• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python functional.max_pool2d函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中torch.nn.functional.max_pool2d函数的典型用法代码示例。如果您正苦于以下问题:Python max_pool2d函数的具体用法?Python max_pool2d怎么用?Python max_pool2d使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了max_pool2d函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: forward

    def forward(self, x):
        x = self.conv1(x)
        x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2)

        x = self.block1(x)
        x = self.group1(x)
        x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2)

        x = self.block2(x)
        x = self.group2(x)
        x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2)

        x = self.block3(x)
        x = self.group3(x)
        x = self.block4(x)
        x = self.group4(x)
        x = F.max_pool2d(x, 2) + F.avg_pool2d(x, 2)

        x = x.view(x.size(0), -1)
        fc = self.fc(x)
        x = F.dropout(fc, training=self.training)
        
        output = list()
        for name, fun in self.fc_dict.iteritems():
            out = fun(x)
            output.append(out)

        return output, fc
开发者ID:m-bain,项目名称:pytorch-multi-label-classifier,代码行数:28,代码来源:lightcnn.py


示例2: forward

    def forward(self, X):
        h = F.relu(self.conv1_1(X), inplace=True)
        h = F.relu(self.conv1_2(h), inplace=True)
        # relu1_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv2_1(h), inplace=True)
        h = F.relu(self.conv2_2(h), inplace=True)
        # relu2_2 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv3_1(h), inplace=True)
        h = F.relu(self.conv3_2(h), inplace=True)
        h = F.relu(self.conv3_3(h), inplace=True)
        # relu3_3 = h
        h = F.max_pool2d(h, kernel_size=2, stride=2)

        h = F.relu(self.conv4_1(h), inplace=True)
        h = F.relu(self.conv4_2(h), inplace=True)
        h = F.relu(self.conv4_3(h), inplace=True)
        # relu4_3 = h

        h = F.relu(self.conv5_1(h), inplace=True)
        h = F.relu(self.conv5_2(h), inplace=True)
        h = F.relu(self.conv5_3(h), inplace=True)
        relu5_3 = h

        return relu5_3
开发者ID:phonx,项目名称:MUNIT,代码行数:28,代码来源:networks.py


示例3: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.conv1(x)), 2)
     x = F.max_pool2d(F.relu(self.conv2(x)), 2)
     x = x.view(-1, 64 * 7 * 7)  # reshape Variable
     x = F.relu(self.fc1(x))
     x = self.fc2(x)
     return F.log_softmax(x, dim=-1)
开发者ID:limin24kobe,项目名称:cleverhans,代码行数:7,代码来源:mnist_tutorial_pytorch.py


示例4: forward

 def forward(self, x):
     x = F.relu(F.max_pool2d(self.conv1(x), 2))
     x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
     x = x.view(-1, 320)
     x = F.relu(self.fc1(x))
     x = F.dropout(x, training=self.training)
     return F.log_softmax(self.fc2(x))
开发者ID:nikcheerla,项目名称:mitosis-detection,代码行数:7,代码来源:pytorch_cnn.py


示例5: forward

 def forward(self, x):
     out = F.relu(F.max_pool2d(self.conv1(x), 2))
     out = F.relu(F.max_pool2d(self.conv2(out), 2))
     out = out.view(-1, 320)
     out = F.relu(self.fc1(out))
     out = self.fc2(out)
     return F.log_softmax(out, dim=1)
开发者ID:kevinzakka,项目名称:blog-code,代码行数:7,代码来源:classic.py


示例6: forward

 def forward(self, x):
     x = F.relu(F.max_pool2d(self.conv1(x), 2))
     x = F.relu(F.max_pool2d(self.conv2(x), 2))
     x = x.view(-1, 320)
     x = F.relu(self.fc1(x))
     x = self.fc2(x)
     return x
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:sv-dkl.py


示例7: forward

 def forward(self, x):
     if self.transform_input:
         x = x.clone()
         x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
         x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
         x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
     else: warn("Input isn't transformed")
     x = self.Conv2d_1a_3x3(x)
     x = self.Conv2d_2a_3x3(x)
     x = self.Conv2d_2b_3x3(x)
     x = F.max_pool2d(x, kernel_size=3, stride=2)
     x = self.Conv2d_3b_1x1(x)
     x = self.Conv2d_4a_3x3(x)
     x = F.max_pool2d(x, kernel_size=3, stride=2)
     x = self.Mixed_5b(x)
     x = self.Mixed_5c(x)
     x = self.Mixed_5d(x)
     x = self.Mixed_6a(x)
     x = self.Mixed_6b(x)
     x = self.Mixed_6c(x)
     x = self.Mixed_6d(x)
     x = self.Mixed_6e(x)
     x = self.Mixed_7a(x)
     x = self.Mixed_7b(x)
     x_for_attn = x = self.Mixed_7c(x)
     # 8 x 8 x 2048
     x = F.avg_pool2d(x, kernel_size=8)
     # 1 x 1 x 2048
     x_for_capt = x = x.view(x.size(0), -1)
     # 2048
     x = self.fc(x)
     # 1000 (num_classes)
     return x_for_attn, x_for_capt, x
开发者ID:mdasadul,项目名称:Practical_DL,代码行数:33,代码来源:beheaded_inception3.py


示例8: forward

    def forward(self, x):
        x1 = self.conv1(x)
        x1 = F.max_pool2d(x1, 3, stride=2)
        x2 = self.fire2(x1)
        x3 = self.fire3(x2)
        if self.bypass:
            x3 = x3 + x2
        x4 = self.fire4(x3)
        x4 = F.max_pool2d(x4, 3, stride=2)
        x5 = self.fire5(x4)
        if self.bypass:
            x5 = x5 + x4
        x6 = self.fire6(x5)
        x7 = self.fire7(x6)
        if self.bypass:
            x7 = x7 + x6
        x8 = self.fire8(x7)
        x8 = F.max_pool2d(x8, 3, stride=2)
        x9 = self.fire9(x8)
        if self.bypass:
            x9 = x9 + x8
        x9 = F.dropout(x9, training=self.training)
        x10 = F.relu(self.conv10(x9))
        f = F.avg_pool2d(x10, x10.size()[2:]).view(x10.size(0), -1)

        if not self.training:
            return f

        if self.loss == {'xent'}:
            return f
        elif self.loss == {'xent', 'htri'}:
            return f, f
        else:
            raise KeyError("Unsupported loss: {}".format(self.loss))
开发者ID:zysolanine,项目名称:deep-person-reid,代码行数:34,代码来源:squeeze.py


示例9: forward

 def forward(self, x):
     x = F.relu(F.max_pool2d(self.conv1(x), 2))
     x = F.relu(F.max_pool2d(self.conv2(x), 2))
     x = x.view(-1, 7*7*64)
     x = F.relu(self.fc1(x))
     x = F.dropout(x, 0.4)
     x = self.fc2(x)
     return F.log_softmax(x, dim=1)
开发者ID:danielhers,项目名称:cnn,代码行数:8,代码来源:mnist_pytorch.py


示例10: forward

 def forward(self, x):
     x = F.relu(F.max_pool2d(self.conv1(x), 2))
     x = F.relu(F.max_pool2d(self.conv2(x), 2))
     x = x.view(-1, 1600)
     x = F.relu(self.fc1(x))
     x = F.dropout(x, training=self.training)
     x = self.fc2(x)
     return th.abs(10 - x)
开发者ID:BrianDo2005,项目名称:torchsample,代码行数:8,代码来源:single_input_no_target.py


示例11: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # max pooling over a 2x2 window
     x = F.max_pool2d(F.relu(self.conv2(x)), 2) # square x can only specify single number
     x = x.view(-1, self.num_flat_features(x))
     x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
     x = self.fc3(x)
     return x
开发者ID:deo1,项目名称:deo1,代码行数:8,代码来源:tutorial.py


示例12: deepcompare_2ch

def deepcompare_2ch(input, params):
    o = conv2d(input, params, 'conv0', stride=3)
    o = F.max_pool2d(F.relu(o), 2, 2)
    o = conv2d(o, params, 'conv1')
    o = F.max_pool2d(F.relu(o), 2, 2)
    o = conv2d(o, params, 'conv2')
    o = F.relu(o).view(o.size(0), -1)
    return linear(o, params, 'fc')
开发者ID:szagoruyko,项目名称:cvpr15deepcompare,代码行数:8,代码来源:eval.py


示例13: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.convolution_0(x)), (2, 2))
     x = F.max_pool2d(F.relu(self.convolution_1(x)), (2, 2))
     x = x.view(-1, 32 * 5 * 5)
     x = F.relu(self.fully_connected_0(x))
     x = F.relu(self.fully_connected_1(x))
     x = self.fully_connected_2(x)
     return x
开发者ID:mraxilus,项目名称:experiments,代码行数:8,代码来源:create_neural_network.py


示例14: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # Max pooling over a (2, 2) window
     x = F.max_pool2d(F.relu(self.conv2(x)), 2) # If the size is a square you can only specify a single number
     x = x.view(-1, self.num_flat_features(x))
     x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
     x = self.fc3(x)
     return x
开发者ID:Suluo,项目名称:Kaggle,代码行数:8,代码来源:test.py


示例15: forward

 def forward(self, x, y, z):
     x = F.relu(F.max_pool2d(self.conv1(x), 2))
     x = F.relu(F.max_pool2d(self.conv2(x), 2))
     x = x.view(-1, 1600)
     x = F.relu(self.fc1(x))
     x = F.dropout(x, training=self.training)
     x = self.fc2(x)
     return F.log_softmax(x), F.log_softmax(x), F.log_softmax(x)
开发者ID:BrianDo2005,项目名称:torchsample,代码行数:8,代码来源:multi_input_multi_target.py


示例16: siam

def siam(patch, params):
    o = conv2d(patch, params, 'conv0', stride=3)
    o = F.max_pool2d(F.relu(o), 2, 2)
    o = conv2d(o, params, 'conv1')
    o = F.max_pool2d(F.relu(o), 2, 2)
    o = conv2d(o, params, 'conv2')
    o = F.relu(o)
    return o.view(o.size(0), -1)
开发者ID:szagoruyko,项目名称:cvpr15deepcompare,代码行数:8,代码来源:eval.py


示例17: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
     x = F.max_pool2d(F.relu(self.conv2(x)), 2)
     x = x.view(-1, self.num_flat_features(x))
     x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
     x = self.fc3(x)
     return x
开发者ID:terasakisatoshi,项目名称:PythonCode,代码行数:8,代码来源:network.py


示例18: forward

 def forward(self, x):
    steps=x.shape[0]
    batch=x.shape[1]
    x=x.view(x.shape[0]*x.shape[1],1,-1,11)
    out = F.max_pool2d(self.conv1(x), (2, 1))
    out = F.max_pool2d(self.conv2(out), (2, 2))
    out= out.view(steps,batch,-1)
    return out
开发者ID:yunzqq,项目名称:pytorch-kaldi,代码行数:8,代码来源:neural_nets.py


示例19: forward

	def forward(self,x):
		x = F.max_pool2d(F.relu(self.conv1(x)),(2,2))
		x = F.max_pool2d(F.relu(self.conv2(x)),2)
		x = x.view(x.size()[0],-1)
		x = F.relu(self.fc1(x))
		x = F.relu(self.fc2(x))
		x = self.fc3(x)
		return x
开发者ID:ZhangXinNan,项目名称:LearnPractice,代码行数:8,代码来源:cifar10.py


示例20: forward

 def forward(self, x):
     x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
     x = F.max_pool2d(F.relu(self.conv2(x)), 2)  # when shape is square, a single number is fine.
     x = x.view(-1, self.num_flat_features(x))
     x = F.relu(self.fc1(x))
     x = F.relu(self.fc2(x))
     x = self.fc3(x)
     return x
开发者ID:episodeyang,项目名称:deep_learning_notes,代码行数:8,代码来源:torch_sample_cnn.py



注:本文中的torch.nn.functional.max_pool2d函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python functional.nll_loss函数代码示例发布时间:2022-05-27
下一篇:
Python functional.log_softmax函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap