• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tvm.cpu函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tvm.cpu函数的典型用法代码示例。如果您正苦于以下问题:Python cpu函数的具体用法?Python cpu怎么用?Python cpu使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了cpu函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_min_repeat_ms

def test_min_repeat_ms():
    tmp = tempdir()
    filename = tmp.relpath("log")

    @tvm.register_func
    def my_debug(filename):
        """one call lasts for 100 ms and writes one character to a file"""
        time.sleep(0.1)
        with open(filename, "a") as fout:
            fout.write("c")

    X = tvm.compute((), lambda : tvm.call_packed("my_debug", filename))
    s = tvm.create_schedule(X.op)
    func = tvm.build(s, [X])

    x = tvm.nd.empty((), dtype="int32")
    ftimer = func.time_evaluator(func.entry_name, tvm.cpu(),
                                 number=1, repeat=1)
    ftimer(x)

    with open(filename, "r") as fin:
        ct = len(fin.readline())

    assert ct == 2


    ftimer = func.time_evaluator(func.entry_name, tvm.cpu(),
                                 number=1, repeat=1, min_repeat_ms=1000)
    ftimer(x)

    # make sure we get more than 10 calls
    with open(filename, "r") as fin:
        ct = len(fin.readline())

    assert ct > 10 + 2
开发者ID:bddppq,项目名称:tvm,代码行数:35,代码来源:test_runtime_measure.py


示例2: test_nms

def test_nms():
    dshape = (1, 5, 6)
    data = sym.Variable("data")
    valid_count = sym.Variable("valid_count", dtype="int32")
    nms_threshold = 0.7
    force_suppress = True
    nms_topk = 2
    out = sym.nms(data=data, valid_count=valid_count, nms_threshold=nms_threshold,
                  force_suppress=force_suppress, nms_topk=nms_topk)

    np_data = np.array([[[0, 0.8, 1, 20, 25, 45], [1, 0.7, 30, 60, 50, 80],
                         [0, 0.4, 4, 21, 19, 40], [2, 0.9, 35, 61, 52, 79],
                         [1, 0.5, 100, 60, 70, 110]]]).astype("float32")
    np_valid_count = np.array([4]).astype("int32")
    np_result = np.array([[[2, 0.9, 35, 61, 52, 79], [0, 0.8, 1, 20, 25, 45],
                           [0, 0.4, 4, 21, 19, 40], [-1, 0.9, 35, 61, 52, 79],
                           [-1, -1, -1, -1, -1, -1]]])

    target = "llvm"
    ctx = tvm.cpu()
    graph, lib, _ = nnvm.compiler.build(out, target, {"data": dshape, "valid_count": (dshape[0],)},
                                        dtype={"data": "float32", "valid_count": "int32"})
    m = graph_runtime.create(graph, lib, ctx)
    m.set_input(**{"data": np_data, "valid_count": np_valid_count})
    m.run()
    out = m.get_output(0, tvm.nd.empty(np_result.shape, "float32"))
    tvm.testing.assert_allclose(out.asnumpy(), np_result, atol=1e-5, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:27,代码来源:test_top_level4.py


示例3: test_multibox_transform_loc

def test_multibox_transform_loc():
    batch_size = 1
    num_anchors = 3
    num_classes = 3
    cls_prob = sym.Variable("cls_prob")
    loc_preds = sym.Variable("loc_preds")
    anchors = sym.Variable("anchors")
    transform_loc_data, valid_count = sym.multibox_transform_loc(cls_prob=cls_prob, loc_pred=loc_preds,
                                                                 anchor=anchors)
    out = sym.nms(data=transform_loc_data, valid_count=valid_count)

    # Manually create test case
    np_cls_prob = np.array([[[0.2, 0.5, 0.3], [0.25, 0.3, 0.45], [0.7, 0.1, 0.2]]])
    np_loc_preds = np.array([[0.1, -0.2, 0.3, 0.2, 0.2, 0.4, 0.5, -0.3, 0.7, -0.2, -0.4, -0.8]])
    np_anchors = np.array([[[-0.1, -0.1, 0.1, 0.1], [-0.2, -0.2, 0.2, 0.2], [1.2, 1.2, 1.5, 1.5]]])

    expected_np_out = np.array([[[1, 0.69999999, 0, 0, 0.10818365, 0.10008108],
                                 [0, 0.44999999, 1, 1, 1, 1],
                                 [0, 0.30000001, 0, 0, 0.22903419, 0.20435292]]])

    target = "llvm"
    dtype = "float32"
    ctx = tvm.cpu()
    graph, lib, _ = nnvm.compiler.build(out, target, {"cls_prob": (batch_size, num_anchors, num_classes),
                                                      "loc_preds": (batch_size, num_anchors * 4),
                                                      "anchors": (1, num_anchors, 4)})
    m = graph_runtime.create(graph, lib, ctx)
    m.set_input(**{"cls_prob": np_cls_prob.astype(dtype), "loc_preds": np_loc_preds.astype(dtype), "anchors": np_anchors.astype(dtype)})
    m.run()
    out = m.get_output(0, tvm.nd.empty(expected_np_out.shape, dtype))
    tvm.testing.assert_allclose(out.asnumpy(), expected_np_out, atol=1e-5, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:31,代码来源:test_top_level4.py


示例4: test_in_bounds_conv_llvm

def test_in_bounds_conv_llvm(loop_tiling=False):
    HSTR = WSTR = 1
    in_channel = 128
    kernel_height = kernel_width = 3
    out_channel = 64
    batch_size = 1
    in_height = in_width = 64
    out_height = out_width = in_height - kernel_height + 1
    data = tvm.placeholder((batch_size, in_channel, in_height, in_width), name='data')
    kernel = tvm.placeholder((kernel_height, kernel_width, in_channel,
        out_channel), name='kernel')
    ic = tvm.reduce_axis((0, in_channel), name='ic')
    kh = tvm.reduce_axis((0, kernel_height), name='kh')
    kw = tvm.reduce_axis((0, kernel_width), name='kw')
    conv = tvm.compute((batch_size, out_channel, out_height, out_width),
                       lambda n, oc, oh, ow: tvm.sum(data[n, ic, oh*HSTR + kh, ow*WSTR + kw] *
                                                     kernel[kh, kw, ic, oc],
                                                     axis=[ic, kh, kw]),
                       name="conv2d")
    s = tvm.create_schedule(conv.op)

    n, oc, oh, ow = conv.op.axis
    if loop_tiling:
        oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16)
    lowered_func = tvm.lower(s, [data, kernel, conv], simple_mode=True)
    print (lowered_func.body)
    ctx = tvm.cpu (0)

    f = tvm.build(s, [data, kernel, conv], "llvm")
    data_input = tvm.nd.array(np.random.uniform(
          size=(batch_size, in_channel, in_height, in_width)).astype(tvm.float32), ctx)
    kernel_input = tvm.nd.array(np.random.uniform(
          size=(kernel_height, kernel_width, in_channel, out_channel)).astype(tvm.float32), ctx)
    conv_out = tvm.nd.empty ((batch_size, out_channel, out_height, out_width), tvm.float32, ctx)
    f(data_input, kernel_input, conv_out)
开发者ID:bddppq,项目名称:tvm,代码行数:35,代码来源:test_pass_bound_checkers.py


示例5: test_sort_np

def test_sort_np():
    dshape = (1, 2, 3, 4, 5, 6)
    axis = 4
    reduced_shape = (1, 2, 3, 4, 6)
    is_descend = False
    data = tvm.placeholder(dshape, name='data')
    sort_num = tvm.placeholder(reduced_shape, name="sort_num", dtype="int32")
    out = tvm.extern(data.shape, [data, sort_num],
                     lambda ins, outs: tvm.call_packed(
                         "tvm.contrib.sort.argsort", ins[0],
                         ins[1], outs[0], axis, is_descend),
                     dtype='int32', name="sort_tensor")

    ctx = tvm.cpu(0)
    target = "llvm"
    s = tvm.create_schedule(out.op)
    f = tvm.build(s, [data, sort_num, out], target)

    np_data = np.random.uniform(size=dshape)
    np_out = np.argsort(np_data, axis=axis)
    sort_num_input = np.full(reduced_shape, dshape[axis])
    a = tvm.nd.array(np.array(np_data).astype(data.dtype), ctx)
    b = tvm.nd.array(np.array(sort_num_input).astype(sort_num.dtype), ctx)
    c = tvm.nd.array(np.zeros(a.shape, dtype=out.dtype), ctx)
    f(a, b, c)
    tvm.testing.assert_allclose(c.asnumpy(), np_out, rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:26,代码来源:test_sort.py


示例6: verify

    def verify(target="llvm",
               algorithm=nnpack.ConvolutionAlgorithm.AUTO,
               with_bias=True):
        if not tvm.module.enabled(target):
            print("skip because %s is not enabled..." % target)
            return
        if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True):
            print("skip because extern function is not available")
            return
        if not nnpack.is_available():
            return

        ctx = tvm.cpu(0)
        transformed_kernel = nnpack.convolution_inference_weight_transform(
            kernel, algorithm=algorithm)
        output = nnpack.convolution_inference_without_weight_transform(
            data, transformed_kernel, bias if with_bias else None,
            [PAD, PAD, PAD, PAD], [STRIDE, STRIDE],
            algorithm=algorithm)

        s = tvm.create_schedule(output.op)

        f = tvm.build(s, [data, kernel, bias, output], target)

        na = np.random.uniform(size=dshape).astype(data.dtype)
        nb = np.random.uniform(size=kshape).astype(kernel.dtype)
        nc = np.random.uniform(size=bshape).astype(bias.dtype) if with_bias else np.zeros(bshape, dtype=bias.dtype)
        ta = tvm.nd.array(na, ctx)
        tb = tvm.nd.array(nb, ctx)
        tc = tvm.nd.array(nc, ctx)
        td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), ctx)
        f(ta, tb, tc, td)
        nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape(1, bshape[0], 1, 1)
        tvm.testing.assert_allclose(
            td.asnumpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:35,代码来源:test_nnpack.py


示例7: test_dilate

def test_dilate():
    target = 'llvm'
    ctx = tvm.cpu(0)

    def _test_dilate(input_size, strides):
        Input = tvm.placeholder((input_size))
        Output = topi.nn.dilate(Input, strides)
        schedule = tvm.create_schedule(Output.op)
        input_np = np.random.uniform(size=input_size).astype(Input.dtype)
        output_np = topi.testing.dilate_python(input_np, strides)
        input_tvm = tvm.nd.array(input_np, ctx=ctx)
        output_size = topi.util.get_const_tuple(Output.shape)
        output_tvm = tvm.nd.array(np.zeros(shape=output_size).astype(Output.dtype), ctx=ctx)
        f = tvm.build(schedule, [Input, Output], target)
        f(input_tvm, output_tvm)
        tvm.testing.assert_allclose(output_tvm.asnumpy(), output_np, rtol=1e-5)

    _test_dilate((32,), (2,))
    _test_dilate((32,32), (2,2))
    _test_dilate((1,3,32,32), (1,1,1,1))
    _test_dilate((1,3,32,32), (2,2,2,2))
    _test_dilate((1,32,32,3,3), (1,1,1,1,1))
    _test_dilate((1,32,32,3,3), (2,2,2,2,2))
    _test_dilate((1,32,32,32,3,3), (1,1,1,2,2,2))
    _test_dilate((1,32,32,32,3,3), (2,2,2,1,1,1))
开发者ID:bddppq,项目名称:tvm,代码行数:25,代码来源:test_topi_dilate.py


示例8: tune_and_evaluate

def tune_and_evaluate(tuning_opt):
    # extract workloads from nnvm graph
    print("Extract tasks...")
    net, params, data_shape, out_shape = get_network(model_name, batch_size)
    tasks = autotvm.task.extract_from_graph(net, target=target,
                                            shape={'data': data_shape}, dtype=dtype,
                                            symbols=(nnvm.sym.conv2d,))

    # run tuning tasks
    print("Tuning...")
    tune_kernels(tasks, **tuning_opt)

    # compile kernels with history best records
    with autotvm.apply_history_best(log_file):
        print("Compile...")
        with nnvm.compiler.build_config(opt_level=3):
            graph, lib, params = nnvm.compiler.build(
                net, target=target, shape={'data': data_shape}, params=params, dtype=dtype)

        # upload parameters to device
        ctx = tvm.cpu()
        data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
        module = runtime.create(graph, lib, ctx)
        module.set_input('data', data_tvm)
        module.set_input(**params)

        # evaluate
        print("Evaluate inference time cost...")
        ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)
        prof_res = np.array(ftimer().results) * 1000  # convert to millisecond
        print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
              (np.mean(prof_res), np.std(prof_res)))
开发者ID:LANHUIYING,项目名称:tvm,代码行数:32,代码来源:tune_nnvm_x86.py


示例9: test_in_bounds_vectorize_llvm

def test_in_bounds_vectorize_llvm():
    n = 512
    lanes = 2
    A = tvm.placeholder((n,), name='A', dtype="float32x%d" % lanes)
    B = tvm.compute((n,), lambda i: A[i], name='B')
    C = tvm.compute((n,), lambda i: B[i] + tvm.const(1, A.dtype), name='C')
    s = tvm.create_schedule(C.op)
    xo, xi = s[C].split(C.op.axis[0], nparts=2)
    _, xi = s[C].split(xi, factor=2)
    s[C].parallel(xo)
    s[C].vectorize(xi)
    s[B].compute_at(s[C], xo)
    xo, xi = s[B].split(B.op.axis[0], factor=2)
    s[B].vectorize(xi)
    # build and invoke the kernel.
    lowered_func = tvm.lower (s, [A, C], "llvm", simple_mode=False)
    print (lowered_func.body)
    f = tvm.build(s, [A, C], "llvm")
    ctx = tvm.cpu(0)
    # launch the kernel.
    a = tvm.nd.empty((n,), A.dtype).copyfrom(
        np.random.uniform(size=(n, lanes)))
    c = tvm.nd.empty((n,), C.dtype, ctx)
    f(a, c)
    tvm.testing.assert_allclose(c.asnumpy(), a.asnumpy() + 1)
开发者ID:bddppq,项目名称:tvm,代码行数:25,代码来源:test_pass_bound_checkers.py


示例10: verify_bitserial_dense

def verify_bitserial_dense(batch, in_dim, out_dim, activation_bits, weight_bits, unipolar):
    input_dtype = 'uint32'
    out_dtype = 'int16'

    with tvm.target.create('llvm'):
        A = tvm.placeholder((batch, in_dim), dtype=input_dtype, name='A')
        B = tvm.placeholder((out_dim, in_dim), dtype=input_dtype, name='B')
        C = topi.nn.bitserial_dense(A, B, activation_bits, weight_bits, out_dtype=out_dtype,
                                    unipolar=unipolar)
        s = topi.generic.schedule_bitserial_dense([C])

    a_shape = get_const_tuple(A.shape)
    b_shape = get_const_tuple(B.shape)

    @memoize("topi.tests.test_topi_bitseral_dense")
    def get_ref_data():
        a_np = generate_quantized_np(get_const_tuple(a_shape), activation_bits, input_dtype)
        b_np = generate_quantized_np(get_const_tuple(b_shape), weight_bits, input_dtype)
        if unipolar:
            b_ = np.copy(b_np).astype(out_dtype)
            for x in np.nditer(b_, op_flags=['readwrite']):
                x[...] = 1 if x == 1 else -1
            c_np = np.dot(a_np, b_.T)
        else:
            c_np = np.dot(a_np, b_np.T)
        return a_np, b_np, c_np
    a_np, b_np, c_np = get_ref_data()

    ctx = tvm.cpu(0)
    a = tvm.nd.array(a_np, ctx)
    b = tvm.nd.array(b_np, ctx)
    c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
    func = tvm.build(s, [A, B, C], "llvm")
    func(a, b, c)
    tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
开发者ID:bddppq,项目名称:tvm,代码行数:35,代码来源:test_topi_bitserial_dense.py


示例11: check_verify

    def check_verify():
        if not tvm.module.enabled("llvm"):
            print("Skip because llvm is not enabled")
            return
        mlib = tvm.build(s, [A, B], "llvm", name="myadd")
        try:
            mod = graph_runtime.create(graph, mlib, tvm.cpu(0))
        except ValueError:
            return

        a = np.random.uniform(size=(n,)).astype(A.dtype)
        mod.set_input(x=a)

        #verify dumproot created
        directory = mod._dump_path
        assert(os.path.exists(directory))

        #verify graph is there
        GRAPH_DUMP_FILE_NAME = '_tvmdbg_graph_dump.json'
        assert(len(os.listdir(directory)) == 1)

        #verify the file name is proper
        assert(os.path.exists(os.path.join(directory, GRAPH_DUMP_FILE_NAME)))

        mod.run()
        #Verify the tensors are dumped
        assert(len(os.listdir(directory)) > 1)

        #verify the output is correct
        out = mod.get_output(0, tvm.nd.empty((n,)))
        np.testing.assert_equal(out.asnumpy(), a + 1)

        mod.exit()
        #verify dump root delete after cleanup
        assert(not os.path.exists(directory))
开发者ID:LANHUIYING,项目名称:tvm,代码行数:35,代码来源:test_runtime_graph_debug.py


示例12: check_c

 def check_c():
     if not tvm.module.enabled("llvm"):
         return
     # Specifically allow offset to test codepath when offset is available
     Ab = tvm.decl_buffer(
         A.shape, A.dtype,
         elem_offset=tvm.var('Aoffset'),
         offset_factor=8,
         name='A')
     binds = {A : Ab}
     # BUILD and invoke the kernel.
     f1 = tvm.lower(s, [A,B,C], name="fadd_pipeline")
     fsplits = [x for x in tvm.ir_pass.SplitHostDevice(f1)]
     fsplits[0] = tvm.ir_pass.LowerTVMBuiltin(fsplits[0])
     mhost = tvm.codegen.build_module(fsplits[0], "c")
     temp = util.tempdir()
     path_dso = temp.relpath("temp.so")
     mhost.export_library(path_dso)
     m = tvm.module.load(path_dso)
     fadd = m["fadd_pipeline"]
     ctx = tvm.cpu(0)
     # launch the kernel.
     n = nn
     a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
     b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), ctx)
     c = tvm.nd.array(np.zeros(n, dtype=C.dtype), ctx)
     fadd(a, b, c)
     tvm.testing.assert_allclose(
         c.asnumpy(), a.asnumpy() + b.asnumpy())
开发者ID:bddppq,项目名称:tvm,代码行数:29,代码来源:test_codegen_c_host.py


示例13: test_sort

def test_sort():
    n = 2
    l = 5
    m = 3
    data = tvm.placeholder((n, l, m), name='data')
    sort_num = tvm.placeholder((n, m), name="sort_num", dtype="int32")
    axis = 1
    is_descend = True
    out = tvm.extern(data.shape, [data, sort_num],
                     lambda ins, outs: tvm.call_packed(
                         "tvm.contrib.sort.argsort", ins[0],
                         ins[1], outs[0], axis, is_descend),
                     dtype='int32', name="sort_tensor")
    input = [[[1, 2, 3], [2, 4.5, 3.5], [1.1, 0.5, 1], [3.2, -5, 0.5], [1.5, 0, 0]],
             [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]]]
    sort_num_input = [[1, 2, 3], [4, 5, 5]]
    sorted_index = [[[0, 1, 1], [1, 0, 0], [2, 2, 2], [3, 3, 3], [4, 4, 4]],
                    [[3, 4, 4], [2, 3, 3], [1, 2, 2], [0, 1, 1], [4, 0, 0]]]

    ctx = tvm.cpu(0)
    target = "llvm"
    s = tvm.create_schedule(out.op)
    f = tvm.build(s, [data, sort_num, out], target)
    a = tvm.nd.array(np.array(input).astype(data.dtype), ctx)
    b = tvm.nd.array(np.array(sort_num_input).astype(sort_num.dtype), ctx)
    c = tvm.nd.array(np.zeros(a.shape, dtype=out.dtype), ctx)
    f(a, b, c)
    tvm.testing.assert_allclose(c.asnumpy(), np.array(sorted_index).astype(out.dtype), rtol=1e-5)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:28,代码来源:test_sort.py


示例14: verify_conv2d

def verify_conv2d(batch, in_size, in_channel, num_filter, kernel, stride, padding):
    in_height = in_width = in_size

    with tvm.target.rasp():
        A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A')
        W = tvm.placeholder((num_filter, in_channel, kernel, kernel), name='W')
        B = topi.nn.conv2d(A, W, stride, padding)
        s = topi.generic.schedule_conv2d_nchw([B])

    a_shape = get_const_tuple(A.shape)
    w_shape = get_const_tuple(W.shape)
    dtype = A.dtype

    @memoize("topi.tests.test_topi_conv2d.verify_conv2d")
    def get_ref_data():
        a_np = np.random.uniform(size=a_shape).astype(dtype)
        w_np = np.random.uniform(size=w_shape).astype(dtype)
        b_np = topi.testing.conv2d_nchw_python(a_np, w_np, stride, padding)
        return a_np, w_np, b_np

    a_np, w_np, b_np = get_ref_data()

    ctx = tvm.cpu(0)
    a = tvm.nd.array(a_np, ctx)
    w = tvm.nd.array(w_np, ctx)
    b = tvm.nd.array(np.zeros(get_const_tuple(B.shape), dtype=B.dtype), ctx)
    func = tvm.build(s, [A, W, B], "llvm")
    func(a, w, b)
    np.testing.assert_allclose(b.asnumpy(), b_np, rtol=1e-5)
开发者ID:gwli,项目名称:tvm,代码行数:29,代码来源:test_topi_conv2d.py


示例15: test_log_pow_llvm

def test_log_pow_llvm():
    # graph
    n = tvm.var('n')
    A = tvm.placeholder((n,), name='A')
    B = tvm.compute(A.shape, lambda *i: tvm.power(tvm.log(A(*i)), 2.0), name='B')
    s = tvm.create_schedule(B.op)
    # create iter var and assign them tags.
    bx, tx = s[B].split(B.op.axis[0], factor=32)
    # one line to build the function.
    if not tvm.module.enabled("llvm"):
        return

    flog = tvm.build(s, [A, B],
                     "llvm", name="mylog")
    ctx = tvm.cpu(0)
    # launch the kernel.
    n = 1028
    a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
    b = tvm.nd.array(np.zeros(n, dtype=B.dtype), ctx)
    repeat = 10
    ftimer = flog.time_evaluator(flog.entry_name, ctx, number=1, repeat=repeat)
    res = ftimer(a, b)
    assert(len(res.results) == repeat)
    np.testing.assert_allclose(
        b.asnumpy(), np.power(np.log(a.asnumpy()), 2.0), rtol=1e-5)
开发者ID:gwli,项目名称:tvm,代码行数:25,代码来源:test_ewise.py


示例16: ctx_list

def ctx_list():
    """Get context list for testcases"""
    device_list = os.environ.get("NNVM_TEST_TARGETS", "")
    device_list = (device_list.split(",") if device_list
                   else ["llvm", "cuda"])
    device_list = set(device_list)
    res = [("llvm", tvm.cpu(0)), ("cuda", tvm.gpu(0))]
    return [x for x in res if x[1].exist and x[0] in device_list]
开发者ID:masa-ito-fj,项目名称:nnvm,代码行数:8,代码来源:config.py


示例17: test_ctx

def test_ctx():
    def test_ctx_func(ctx):
        assert tvm.gpu(7) == ctx
        return tvm.cpu(0)
    x = test_ctx_func(tvm.gpu(7))
    assert x == tvm.cpu(0)
    x = tvm.opencl(10)
    x = tvm._api_internal._context_test(x, x.device_type, x.device_id)
    assert x == tvm.opencl(10)
开发者ID:bddppq,项目名称:tvm,代码行数:9,代码来源:test_runtime_packed_func.py


示例18: build_and_run

def build_and_run(sym, params, data, out_shape):
    ctx = tvm.cpu(0)
    graph, lib, params = nnvm.compiler.build(sym, "llvm", shape={"data":data.shape}, params=params)
    module = runtime.create(graph, lib, ctx)
    module.set_input(**params)
    module.set_input("data", data)
    module.run()
    out =  module.get_output(0, tvm.nd.empty(out_shape))
    return out.asnumpy()
开发者ID:bddppq,项目名称:tvm,代码行数:9,代码来源:test_nhwc_layout.py


示例19: check_llvm

 def check_llvm():
     if not tvm.module.enabled("llvm"):
         return
     f = tvm.build(s, [A, B], "llvm")
     ctx = tvm.cpu(0)
     # launch the kernel.
     a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(n, dtype=B.dtype), ctx)
     f(a, b)
     tvm.testing.assert_allclose(b.asnumpy(), a.asnumpy() + 1)
开发者ID:LANHUIYING,项目名称:tvm,代码行数:10,代码来源:test_ext.py


示例20: check_verify

 def check_verify():
     if not tvm.module.enabled("llvm"):
         print("Skip because llvm is not enabled")
         return
     mlib = tvm.build(s, [A, B], "llvm", name="myadd")
     mod = graph_runtime.create(graph, mlib, tvm.cpu(0))
     a = np.random.uniform(size=(n,)).astype(A.dtype)
     mod.run(x=a)
     out = mod.get_output(0, tvm.nd.empty((n,)))
     np.testing.assert_equal(out.asnumpy(), a + 1)
开发者ID:gwli,项目名称:tvm,代码行数:10,代码来源:test_runtime_graph.py



注:本文中的tvm.cpu函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tvm.create_schedule函数代码示例发布时间:2022-05-27
下一篇:
Python tvm.convert函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap