tvm.context(device, 0)
     if not ctx.exist:
         print("Skip because %s is not enabled" % device)
         return
     temp = util.tempdir()
     name = "myadd_%s" % device
     f = tvm.build(s, [A, B], device, "stackvm", name=name)
     path_dso = temp.relpath("dev_lib.stackvm")
     #f.export_library(path_dso)
     #f1 = tvm.module.load(path_dso)
     a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), ctx)
     f(a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:15,代码来源:test_module_load.py


示例19: test_file_io

def test_file_io():
    temp = util.tempdir()
    file_path = temp.relpath("temp.log")

    tsk, target = get_sample_task()
    inputs = [MeasureInput(target, tsk, tsk.config_space.get(i)) for i in range(0, 10)]
    results = [MeasureResult((i, ), 0, 0, 0) for i in range(0, 10)]

    with open(file_path, "w") as fo:
        cb = autotvm.callback.log_to_file(fo)
        cb(None, inputs, results)

    ref = zip(inputs, results)
    for x, y in zip(ref, autotvm.record.load_from_file(file_path)):
        assert x[1] == y[1]
开发者ID:LANHUIYING,项目名称:tvm,代码行数:15,代码来源:test_autotvm_record.py


示例20: verify_rpc

    def verify_rpc(remote, target, shape, dtype):
        A = tvm.placeholder(shape, dtype=dtype)
        B = tvm.compute(A.shape, lambda i: A[i]+tvm.const(1, A.dtype))
        s = tvm.create_schedule(B.op)
        f = tvm.build(s, [A, B], target, name="myadd")

        ctx = remote.cpu(0)
        a = tvm.nd.array(np.random.randint(0, 256, size=shape).astype(A.dtype), ctx=ctx)
        b = tvm.nd.array(np.zeros(shape).astype(A.dtype), ctx=ctx)
        temp = util.tempdir()
        path_dso = temp.relpath("dev_lib.o")
        f.save(path_dso)
        remote.upload(path_dso)
        f = remote.load_module("dev_lib.o")
        f(a, b)
        tvm.testing.assert_allclose(a.asnumpy() + 1, b.asnumpy())
开发者ID:bddppq,项目名称:tvm,代码行数:16,代码来源:test_runtime_rpc.py



注:本文中的tvm.contrib.util.tempdir函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python relay.add函数代码示例发布时间:2022-05-27
下一篇:
Python graph_runtime.create函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap