• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tsne.bh_sne函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中tsne.bh_sne函数的典型用法代码示例。如果您正苦于以下问题:Python bh_sne函数的具体用法?Python bh_sne怎么用?Python bh_sne使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了bh_sne函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: extract_tsne_gather_feat

def extract_tsne_gather_feat(stage):
    """
    Extract tsne gather features.
    Note: python2 only.    
    Better than func:extract_tsne_feat in cv, but worst in submission.
    """  
    df_w2vlem_join = pd.read_csv('tmp2/df_w2vlem_join.csv', index_col=0)
        
    if stage <= 1:        
        df_feat = pd.DataFrame(index=df_w2vlem_join.index.values)
        tfidf = TfidfVectorizer(ngram_range=(2,4), stop_words='english', min_df=2)
        
        df_w2vlem_join['t_w2v'].to_csv('tmp2/t_w2v', index=False)
        df_w2vlem_join['q_w2v'].to_csv('tmp2/q_w2v', index=False)
        df_w2vlem_join['d_w2v'].to_csv('tmp2/d_w2v', index=False)
        
        tfidf.set_params(input='filename')        
        tfidf.fit(['tmp2/t_w2v','tmp2/q_w2v','tmp2/d_w2v'])
        tfidf.set_params(input='content')
        
        cPickle.dump(tfidf, open('tmp2/tfidf_obj','wb'))
    
    tfidf = cPickle.load(open('tmp2/tfidf_obj','rb'))
    X_t = tfidf.transform(df_w2vlem_join['t_w2v'].tolist())    
    if stage <= 2:           
        svd = TruncatedSVD(n_components=100, random_state=2016)     
        X_svd = svd.fit_transform(X_t)
        X_scaled = StandardScaler().fit_transform(X_svd)
        X_tsne = bh_sne(X_scaled)
        df_feat['tsne_t_1'] = X_tsne[:len(df_w2vlem_join), 0]
        df_feat['tsne_t_2'] = X_tsne[:len(df_w2vlem_join), 1]
        df_feat.to_csv('tmp2/tsne_t', index=False)
    
    df_feat = pd.read_csv('tmp2/tsne_t')    
    if stage <= 3:
        print(df_feat)
        X_q = tfidf.transform(df_w2vlem_join['q_w2v'].tolist())
        X_tq = sp.hstack([X_t, X_q]).tocsr()
        svd = TruncatedSVD(n_components=50, random_state=2016)
        X_svd = svd.fit_transform(X_tq)
        X_scaled = StandardScaler().fit_transform(X_svd)
        X_tsne = bh_sne(X_scaled)
        df_feat['tsne_qt_1'] = X_tsne[:len(df_w2vlem_join), 0]
        df_feat['tsne_qt_2'] = X_tsne[:len(df_w2vlem_join), 1]
        df_feat.to_csv('tmp2/tsne_qt', index=False)
    
    df_feat = pd.read_csv('tmp2/tsne_qt')    
    if stage <= 4:
        print(df_feat)    
        X_d = tfidf.transform(df_w2vlem_join['d_w2v'].tolist())
        svd = TruncatedSVD(n_components=100, random_state=2016)
        X_svd = svd.fit_transform(X_d)
        X_scaled = StandardScaler().fit_transform(X_svd)
        X_tsne = bh_sne(X_scaled)
        df_feat['tsne_desc_1'] = X_tsne[:len(df_w2vlem_join), 0]
        df_feat['tsne_desc_2'] = X_tsne[:len(df_w2vlem_join), 1]
        
        df_tsne_feats = df_feat
        df_tsne_feats.to_csv('tmp2/df_tsne_gather_feats.csv')
开发者ID:amsqr,项目名称:hd,代码行数:59,代码来源:python2_tsne.py


示例2: test_seed

def test_seed():
    from tsne import bh_sne
    from sklearn.datasets import load_iris
    import numpy as np

    iris = load_iris()

    X = iris.data
    y = iris.target

    t1 = bh_sne(X, random_state=np.random.RandomState(0), copy_data=True)
    t2 = bh_sne(X, random_state=np.random.RandomState(0), copy_data=True)
    assert np.all(t1 == t2)
开发者ID:10XDev,项目名称:tsne,代码行数:13,代码来源:test_seed.py


示例3: fit_transform

    def fit_transform(self, X):
        """Perform both a fit and a transform on the input data

        Fit the data to the reduction algorithm, and transform the data to
        the reduced space.

        Parameters
        ----------
        X : pandas.DataFrame
            A (n_samples, n_features) dataframe to both fit and transform

        Returns
        -------
        self : DataFrameReducerBase
            A fit and transformed instance of the object

        Raises
        ------
        ValueError
            If the input is not a pandas DataFrame, will not perform the fit
            and transform

        """
        from tsne import bh_sne

        self._check_dataframe(X)
        return pd.DataFrame(bh_sne(X), index=X.index)
开发者ID:bobbybabra,项目名称:flotilla,代码行数:27,代码来源:decomposition.py


示例4: t_sne

def t_sne(obj):

	p = parser()
	data_categories = {}
	label_categories = {}

	for d in obj:
		for c in p.categories_item(d):
			if c not in data_categories:
				data_categories[c] = []
				label_categories[c] = []
			
			data_categories[c].append(d[1:])
			label_categories[c].append('g' if d[0] == 1 else 'r')			
	
	print len(data_categories)
	for c in data_categories:
		print '------------------------'
		print '%s (%d)' % (c, len(data_categories[c]))
		print '------------------------'
		if len(data_categories[c]) > 100:
			t_sne(data_categories[c], label_categories[c])
		else:
			print 'small dimensionality'

	arr = np.array(data_categories, dtype=np.float64)
	x2 = bh_sne(arr)
	plt.scatter(x2[:, 0], x2[:, 1], c=label_categories)
	plt.show()
开发者ID:jordansilva,项目名称:lorien,代码行数:29,代码来源:processor.py


示例5: getTsne

def getTsne(modelFile, outDir, NBOW2=True):
    pp = numpy.load(modelFile) 
    wv = pp['Wemb'].copy()

    sklearn_pca = PCA(n_components=50)
    Y_sklearn = sklearn_pca.fit_transform(wv)
    Y_sklearn = numpy.asfarray( Y_sklearn, dtype='float' )

    print "PCA transformation done ..."
    print "Waitig for t-SNE computation ..."
    
    reduced_vecs = bh_sne(Y_sklearn)

    with open(outDir + "/tsne", "w") as out:
        for i in range(len(reduced_vecs)):
            out.write(str(reduced_vecs[i,0]) + " " + str(reduced_vecs[i,1]) + "\n")
    out.close

    print "t-SNE written to file ..."
    
    if NBOW2:
        av = pp['AVs'].astype('float64').T[0]
        wts =[]
        for i in range(len(wv)):
            wt = sigmoid(numpy.dot(wv[i],av))
            wts.append(wt)
        with open(outDir + "/wts", "w") as out:
            for i in range(len(wts)):
                out.write(str(wts[i]) + "\n")
        out.close
开发者ID:fangzheng354,项目名称:nbow2-text-class,代码行数:30,代码来源:drawFns.py


示例6: meta_pca_sne

def meta_pca_sne(exID, experiment_folder): # put exID back
    
    plot_subfolder = experiment_folder + "/meta_pca"
    plot_data_directory = check_create_directory(plot_subfolder)
    filename = "{}/META".format(plot_data_directory)

    # mongo stuff
    dbClient = DatabaseClient()

    filteredResults = dbClient.query(exID)

    if filteredResults is None:
      print "No results"
      return

    filteredId = filteredResults[0]['_id']
    experiment = dbClient.get(filteredId)

    list_of_coords = experiment['DATA']['TSNE_DATA']

    np_list = np.asarray(list_of_coords)
    print "META shape: ", np_list.shape
    
    epochs = experiment['DATA']['EPOCH']
    layers = experiment['DATA']['LAYER']

    labels = []
    no_samples = len(epochs)
    for i in range(no_samples):
      labels.append(epochs[i] + (layers[i]*0.1))
      # labels.append(epochs[i])
    
    labels  = np.asarray(labels)
    labels = labels[:500]

    np_list = np_list[:,:500]

    # print "LIST", np_list
    # print "list size:", np_list.shape
    perp = 10.0
    no_data_shape = np_list.shape[0]
    if (((perp / 3.0) - 1.0) < no_data_shape):
      perp = (no_data_shape / 3.0) - 1.0
    sne_co = bh_sne(np_list, perplexity=perp, theta=0.5)

    print "sne", sne_co.shape
    print "labels", labels

    plt.scatter(sne_co[:,0], sne_co[:,1], c=labels)
    plt.savefig(filename, dpi=120)
    plt.close()
    # plt.show()

    print "show"
    flat_coords = np.reshape(sne_co, (1,-1))
    flat_coords = flat_coords.tolist()[0]

    experiment['DATA']['META'] = flat_coords

    updatedObject = dbClient.update(filteredId, experiment)
开发者ID:ssfg,项目名称:nnvis,代码行数:60,代码来源:neural_net_saving.py


示例7: perform_tsne_transformation

def perform_tsne_transformation(X):
	######### There is a bug in scikit-learn, hence cant do tsne with it. ##############
	# tsne_model = TSNE(n_components=2,random_state=0)
	# X_new = tsne_model.fit_transform(X)

	X = np.asarray(X).astype('float64')
	X = X.reshape((X.shape[0],-1))
	X_new = bh_sne(X,perplexity=5)
	return X_new
开发者ID:till-tomorrow,项目名称:Conversation-Bot,代码行数:9,代码来源:word_embeddings.py


示例8: tsne

def tsne(embedding, word_2_id, sample_size = 1000):
    embedding_2d = bh_sne(embedding.astype(np.float64))
    keys = random.sample(word_2_id.keys(), sample_size)

    fig, ax = plt.subplots()
    for k in keys:
        id = word_2_id[k]
        ax.annotate(k, (embedding_2d[id, 0], embedding_2d[id, 1]))
    plt.show()
开发者ID:liusiqi43,项目名称:ox-computational-linguistics,代码行数:9,代码来源:visualise.py


示例9: visualize

def visualize(vecs):
    print "Got the vectors, now doing dimesnion reduction..."
    reduced = bh_sne(vecs)
    print "Reduction done, now plotting: "

    for i in range(len(reduced)):
        plt.plot(vecs[i,0], vecs[i,1], marker='o', markersize=8)

    plt.show()
开发者ID:bitliner,项目名称:Automatic-Extraction-of-Most-Relevant-Insights-From-Customer-Reviews,代码行数:9,代码来源:visualization.py


示例10: extract_tsne_feat

def extract_tsne_feat():
    """
    Extract tsne features.
    Note: python2 only.    
    """  
    df_w2vlem_join = pd.read_csv('tmp2/df_w2vlem_join.csv', index_col=0)
         
    df_feat = pd.DataFrame(index=df_w2vlem_join.index.values)
    tfidf = TfidfVectorizer(ngram_range=(1,4), stop_words='english', min_df=2) 
    X_t = tfidf.fit_transform(df_w2vlem_join['t_w2v'].tolist())    
     
    svd = TruncatedSVD(n_components=100, random_state=2016)     
    X_svd = svd.fit_transform(X_t)
    X_scaled = StandardScaler().fit_transform(X_svd)
    X_tsne = bh_sne(X_scaled)
    df_feat['tsne_t_1'] = X_tsne[:len(df_w2vlem_join), 0]
    df_feat['tsne_t_2'] = X_tsne[:len(df_w2vlem_join), 1]
    df_feat.to_csv('tmp2/tsne_t', index=False)

    print(df_feat)
    tfidf = TfidfVectorizer(ngram_range=(1,4), stop_words='english', min_df=2) 
    X_q = tfidf.fit_transform(df_w2vlem_join['q_w2v'].tolist())
    X_tq = sp.hstack([X_t, X_q]).tocsr()
    svd = TruncatedSVD(n_components=100, random_state=2016)
    X_svd = svd.fit_transform(X_tq)
    X_scaled = StandardScaler().fit_transform(X_svd)
    X_tsne = bh_sne(X_scaled)
    df_feat['tsne_qt_1'] = X_tsne[:len(df_w2vlem_join), 0]
    df_feat['tsne_qt_2'] = X_tsne[:len(df_w2vlem_join), 1]
    df_feat.to_csv('tmp2/tsne_qt', index=False)

