本文整理汇总了Python中torch.nn.functional.relu函数的典型用法代码示例。如果您正苦于以下问题:Python relu函数的具体用法?Python relu怎么用?Python relu使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了relu函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: forward
def forward(self, v, u, d):
"""
@param v [batch_size, embedding_size] matrix to push
@param u [batch_size,] vector of pop signals in (0, 1)
@param d [batch_size,] vector of push signals in (0, 1)
@return [batch_size, embedding_size] read matrix
"""
# update V, which is of size [t, bach_size, embedding_size]
v = v.view(1, self.batch_size, self.embedding_size)
self.V = torch.cat([self.V, v], 0) if len(self.V.data) != 0 else v
# TODO initialize queue to fixed size
# update s, which is of size [t, batch_size]
old_t = self.s.size(0) if self.s.size() else 0
s = Variable(torch.FloatTensor(old_t + 1, self.batch_size))
w = u
for i in xrange(old_t):
s_ = F.relu(self.s[i,:] - w)
w = F.relu(w - self.s[i,:])
s[i,:] = s_
# if len(torch.nonzero(w.data)) == 0: break
# TODO does this if work properly now?
s[old_t,:] = d
self.s = s
# calculate r, which is of size [batch_size, embedding_size]
r = Variable(torch.zeros([self.batch_size, self.embedding_size]))
for i in xrange(old_t + 1):
used = torch.sum(self.s[:i,:], 0) if i > 0 else self.zero
coeffs = torch.min(self.s[i,:], F.relu(1 - used))
# reformating coeffs into a matrix that can be multiplied element-wise
r += coeffs.view(self.batch_size, 1).repeat(1, self.embedding_size) * self.V[i,:,:]
return r
开发者ID:simonjmendelsohn,项目名称:StackNN,代码行数:35,代码来源:queue.py
示例2: forward
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:sv-dkl.py
示例3: forward
def forward(self, x, y, y_mask):
"""Input shapes:
x = batch * len1 * h
y = batch * len2 * h
y_mask = batch * len2
Output shapes:
matched_seq = batch * len1 * h
"""
# Project vectors
if self.linear:
x_proj = self.linear(x.view(-1, x.size(2))).view(x.size())
x_proj = F.relu(x_proj)
y_proj = self.linear(y.view(-1, y.size(2))).view(y.size())
y_proj = F.relu(y_proj)
else:
x_proj = x
y_proj = y
# Compute scores
scores = x_proj.bmm(y_proj.transpose(2, 1))
# Mask padding
y_mask = y_mask.unsqueeze(1).expand(scores.size())
scores.data.masked_fill_(y_mask.data, -float('inf'))
# Normalize with softmax
alpha_flat = F.softmax(scores.view(-1, y.size(1)))
alpha = alpha_flat.view(-1, x.size(1), y.size(1))
# Take weighted average
matched_seq = alpha.bmm(y)
return matched_seq
开发者ID:ahiroto,项目名称:ParlAI,代码行数:32,代码来源:layers.py
示例4: forward
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
开发者ID:naiqili,项目名称:CL,代码行数:7,代码来源:resnext.py
示例5: forward
def forward(self, x):
x = self.fc1(x).view(-1, self.channels, self.rows, self.rows)
x = F.relu(self.batch_norm1(x))
x = F.relu(self.batch_norm2(self.conv1(x)))
x = F.relu(self.batch_norm3(self.conv2(x)))
x = F.relu(self.batch_norm4(self.conv3(x)))
return F.tanh(self.conv4(x))
开发者ID:y-kamiya,项目名称:machine-learning-samples,代码行数:7,代码来源:conditional_gan.py
示例6: forward
def forward(self, x_left, x_right):
x_left = F.relu(x_left)
x_left = self.conv_left(x_left)
x_left = self.bn_left(x_left)
x_right = F.relu(x_right)
x_right = self.conv_right(x_right)
x_right = self.bn_right(x_right)
x_comb_iter_0_left = self.comb_iter_0_left(x_right)
x_comb_iter_0_right = self.comb_iter_0_right(x_left)
x_comb_iter_0 = x_comb_iter_0_left + x_comb_iter_0_right
x_comb_iter_1_left = self.comb_iter_1_left(x_left)
x_comb_iter_1_right = self.comb_iter_1_right(x_right)
x_comb_iter_1 = x_comb_iter_1_left + x_comb_iter_1_right
x_comb_iter_2_left = self.comb_iter_2_left(x_right)
x_comb_iter_2 = x_comb_iter_2_left + x_left
x_comb_iter_3_left = self.comb_iter_3_left(x_left) # TODO: those two avgPool look similar
x_comb_iter_3_right = self.comb_iter_3_right(x_left)
x_comb_iter_3 = x_comb_iter_3_left + x_comb_iter_3_right
x_comb_iter_4_left = self.comb_iter_4_left(x_right)
x_comb_iter_4 = x_comb_iter_4_left + x_right
return torch.cat([x_left, x_comb_iter_0, x_comb_iter_1, x_comb_iter_2, x_comb_iter_3, x_comb_iter_4], 1)
开发者ID:sarathknv,项目名称:pretrained-models.pytorch,代码行数:28,代码来源:nasnet.py
示例7: adpW
def adpW(self,x):
'''
calculate the pairwise_att of everypair of inputs
output_size: (x.size(0),x.size(1)/2)
'''
x = x.detach()
x = self.adp_metric_embedding1(x)
x = self.adp_metric_embedding1_bn(x)
x = F.relu(x)
x = self.adp_metric_embedding2(x)
x = self.adp_metric_embedding2_bn(x)
x = F.relu(x)
x = self.adp_metric_embedding3(x)
x = self.adp_metric_embedding3_bn(x)
x = F.relu(x)
pairwise_att = F.sigmoid(self.adp_metric_embedding4(x))
# x = self.adp_metric_embedding2_bn(x)
diag_matrix1 = []
diag_matrix2 = []
for i in range(x.size(0)):
diag_matrix1.append(torch.diag(pairwise_att[i, :x.size(1)/2]))
for i in range(x.size(0)):
diag_matrix2.append(torch.diag(pairwise_att[i, x.size(1)/2:]))
pairwise_att1 = torch.stack(diag_matrix1)
pairwise_att2 = torch.stack(diag_matrix1)
return pairwise_att1, pairwise_att2
开发者ID:hh23333,项目名称:FVAE_adversarial,代码行数:26,代码来源:adaptive_triplet.py
示例8: forward
def forward(self, x):
x_no_static = self.embed_no_static(x)
# x_no_static = self.dropout(x_no_static)
x_static = self.embed_static(x)
# fix the embedding
x_static = Variable(x_static.data)
# x_static = self.dropout(x_static)
x = torch.stack([x_static, x_no_static], 1)
one_layer = x # (N,W,D) # torch.Size([64, 43, 300])
# print("one_layer {}".format(one_layer.size()))
# one_layer = self.dropout(one_layer)
# one_layer = one_layer.unsqueeze(1) # (N,Ci,W,D) # torch.Size([64, 1, 43, 300])
# one layer
one_layer = [torch.transpose(F.relu(conv(one_layer)).squeeze(3), 1, 2).unsqueeze(1) for conv in self.convs1] # torch.Size([64, 100, 36])
# one_layer = [F.relu(conv(one_layer)).squeeze(3).unsqueeze(1) for conv in self.convs1] # torch.Size([64, 100, 36])
# print(one_layer[0].size())
# print(one_layer[1].size())
# two layer
two_layer = [F.relu(conv(one_layer)).squeeze(3) for (conv, one_layer) in zip(self.convs2, one_layer)]
# print("two_layer {}".format(two_layer[0].size()))
# print("two_layer {}".format(two_layer[1].size()))
# pooling
output = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in two_layer] # torch.Size([64, 100]) torch.Size([64, 100])
output = torch.cat(output, 1) # torch.Size([64, 300])
# dropout
output = self.dropout(output)
# linear
output = self.fc1(output)
logit = self.fc2(F.relu(output))
return logit
开发者ID:fengzhangyin,项目名称:cnn-lstm-bilstm-deepcnn-clstm-in-pytorch,代码行数:30,代码来源:model_DeepCNN_MUI.py
示例9: forward
def forward(self, x):
# flatten input
if len(x.size()) > 2:
x = x.view(-1, int(np.prod(x.size()[1:])))
# corrupt input
x = self.input_corrupt(x)
corrupted = x
# encode
for layer in self.encode_layers:
x = layer(x)
x = F.relu(x)
# decode
if self.tied_weights:
for i, (layer, bias) in enumerate(self.decode_params):
x = F.linear(x, weight=layer.weight.t(), bias=bias)
if i == len(self.decode_params)-1:
x = self.visible_act(x)
else:
x = F.relu(x)
else:
for i, layer in enumerate(self.decode_layers):
x = layer(x)
if i == len(self.decode_layers)-1:
x = self.visible_act(x)
else:
x = F.relu(x)
return x, corrupted
开发者ID:mbeissinger,项目名称:recurrent_gsn,代码行数:28,代码来源:dae.py
示例10: forward
def forward(self, x):
x1_1 = F.relu(self.cpm1(x), inplace=True)
x1_2 = F.relu(self.cpm2(x), inplace=True)
x2_1 = F.relu(self.cpm3(x1_2), inplace=True)
x2_2 = F.relu(self.cpm4(x1_2), inplace=True)
x3_1 = F.relu(self.cpm5(x2_2), inplace=True)
return torch.cat([x1_1, x2_1, x3_1] , 1)
开发者ID:UGuess,项目名称:FaceDetection-DSFD,代码行数:7,代码来源:face_ssd.py
示例11: forward
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out)
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out += shortcut
return out
开发者ID:eglxiang,项目名称:mixup-cifar10,代码行数:7,代码来源:resnet.py
示例12: forward
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
before_pool = x
if self.pooling:
x = self.pool(x)
return x, before_pool
开发者ID:Lazarusgoh,项目名称:deeplearning,代码行数:7,代码来源:nets.py
示例13: forward
def forward(self, word_inputs, feature_inputs, word_seq_lengths, char_inputs, char_seq_lengths, char_seq_recover):
"""
input:
word_inputs: (batch_size, sent_len)
word_seq_lengths: list of batch_size, (batch_size,1)
char_inputs: (batch_size*sent_len, word_length)
char_seq_lengths: list of whole batch_size for char, (batch_size*sent_len, 1)
char_seq_recover: variable which records the char order information, used to recover char order
output:
Variable(batch_size, sent_len, hidden_dim)
"""
word_represent = self.wordrep(word_inputs,feature_inputs, word_seq_lengths, char_inputs, char_seq_lengths, char_seq_recover)
## word_embs (batch_size, seq_len, embed_size)
if self.word_feature_extractor == "CNN":
word_in = F.tanh(self.word2cnn(word_represent)).transpose(2,1).contiguous()
for idx in range(self.cnn_layer):
if idx == 0:
cnn_feature = F.relu(self.cnn_list[idx](word_in))
else:
cnn_feature = F.relu(self.cnn_list[idx](cnn_feature))
cnn_feature = self.cnn_drop_list[idx](cnn_feature)
cnn_feature = self.cnn_batchnorm_list[idx](cnn_feature)
feature_out = cnn_feature.transpose(2,1).contiguous()
else:
packed_words = pack_padded_sequence(word_represent, word_seq_lengths.cpu().numpy(), True)
hidden = None
lstm_out, hidden = self.lstm(packed_words, hidden)
lstm_out, _ = pad_packed_sequence(lstm_out)
## lstm_out (seq_len, seq_len, hidden_size)
feature_out = self.droplstm(lstm_out.transpose(1,0))
## feature_out (batch_size, seq_len, hidden_size)
outputs = self.hidden2tag(feature_out)
return outputs
开发者ID:xj361685640,项目名称:NCRFpp,代码行数:33,代码来源:wordsequence.py
示例14: forward
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
x = F.max_pool2d(self.conv2(x), 2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(self._modules['bn_end' + str(i)]
(self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
开发者ID:CLAUDIOPINHEIRO,项目名称:face-alignment,代码行数:28,代码来源:models.py
示例15: forward
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc11(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.tanh(self.out(x))
return x
开发者ID:sunstrikes,项目名称:Algorithm,代码行数:7,代码来源:WGAN.py
示例16: forward
def forward(self, x):
out = F.relu(F.max_pool2d(self.conv1(x), 2))
out = F.relu(F.max_pool2d(self.conv2(out), 2))
out = out.view(-1, 320)
out = F.relu(self.fc1(out))
out = self.fc2(out)
return F.log_softmax(out, dim=1)
开发者ID:kevinzakka,项目名称:blog-code,代码行数:7,代码来源:classic.py
示例17: forward
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.downsample(x)
out = F.relu(out)
return out
开发者ID:hopstone,项目名称:pytorch-retinanet,代码行数:7,代码来源:fpn.py
示例18: forward
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.dropout(x, 0.8)
x = F.relu(self.linear2(x))
x = F.dropout(x, 0.8)
x = F.log_softmax(self.linear3(x))
return x
开发者ID:zyoohv,项目名称:zyoohv.github.io,代码行数:7,代码来源:dnn.py
示例19: forward
def forward(self, x):
x = x.view(-1, 784) # Flatten the data (n, 1, 28, 28)-> (n, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
开发者ID:jiayouwyhit,项目名称:PyTorchZeroToAll,代码行数:7,代码来源:09_2_softmax_mnist.py
示例20: forward
def forward(self, x):
x = x.float()
x = func.relu(self.fc1(x))
x = func.relu(self.fc2(x))
x = func.relu(self.fc3(x))
x = self.fc4(x).double()
return x
开发者ID:vivienseguy,项目名称:Large-Scale-OT,代码行数:7,代码来源:StochasticOTDiscrete.py
注:本文中的torch.nn.functional.relu函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论