本文整理汇总了Python中torch.utils.model_zoo.load_url函数的典型用法代码示例。如果您正苦于以下问题:Python load_url函数的具体用法?Python load_url怎么用?Python load_url使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了load_url函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: _load_xception_pretrained
def _load_xception_pretrained(self):
pretrain_dict = model_zoo.load_url('http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
if 'pointwise' in k:
v = v.unsqueeze(-1).unsqueeze(-1)
if k.startswith('block12'):
model_dict[k.replace('block12', 'block20')] = v
elif k.startswith('block11'):
model_dict[k.replace('block11', 'block12')] = v
model_dict[k.replace('block11', 'block13')] = v
model_dict[k.replace('block11', 'block14')] = v
model_dict[k.replace('block11', 'block15')] = v
model_dict[k.replace('block11', 'block16')] = v
model_dict[k.replace('block11', 'block17')] = v
model_dict[k.replace('block11', 'block18')] = v
model_dict[k.replace('block11', 'block19')] = v
elif k.startswith('conv3'):
model_dict[k] = v
elif k.startswith('bn3'):
model_dict[k] = v
model_dict[k.replace('bn3', 'bn4')] = v
elif k.startswith('conv4'):
model_dict[k.replace('conv4', 'conv5')] = v
elif k.startswith('bn4'):
model_dict[k.replace('bn4', 'bn5')] = v
else:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
开发者ID:codes-kzhan,项目名称:pytorch-deeplab-xception,代码行数:33,代码来源:deeplab_xception.py
示例2: inceptionresnetv2
def inceptionresnetv2(num_classes=1000, pretrained='imagenet'):
r"""InceptionResNetV2 model architecture from the
`"InceptionV4, Inception-ResNet..." <https://arxiv.org/abs/1602.07261>`_ paper.
"""
if pretrained:
settings = pretrained_settings['inceptionresnetv2'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = InceptionResNetV2(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
new_last_linear = nn.Linear(1536, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = InceptionResNetV2(num_classes=num_classes)
return model
开发者ID:SiddharthTiwari,项目名称:fastai,代码行数:28,代码来源:inceptionresnetv2.py
示例3: load_state_dict
def load_state_dict(model, model_urls, model_root):
from torch.utils import model_zoo
from torch import nn
import re
from collections import OrderedDict
own_state_old = model.state_dict()
own_state = OrderedDict() # remove all 'group' string
for k, v in own_state_old.items():
k = re.sub('group\d+\.', '', k)
own_state[k] = v
state_dict = model_zoo.load_url(model_urls, model_root)
for name, param in state_dict.items():
if name not in own_state:
print(own_state.keys())
raise KeyError('unexpected key "{}" in state_dict'
.format(name))
if isinstance(param, nn.Parameter):
# backwards compatibility for serialized parameters
param = param.data
own_state[name].copy_(param)
missing = set(own_state.keys()) - set(state_dict.keys())
if len(missing) > 0:
raise KeyError('missing keys in state_dict: "{}"'.format(missing))
开发者ID:ZJU-PLP,项目名称:pytorch-playground,代码行数:26,代码来源:misc.py
示例4: resnet
def resnet(name, **kwargs):
pretrained_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth'
}
blocks = {
'resnet18': BasicBlock,
'resnet34': BasicBlock,
'resnet50': Bottleneck,
'resnet101': Bottleneck,
'resnet152': Bottleneck
}
layers = {
'resnet18': [2, 2, 2, 2],
'resnet34': [3, 4, 6, 3],
'resnet50': [3, 4, 6, 3],
'resnet101': [3, 4, 23, 3],
'resnet152': [3, 8, 36, 3]
}
model = ResNet(blocks[name], layers[name], **kwargs).cuda()
sc.convert(model, model_zoo.load_url(pretrained_urls[name]))
return model
开发者ID:ptillet,项目名称:isaac,代码行数:28,代码来源:resnet.py
示例5: test_super_resolution
def test_super_resolution(self):
super_resolution_net = SuperResolutionNet(upscale_factor=3)
state_dict = model_zoo.load_url(model_urls['super_resolution'], progress=False)
x = Variable(torch.randn(1, 1, 224, 224), requires_grad=True)
self.run_model_test(super_resolution_net, train=False,
batch_size=BATCH_SIZE, state_dict=state_dict,
input=x, use_gpu=False, atol=1e-6)
开发者ID:gtgalone,项目名称:pytorch,代码行数:7,代码来源:test_caffe2.py
示例6: densenet161
def densenet161(pretrained=False, **kwargs):
r"""Densenet-161 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = DenseNet(num_init_features=96, growth_rate=48, block_config=(6, 12, 36, 24),
**kwargs)
if pretrained:
# '.'s are no longer allowed in module names, but pervious _DenseLayer
# has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
# They are also in the checkpoints in model_urls. This pattern is used
# to find such keys.
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = model_zoo.load_url(model_urls['densenet161'])
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
return model
开发者ID:Lynkzhang,项目名称:vision,代码行数:25,代码来源:densenet.py
示例7: flow_resnet50_aux
def flow_resnet50_aux(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
pretrained_dict = model_zoo.load_url(model_urls['resnet50'])
model_dict = model.state_dict()
fc_origin_weight = pretrained_dict["fc.weight"].data.numpy()
fc_origin_bias = pretrained_dict["fc.bias"].data.numpy()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# print(model_dict)
fc_new_weight = model_dict["fc_aux.weight"].numpy()
fc_new_bias = model_dict["fc_aux.bias"].numpy()
fc_new_weight[:1000, :] = fc_origin_weight
fc_new_bias[:1000] = fc_origin_bias
model_dict["fc_aux.weight"] = torch.from_numpy(fc_new_weight)
model_dict["fc_aux.bias"] = torch.from_numpy(fc_new_bias)
# 3. load the new state dict
model.load_state_dict(model_dict)
return model
开发者ID:Alawaka,项目名称:two-stream-pytorch,代码行数:33,代码来源:flow_resnet.py
示例8: nasnetalarge
def nasnetalarge(num_classes=1000, pretrained='imagenet'):
r"""NASNetALarge model architecture from the
`"NASNet" <https://arxiv.org/abs/1707.07012>`_ paper.
"""
if pretrained:
settings = pretrained_settings['nasnetalarge'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
# both 'imagenet'&'imagenet+background' are loaded from same parameters
model = NASNetALarge(num_classes=1001)
model.load_state_dict(model_zoo.load_url(settings['url']))
if pretrained == 'imagenet':
new_last_linear = nn.Linear(model.last_linear.in_features, 1000)
new_last_linear.weight.data = model.last_linear.weight.data[1:]
new_last_linear.bias.data = model.last_linear.bias.data[1:]
model.last_linear = new_last_linear
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
else:
model = NASNetALarge(num_classes=num_classes)
return model
开发者ID:aaguirre-rdit,项目名称:fastai,代码行数:28,代码来源:nasnet.py
示例9: create_mtcnn_net
def create_mtcnn_net(self, use_cuda=True):
self.device = torch.device(
"cuda" if use_cuda and torch.cuda.is_available() else "cpu")
pnet = PNet()
pnet.load_state_dict(model_zoo.load_url(model_urls['pnet']))
pnet.to(self.device).eval()
onet = ONet()
onet.load_state_dict(model_zoo.load_url(model_urls['onet']))
onet.to(self.device).eval()
rnet = RNet()
rnet.load_state_dict(model_zoo.load_url(model_urls['rnet']))
rnet.to(self.device).eval()
return pnet, rnet, onet
开发者ID:Fresh-Z,项目名称:mtcnn_pytorch,代码行数:17,代码来源:detect.py
示例10: test_srresnet
def test_srresnet(self):
super_resolution_net = SRResNet(
rescale_factor=4, n_filters=64, n_blocks=8)
state_dict = model_zoo.load_url(model_urls['srresNet'], progress=False)
x = Variable(torch.randn(1, 3, 224, 224), requires_grad=True)
self.run_model_test(super_resolution_net, train=False,
batch_size=1, state_dict=state_dict,
input=x, use_gpu=False)
开发者ID:gtgalone,项目名称:pytorch,代码行数:8,代码来源:test_caffe2.py
示例11: init_params
def init_params(self):
"""Load ImageNet pretrained weights"""
settings = pretrained_settings['nasnetamobile']['imagenet']
pretrained_dict = model_zoo.load_url(settings['url'], map_location=None)
model_dict = self.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.load_state_dict(model_dict)
开发者ID:zysolanine,项目名称:deep-person-reid,代码行数:8,代码来源:nasnet.py
示例12: resnet50
def resnet50(pretrained=False, channel= 20, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], nb_classes=101, channel=channel, **kwargs)
if pretrained:
pretrain_dict = model_zoo.load_url(model_urls['resnet50']) # modify pretrain code
model_dict = model.state_dict()
model_dict=weight_transform(model_dict, pretrain_dict, channel)
model.load_state_dict(model_dict)
return model
开发者ID:Alawaka,项目名称:two-stream-action-recognition,代码行数:9,代码来源:network.py
示例13: xresnet50_2
def xresnet50_2(pretrained=False, **kwargs):
"""Constructs a XResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = XResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xresnet50']))
return model
开发者ID:SiddharthTiwari,项目名称:fastai,代码行数:9,代码来源:xresnet2.py
示例14: ResNet18_imagenet
def ResNet18_imagenet(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_imagenet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
开发者ID:yingzhenyang,项目名称:deep-filter-panorama,代码行数:9,代码来源:resnet_imagenet.py
示例15: _load_pretrained_model
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
开发者ID:WenmuZhou,项目名称:pytorch-deeplab-xception,代码行数:9,代码来源:deeplab_resnet.py
示例16: ResNet101_imagenet
def ResNet101_imagenet(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet_imagenet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
开发者ID:yingzhenyang,项目名称:deep-filter-panorama,代码行数:9,代码来源:resnet_imagenet.py
示例17: load_pretrain
def load_pretrain(model):
url = 'https://download.pytorch.org/models/resnet50-19c8e357.pth'
pretrained_dict = model_zoo.load_url(url)
model_dict = model.state_dict()
for k, v in model_dict.items():
if not "cls_fc" in k and not "domain_fc" in k:
model_dict[k] = pretrained_dict[k[k.find(".") + 1:]]
model.load_state_dict(model_dict)
return model
开发者ID:Silflame,项目名称:transferlearning,代码行数:9,代码来源:RevGrad.py
示例18: resnet34
def resnet34(pretrained=False):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
开发者ID:sunshinezhihuo,项目名称:AlphaPose,代码行数:9,代码来源:resnet_v1.py
示例19: resnet152
def resnet152(pretrained=False):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3])
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
开发者ID:sunshinezhihuo,项目名称:AlphaPose,代码行数:9,代码来源:resnet_v1.py
示例20: main
def main():
"""Create the model and start the evaluation process."""
args = get_arguments()
# gpu0 = args.gpu
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
model = Res_Deeplab(num_classes=args.num_classes)
if args.pretrained_model != None:
args.restore_from = pretrianed_models_dict[args.pretrained_model]
if args.restore_from[:4] == 'http' :
saved_state_dict = model_zoo.load_url(args.restore_from)
else:
saved_state_dict = torch.load(args.restore_from)
model.load_state_dict(saved_state_dict)
model.eval()
# model.cuda(gpu0)
testloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, crop_size=(505, 505), mean=IMG_MEAN, scale=False, mirror=False),
batch_size=1, shuffle=False, pin_memory=True)
interp = nn.Upsample(size=(505, 505), mode='bilinear')
data_list = []
colorize = VOCColorize()
for index, batch in enumerate(testloader):
if index % 100 == 0:
print('%d processd'%(index))
image, label, size, name = batch
size = size[0].numpy()
# output = model(Variable(image, volatile=True).cuda(gpu0))
output = model(Variable(image, volatile=True).cpu())
output = interp(output).cpu().data[0].numpy()
output = output[:,:size[0],:size[1]]
gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)
output = output.transpose(1,2,0)
output = np.asarray(np.argmax(output, axis=2), dtype=np.int)
filename = os.path.join(args.save_dir, '{}.png'.format(name[0]))
color_file = Image.fromarray(colorize(output).transpose(1, 2, 0), 'RGB')
color_file.save(filename)
# show_all(gt, output)
data_list.append([gt.flatten(), output.flatten()])
filename = os.path.join(args.save_dir, 'result.txt')
get_iou(data_list, args.num_classes, filename)
开发者ID:MrtBian,项目名称:AdvSemiSeg,代码行数:56,代码来源:evaluate_voc.py
注:本文中的torch.utils.model_zoo.load_url函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论