    df_feat = pd.read_csv('tmp2/tsne_qt')
    print(df_feat)    
    tfidf = TfidfVectorizer(ngram_range=(1,3), stop_words='english', min_df=2) 
    X_d = tfidf.fit_transform(df_w2vlem_join['d_w2v'].tolist())
    svd = TruncatedSVD(n_components=70, random_state=2016)
    X_svd = svd.fit_transform(X_d)
    X_scaled = StandardScaler().fit_transform(X_svd)
    X_tsne = bh_sne(X_scaled)
    df_feat['tsne_desc_1'] = X_tsne[:len(df_w2vlem_join), 0]
    df_feat['tsne_desc_2'] = X_tsne[:len(df_w2vlem_join), 1]
    
    df_tsne_feats = df_feat
    df_tsne_feats.to_csv('tmp2/df_tsne_feats.csv')
开发者ID:amsqr,项目名称:hd,代码行数:44,代码来源:python2_tsne.py


示例11: test_iris

def test_iris():
    from tsne import bh_sne
    from sklearn.datasets import load_iris

    iris = load_iris()

    X = iris.data
    y = iris.target

    X_2d = bh_sne(X)
开发者ID:10XDev,项目名称:tsne,代码行数:10,代码来源:test_iris.py


示例12: _tsne

def _tsne(X, dir_str="*.wav", perplexity=3, plotting=False):
	"""
	Utility function to compute tsne
	"""
	flist = sorted(glob.glob(dir_str))
	Z = bh_sne(X, perplexity=perplexity)
	if plotting:
		figure()
		plot(Z[:,0], Z[:,1],'r.')
		[[text(p[0],p[1],'%s'%flist[i],fontsize=12) for i,p in enumerate(Z)]]
	return Z
开发者ID:bregmanstudio,项目名称:voxid,代码行数:11,代码来源:voweltimbre.py


示例13: visualize_tsne

def visualize_tsne():
	"""
	play around with tsne to visualize image space
	"""
	import matplotlib.pyplot as plt
	from tsne import bh_sne
	tracker_df = pd.read_pickle('./tracker.pkl')

	dfs = []
	for category in listdir('/Volumes/micro/recommend-a-graham/imgs/'):
		for user in listdir('/Volumes/micro/recommend-a-graham/imgs/'+category):
			img_ids = listdir('/Volumes/micro/recommend-a-graham/imgs/{}/{}/'.format(category, user))

			sub_df = tracker_df[tracker_df.img_id.apply(lambda x: x in img_ids)]

			# user_df = pd.read_pickle('../fc8_pkls/fc8_{}.pkl'.format(user))
			user_df = pd.read_pickle('../fc7_pkls/fc7_{}.pkl'.format(user))
			user_df = user_df[user_df.shortcode.apply(lambda x: x in sub_df.shortcode.values)]
			dfs.append(pd.merge(sub_df, user_df, on='shortcode'))

	dfs = pd.concat(dfs, axis=0)
	dfs.reset_index(inplace=True)
	# dfs.fc8 = dfs.fc8.apply(lambda x: x.reshape(1, x.shape[0]))
	dfs.fc7 = dfs.fc7.apply(lambda x: x.reshape(1, x.shape[0]))

	# vectors = dfs.fc8.values
	vectors = dfs.fc7.values

	x_data = vectors[0]
	for vector in vectors[1:]:
		x_data = np.concatenate((x_data, vector), axis=0)
	print x_data.shape

	y_dict = {k:i for i,k in enumerate(dfs.username.unique())}
	# y_dict = {k:i for i,k in enumerate(['cats', 'dogs', 'foodies',
	# 									'models','most_popular',
	# 									'photographers', 'travel'])}
	y_data = dfs.username.apply(lambda x: y_dict[x]).values

	vis_data = bh_sne(x_data)
	vis_x = vis_data[:,0]
	vis_y = vis_data[:,1]

	plt.scatter(vis_x, vis_y, c=y_data, cmap=plt.cm.get_cmap("jet", 28))
	cbar = plt.colorbar()
	cbar.set_ticks([i*29./28 + 29./56 for i in range(28)])
	# cbar.set_ticklabels(y_dict.keys())
	cbar.set_ticklabels(zip(dfs.username.unique(), [user_cat_dict[i] for i in dfs.username.unique()]))
	plt.clim(0, 29)
	plt.title('tsne, fc7, 100img_per_user, 4user_per_categ')
	plt.show()
开发者ID:theod07,项目名称:recommend-a-graham,代码行数:51,代码来源:tfidf_fc8.py


示例14: run

 def run(self):
     config = Config.get()
     # Create the embedding.
     featureDict = Utils.read_features(config.getSample("ExternalFiles",
                                                       "vecs_with_id"),
                                       id_set=getSampleIds())
     keys = list(featureDict.keys())
     vectors = np.array([featureDict[vID]["vector"] for vID in keys])
     out = bh_sne(vectors,
                  pca_d=None,
                  theta=config.getfloat("PreprocessingConstants", "tsne_theta"))
     X, Y = list(out[:, 0]), list(out[:, 1])
     Utils.write_tsv(config.getSample("ExternalFiles", "article_embedding"),
                     ("index", "x", "y"), keys, X, Y)
开发者ID:Bboatman,项目名称:proceduralMapGeneration,代码行数:14,代码来源:Coordinates.py


示例15: extract_w2v_tsne_feat

def extract_w2v_tsne_feat():
    """
    Extract w2v tsne features.
    Note: python2 only. Worst in cv, so do not use this.   
    """  
    df_w2v_feats = pd.read_csv('tmp2/df_w2v_feats.csv', index_col=0)
    X = df_w2v_feats.values
         
    df_feat = pd.DataFrame(index=df_w2v_feats.index.values)
    
    X_scaled = StandardScaler().fit_transform(X)
    X_tsne = bh_sne(X_scaled)
    df_feat['tsne_t_1'] = X_tsne[:len(df_w2v_feats), 0]
    df_feat['tsne_t_2'] = X_tsne[:len(df_w2v_feats), 1]
    df_feat.to_csv('tmp2/df_tsne_w2v_feats.csv')
开发者ID:amsqr,项目名称:hd,代码行数:15,代码来源:python2_tsne.py


示例16: make_sample_df

def make_sample_df(labels, np, labeled_data, limit, algorithm_name, dims, cores):
  used_labels = np.unique(labels)[0:3]
  label_dfs = []
  for label in used_labels:
    
      subset = labeled_data[labeled_data[:,0] == label,1:]   # select all those elements with this label
      # sub-sample the stratified subset
      num_samples = min(limit,subset.shape[0])
      indices = np.arange(subset.shape[0])
      np.random.shuffle(indices)
      sampled_pts = subset[indices[:num_samples],:]        
      data_2d = bh_sne(sampled_pts)
      num_records = data_2d.shape[0]
      label_dfs.append(pd.DataFrame({"X": data_2d[:,0], "Y": data_2d[:,1], "dimension": [dims for i in range(num_records)], "label": [label_dict[label] for i in range(num_records)], "algorithm": [algorithm_name for i in range(num_records)]}))
  return label_dfs
开发者ID:lzamparo,项目名称:SdA_reduce,代码行数:15,代码来源:two_d_samples_h5_SdA_csv.py


示例17: main

def main(datafile, normalize, ndims, copula, clusteroutput, subsample):
    X, features = read_sah_h5(datafile)
    I, all_features = read_sah_h5(datafile, just_good=False)
    if 'id' in all_features:
        ids = X[:, all_features.index('id')]
    else:
        ids = np.arange(len(X)).astype(int)

    Xorig = X
    if normalize:
        mean = np.average(X, axis=0)
        std = np.std(X, axis=0)
        std[np.nonzero(std == 0.0)] = 1.0 # Avoid NaNs
        X = (X - mean) / std

    idx = np.random.randint(len(X), size=subsample)

    X = X[idx]
    ids = ids[idx]

    if copula:
        X = np.column_stack([copula_transform(x) for x in X.T])

    # I added this for the time/freq clustering
    # to emphasize the frequency feature
    # X[:, 1] *= 1e-3

    Y = bh_sne(X, d=ndims)

    dbscan = DBSCAN(eps=1.75, min_samples=5)
    C = dbscan.fit_predict(Y)

    tree = ExtraTreesClassifier(n_estimators=100)
    tree.fit(X, C)
    for f, i in zip(features, tree.feature_importances_):
        print '%s: %f' % (f, i)

    with open(clusteroutput, 'w+') as f:
        for c, i in zip(C, ids):
            f.write('%d,%d\n' % (i, c))

    pl.scatter(Y[:, 0], Y[:, 1], color=pl.cm.spectral(C.astype(float) / np.max(C)))

    for c in np.unique(C):
        pl.bar(0, 0, lw=0, ec='none', fc=pl.cm.spectral(float(c) / np.max(C)), label='Cluster %d' % c)
    pl.legend()

    pl.show()
开发者ID:UCBerkeleySETI,项目名称:blml,代码行数:48,代码来源:tsne_dimensionality_reduction.py


示例18: _fit_transform

    def _fit_transform(self, x_in):
        """ fit to data, and return the transform
        Args:
            x (numpy.array): Input numpy array

        Returns:
            x (numpy.array): Transformed array
        """

        x_in = x_in.astype(float)
        res = _tsne.bh_sne(
            x_in,
            perplexity=self.perplexity,
            theta=self.theta
            )
        return res
开发者ID:BioinformaticsArchive,项目名称:synergy-maps,代码行数:16,代码来源:reduction_methods.py


示例19: process_files

def process_files(in_file, out_file):
  """
  Read data from in_file, and output to out_file
  """

  sys.stderr.write('# in_file = %s, out_file = %s\n' % (in_file, out_file))
  # input
  sys.stderr.write('# Input from %s.\n' % (in_file))
  inf = codecs.open(in_file, 'r', 'utf-8')

  # output
  sys.stderr.write('Output to %s\n' % out_file)
  check_dir(out_file)
  ouf = codecs.open(out_file, 'w', 'utf-8')

  line_id = 0
  words = []
  embs = []
  num_dim = -1
  all_lines = inf.readlines()
  num_words = len(all_lines)
  sys.stderr.write('# Processing file %s ...\n' % (in_file))
  sys.stderr.write('# num words = %d\n' % (num_words))
  for line in all_lines:
    line = clean_line(line)
    tokens = re.split('\s+', line)
    word = tokens[0]
    if line_id==0:
      num_dim = len(tokens)-1
      sys.stderr.write('# num dims = %d\n' % (num_dim))
      X = np.zeros((num_words, num_dim))
    emb = np.array(tokens[1:], dtype='|S4')
    emb = emb.astype(np.float)
    X[line_id, :] = emb

    line_id = line_id + 1
    if (line_id % 10000 == 0):
      sys.stderr.write(' (%d) ' % line_id)

  sys.stderr.write('Done! Num lines = %d\n' % line_id)

  X_2d = bh_sne(X)
  for ii in xrange(num_words):
    ouf.write('%f %f\n' % (X_2d[ii, 0], X_2d[ii, 1]))
  inf.close()
  ouf.close()
开发者ID:alphadl,项目名称:nmt.hybrid,代码行数:46,代码来源:visual.py


示例20: get_tsne_mapping

def get_tsne_mapping(materials_list=None):
    if materials_list is None:
        # Doesn't call get_materials_list() when module is loaded
        materials_list = get_materials_list()
    try:
        _log.info('Trying data cache for t-SNE mapping')
        with open('tsne_points.pickle') as f:
            _log.info('Using pickled t-SNE points')
            return pickle.load(f)
    except IOError:
        X = vectorize_random(4)(materials_list)
        X_2d = bh_sne(X)
        _log.info('t-SNE plot at {}'.format(plot_tsne(X_2d)))
        point_map = [{'pt': pt, 'material': m} for pt, m in
                     zip(X_2d, materials_list)]
        with open('tsne_points.pickle', 'w') as f:
            pickle.dump(point_map, f)
        return point_map
开发者ID:HGeerlings,项目名称:eratosthenes,代码行数:18,代码来源:neigh_perf.py



注:本文中的tsne.bh_sne函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tst_scene_render.TestSceneRender类代码示例发布时间:2022-05-27
下一篇:
Python tshark.run_tshark函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap