• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python torch.from_numpy函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中torch.from_numpy函数的典型用法代码示例。如果您正苦于以下问题:Python from_numpy函数的具体用法?Python from_numpy怎么用?Python from_numpy使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了from_numpy函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: get_hierarchical_features_till_spawn

    def get_hierarchical_features_till_spawn(self, actions, backtrack_steps=0):

        action_length = len(actions)-1
        pa, ca, pq_idx, cq_idx, ph_idx = flat_to_hierarchical_actions(actions)

        target_pos_idx = action_length - backtrack_steps

        controller_step = True
        if target_pos_idx in pq_idx:
            controller_step = False

        pq_idx_pruned = [v for v in pq_idx if v <= target_pos_idx]
        pa_pruned = pa[:len(pq_idx_pruned)+1]

        images = self.get_frames(
            self.episode_house,
            self.episode_pos_queue,
            preprocess=True)
        raw_img_feats = self.cnn(
            Variable(torch.FloatTensor(images)
                     .cuda())).data.cpu().numpy().copy()

        controller_img_feat, controller_action_in = False, False
        if controller_step == True:
            controller_img_feat = torch.from_numpy(raw_img_feats[target_pos_idx].copy())
            controller_action_in = pa_pruned[-1] - 2

        planner_img_feats = torch.from_numpy(raw_img_feats[pq_idx_pruned].copy())
        planner_actions_in = torch.from_numpy(np.array(pa_pruned[:-1]) - 1)

        return planner_actions_in, planner_img_feats, controller_step, controller_action_in, controller_img_feat, self.episode_pos_queue[target_pos_idx]
开发者ID:wooridle,项目名称:EmbodiedQA,代码行数:31,代码来源:data.py


示例2: predict_proba

    def predict_proba(self, dataset):
        """Predict predict probability for dataset.
        This method will only work with method logistic/multiclass

        Parameters:
        ----------
        dataset (dict): dictionary with the testing dataset -
        X_wide_test, X_deep_test, target

        Returns:
        --------
        array-like with the probability for dataset.
        """

        X_w = Variable(torch.from_numpy(dataset.wide)).float()
        X_d = Variable(torch.from_numpy(dataset.deep))

        if use_cuda:
            X_w, X_d = X_w.cuda(), X_d.cuda()

        # set the model in evaluation mode so dropout is not applied
        net = self.eval()
        pred = net(X_w,X_d).cpu()
        if self.method == "logistic":
            pred = pred.squeeze(1).data.numpy()
            probs = np.zeros([pred.shape[0],2])
            probs[:,0] = 1-pred
            probs[:,1] = pred
            return probs
        if self.method == "multiclass":
            return pred.data.numpy()
开发者ID:KyrieChin,项目名称:Wide-and-Deep-PyTorch,代码行数:31,代码来源:torch_model.py


示例3: evaluate

def evaluate(attention_model,x_test,y_test):
    """
        cv results
 
        Args:
            attention_model : {object} model
            x_test          : {nplist} x_test
            y_test          : {nplist} y_test
       
        Returns:
            cv-accuracy
 
      
    """
   
    attention_model.batch_size = x_test.shape[0]
    attention_model.hidden_state = attention_model.init_hidden()
    x_test_var = Variable(torch.from_numpy(x_test).type(torch.LongTensor))
    y_test_pred,_ = attention_model(x_test_var)
    if bool(attention_model.type):
        y_preds = torch.max(y_test_pred,1)[1]
        y_test_var = Variable(torch.from_numpy(y_test).type(torch.LongTensor))
       
    else:
        y_preds = torch.round(y_test_pred.type(torch.DoubleTensor).squeeze(1))
        y_test_var = Variable(torch.from_numpy(y_test).type(torch.DoubleTensor))
       
    return torch.eq(y_preds,y_test_var).data.sum()/x_test_var.size(0)
开发者ID:daiyongya,项目名称:Structured-Self-Attention,代码行数:28,代码来源:train.py


示例4: im_detect

def im_detect(net, im):
    blobs, im_scales = _get_blobs(im)
    assert len(im_scales) == 1, "Only single-image batch implemented"

    im_blob = blobs['data']
    blobs['im_info'] = np.array(
        [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32)

    _, scores, bbox_pred, rois = net.test_image(blobs['data'],
                                                blobs['im_info'])

    boxes = rois[:, 1:5] / im_scales[0]
    scores = np.reshape(scores, [scores.shape[0], -1])
    bbox_pred = np.reshape(bbox_pred, [bbox_pred.shape[0], -1])
    if cfg.TEST.BBOX_REG:
        # Apply bounding-box regression deltas
        box_deltas = bbox_pred
        pred_boxes = bbox_transform_inv(
            torch.from_numpy(boxes), torch.from_numpy(box_deltas)).numpy()
        pred_boxes = _clip_boxes(pred_boxes, im.shape)
    else:
        # Simply repeat the boxes, once for each class
        pred_boxes = np.tile(boxes, (1, scores.shape[1]))

    return scores, pred_boxes
开发者ID:zvant,项目名称:pytorch-faster-rcnn,代码行数:25,代码来源:test.py


示例5: get_test_data

def get_test_data(num_train=1000, num_test=500, 
                  input_shape=(10,), output_shape=(2,),
                  classification=True, num_classes=2):
    """Generates test data to train a model on.

    classification=True overrides output_shape
    (i.e. output_shape is set to (1,)) and the output
    consists in integers in [0, num_class-1].

    Otherwise: float output with shape output_shape.
    """
    samples = num_train + num_test
    if classification:
        y = np.random.randint(0, num_classes, size=(samples,))
        X = np.zeros((samples,) + input_shape)
        for i in range(samples):
            X[i] = np.random.normal(loc=y[i], scale=0.7, size=input_shape)
    else:
        y_loc = np.random.random((samples,))
        X = np.zeros((samples,) + input_shape)
        y = np.zeros((samples,) + output_shape)
        for i in range(samples):
            X[i] = np.random.normal(loc=y_loc[i], scale=0.7, size=input_shape)
            y[i] = np.random.normal(loc=y_loc[i], scale=0.7, size=output_shape)

    return (th.from_numpy(X[:num_train]), th.from_numpy(y[:num_train])), \
           (th.from_numpy(X[num_train:]), th.from_numpy(y[num_train:]))
开发者ID:BrianDo2005,项目名称:torchsample,代码行数:27,代码来源:utils.py


示例6: resize

def resize(original, um_sizes, desired_res):
    """ Resize array originally of um_sizes size to have desired_res resolution.

    We preserve the center of original and resized arrays exactly in the middle. We also
    make sure resolution is exactly the desired resolution. Given these two constraints,
    we cannot hold FOV of original and resized arrays to be exactly the same.

    :param np.array original: Array to resize.
    :param tuple um_sizes: Size in microns of the array (one per axis).
    :param int or tuple desired_res: Desired resolution (um/px) for the output array.

    :return: Output array (np.float32) resampled to the desired resolution. Size in pixels
        is round(um_sizes / desired_res).
    """
    import torch.nn.functional as F

    # Create grid to sample in microns
    grid = create_grid(um_sizes, desired_res) # d x h x w x 3

    # Re-express as a torch grid [-1, 1]
    um_per_px = np.array([um / px for um, px in zip(um_sizes, original.shape)])
    torch_ones = np.array(um_sizes) / 2 - um_per_px / 2  # sample position of last pixel in original
    grid = grid / torch_ones[::-1].astype(np.float32)

    # Resample
    input_tensor = torch.from_numpy(original.reshape(1, 1, *original.shape).astype(
        np.float32))
    grid_tensor = torch.from_numpy(grid.reshape(1, *grid.shape))
    resized_tensor = F.grid_sample(input_tensor, grid_tensor, padding_mode='border')
    resized = resized_tensor.numpy().squeeze()

    return resized
开发者ID:dimitri-yatsenko,项目名称:pipeline,代码行数:32,代码来源:registration.py


示例7: interpolate

def interpolate(ae, gg, z1, z2, vocab,
                steps=5, sample=None, maxlen=None):
    """
    Interpolating in z space
    Assumes that type(z1) == type(z2)
    """
    if type(z1) == Variable:
        noise1 = z1
        noise2 = z2
    elif type(z1) == torch.FloatTensor or type(z1) == torch.cuda.FloatTensor:
        noise1 = Variable(z1, volatile=True)
        noise2 = Variable(z2, volatile=True)
    elif type(z1) == np.ndarray:
        noise1 = Variable(torch.from_numpy(z1).float(), volatile=True)
        noise2 = Variable(torch.from_numpy(z2).float(), volatile=True)
    else:
        raise ValueError("Unsupported input type (noise): {}".format(type(z1)))

    # interpolation weights
    lambdas = [x*1.0/(steps-1) for x in range(steps)]

    gens = []
    for L in lambdas:
        gens.append(generate(ae, gg, (1-L)*noise1 + L*noise2,
                             vocab, sample, maxlen))

    interpolations = []
    for i in range(len(gens[0])):
        interpolations.append([s[i] for s in gens])
    return interpolations
开发者ID:wangwang110,项目名称:ARAE,代码行数:30,代码来源:generate.py


示例8: average_without_padding

def average_without_padding(x, ids, padding_id, cuda=False, eps=1e-8):
    if cuda:
        mask = Variable(torch.from_numpy(np.not_equal(ids, padding_id).astype(int)[:,:,np.newaxis])).float().cuda().permute(1, 2, 0).expand_as(x)
    else:
        mask = Variable(torch.from_numpy(np.not_equal(ids, padding_id).astype(int)[:,:,np.newaxis])).float().permute(1, 2, 0).expand_as(x)
    s = torch.sum(x*mask, dim=2) / (torch.sum(mask, dim=2)+eps)
    return s
开发者ID:sepiatone,项目名称:information_retrieval,代码行数:7,代码来源:utils.py


示例9: artist_works_with_labels

def artist_works_with_labels():     # painting from the famous artist (real target)
    a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
    paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
    labels = (a-1) > 0.5            # upper paintings (1), lower paintings (0), two classes
    paintings = torch.from_numpy(paintings).float()
    labels = torch.from_numpy(labels.astype(np.float32))
    return paintings, labels
开发者ID:Chandan-IITI,项目名称:PyTorch-Tutorial,代码行数:7,代码来源:406_conditional_GAN.py


示例10: run_test

    def run_test(self, args):
        print("testing...")
        self.eval()

        game = DoomInstance(
            args.vizdoom_config, args.wad_path, args.skiprate, visible=True, actions=args.action_set, bot_cmd=args.bot_cmd)
        step_state = game.get_state_normalized()

        state = NormalizedState(screen=None, depth=None, labels=None, variables=None)
        state.screen = torch.Tensor(1, *args.screen_size)
        state.variables = torch.Tensor(1, args.variable_num)

        while True:
            # convert state to torch tensors
            state.screen[0, :] = torch.from_numpy(step_state.screen)
            state.variables[0, :] = torch.from_numpy(step_state.variables)
            # compute an action
            action = self.get_action(state)
            # render
            step_state, _, finished = game.step_normalized(action[0][0])
            #img = step_state.screen[0:3, :]
            #img = img.transpose(1, 2, 0)
            #plt.imsave('depth-plan.png', img)
            if finished:
                print("episode return: {}".format(game.get_episode_return()))
                self.set_terminal(torch.zeros(1))
开发者ID:shubhampachori12110095,项目名称:doom-net-pytorch,代码行数:26,代码来源:aac_base.py


示例11: flow_resnet50_aux

def flow_resnet50_aux(pretrained=False, **kwargs):
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
        pretrained_dict = model_zoo.load_url(model_urls['resnet50'])

        model_dict = model.state_dict()
        fc_origin_weight = pretrained_dict["fc.weight"].data.numpy()
        fc_origin_bias = pretrained_dict["fc.bias"].data.numpy()

        # 1. filter out unnecessary keys
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        # 2. overwrite entries in the existing state dict
        model_dict.update(pretrained_dict) 
        # print(model_dict)
        fc_new_weight = model_dict["fc_aux.weight"].numpy() 
        fc_new_bias = model_dict["fc_aux.bias"].numpy() 

        fc_new_weight[:1000, :] = fc_origin_weight
        fc_new_bias[:1000] = fc_origin_bias

        model_dict["fc_aux.weight"] = torch.from_numpy(fc_new_weight)
        model_dict["fc_aux.bias"] = torch.from_numpy(fc_new_bias)

        # 3. load the new state dict
        model.load_state_dict(model_dict)

    return model
开发者ID:Alawaka,项目名称:two-stream-pytorch,代码行数:33,代码来源:flow_resnet.py


示例12: __init__

    def __init__(self, height, width, lr = 1, aux_loss = False, ray_tracing = False):
        super(Depth3DGridGen_with_mask, self).__init__()
        self.height, self.width = height, width
        self.aux_loss = aux_loss
        self.lr = lr
        self.ray_tracing = ray_tracing

        self.grid = np.zeros( [self.height, self.width, 3], dtype=np.float32)
        self.grid[:,:,0] = np.expand_dims(np.repeat(np.expand_dims(np.arange(-1, 1, 2.0/self.height), 0), repeats = self.width, axis = 0).T, 0)
        self.grid[:,:,1] = np.expand_dims(np.repeat(np.expand_dims(np.arange(-1, 1, 2.0/self.width), 0), repeats = self.height, axis = 0), 0)
        self.grid[:,:,2] = np.ones([self.height, width])
        self.grid = torch.from_numpy(self.grid.astype(np.float32))

        self.theta = self.grid[:,:,0] * np.pi/2 + np.pi/2
        self.phi = self.grid[:,:,1] * np.pi

        self.x = torch.sin(self.theta) * torch.cos(self.phi)
        self.y = torch.sin(self.theta) * torch.sin(self.phi)
        self.z = torch.cos(self.theta)

        self.grid3d = torch.from_numpy(np.zeros( [self.height, self.width, 4], dtype=np.float32))

        self.grid3d[:,:,0] = self.x
        self.grid3d[:,:,1] = self.y
        self.grid3d[:,:,2] = self.z
        self.grid3d[:,:,3] = self.grid[:,:,2]
开发者ID:Dtean,项目名称:faster-rcnn.pytorch,代码行数:26,代码来源:gridgen.py


示例13: train

def train():
    num_classses = 21
    net = ssd.SSD300(num_classes=num_classses)
    ssd_box_coder = ssd.SSDBoxCoder(net)

    C, H, W = (3, 300, 300)
    x = Variable(torch.randn(1, C, H, W))
    boxes = torch.from_numpy(np.array([(0, 0, 100, 100), (25, 25, 125, 125), (200, 200, 250, 250), (0, 0, 300, 300)], dtype=np.float32))
    labels = torch.from_numpy(np.array([1, 2, 3, 4], dtype=np.long))
    loc_targets, cls_targets = ssd_box_coder.encode(boxes, labels)
    loc_targets = loc_targets[None, :]
    cls_targets = cls_targets[None, :]
    # print('loc_targets.size():{}'.format(loc_targets.size()))
    # print('cls_targets.size():{}'.format(cls_targets.size()))

    optimizer = optim.SGD(net.parameters(), lr=1e-5, momentum=0.9, weight_decay=5e-4)
    criterion = ssd.SSDLoss(num_classes=num_classses)

    for epoch in range(100):
        loc_preds, cls_preds = net(x)
        # print('loc_preds.size():{}'.format(loc_preds.size()))
        # print('cls_preds.size():{}'.format(cls_preds.size()))
        optimizer.zero_grad()

        loss = criterion(loc_preds, loc_targets, cls_preds, cls_targets)
        loss.backward()
        optimizer.step()
开发者ID:zhliue,项目名称:objdet,代码行数:27,代码来源:train_ssd.py


示例14: transform

    def transform(self, img, lbl):
        """transform

        :param img:
        :param lbl:
        """
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)
        
        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)
        

        if not np.all(classes == np.unique(lbl)):
            print("WARN: resizing labels yielded fewer classes")

        if not np.all(np.unique(lbl[lbl!=self.ignore_index]) < self.n_classes):
            print('after det', classes,  np.unique(lbl))
            raise ValueError("Segmentation map contained invalid class values")

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()

        return img, lbl
开发者ID:clavichord93,项目名称:pytorch-semseg,代码行数:33,代码来源:cityscapes_loader.py


示例15: l2l_validate

def l2l_validate(model, cluster_center, n_epoch=100):
    val_accuracy = []
    for epoch in range(n_epoch):
        data_l = generate_data_l(cluster_center)
        data_n = generate_data_n(cluster_center, model.n_class_n)
        x_l, y_l = Variable(torch.from_numpy(data_l[0])).float(), Variable(
            torch.from_numpy(data_l[1]))
        x_n, y_n = Variable(torch.from_numpy(data_n[0])).float(), Variable(
            torch.from_numpy(data_n[1]))
        pred_ll, pred_nl, w, b = model(x_l, x_n)
        M = Variable(torch.zeros(model.n_class_n, model.n_dim))
        B = Variable(torch.zeros(model.n_class_n))
        for k in range(model.n_class_n):
            M[k] = torch.cat((w[:, 0][y_n == model.n_class_l + k].view(-1, 1),
                              w[:, 1][y_n == model.n_class_l + k].view(-1, 1)), 1).mean(0)
            B[k] = b[y_n == model.n_class_l + k].mean()
        pred_ln = torch.mm(x_l, M.t()) + B.view(1, -1).expand_as(torch.mm(x_l, M.t()))
        pred_nn = torch.mm(x_n, M.t()) + B.view(1, -1).expand_as(torch.mm(x_n, M.t()))
        pred = torch.cat((torch.cat((pred_ll, pred_nl)), torch.cat((pred_ln, pred_nn))), 1)
        pred = pred.data.max(1)[1]
        y = torch.cat((y_l, y_n))
        accuracy = pred.eq(y.data).cpu().sum() * 1.0 / y.size()[0]
        # print('accuracy: %.2f' % accuracy)
        val_accuracy.append(accuracy)
        acc_l = pred.eq(y.data).cpu()[0:100].sum() * 1.0 / 100
        acc_n = pred.eq(y.data).cpu()[100:150].sum() * 1.0 / 50
        print('accuracy: %.2f, lifelong accuracy: %.2f, new accuracy: %.2f' % (accuracy, acc_l, acc_n))

    return numpy.mean(numpy.asarray(val_accuracy))
开发者ID:yangyi02,项目名称:my-scripts,代码行数:29,代码来源:learning_to_learn_lifelong_newclass_trunc.py


示例16: __call__

    def __call__(self, inputs):
        if isinstance(inputs, Image.Image):
            inputs = torch.from_numpy(np.array(inputs).transpose(2, 0, 1))
        else:
            inputs = torch.from_numpy(inputs.transpose(2, 0, 1))

        return inputs.float()
开发者ID:shubhampachori12110095,项目名称:pytorch-cv,代码行数:7,代码来源:transforms.py


示例17: l2l_train

def l2l_train(model, cluster_center, n_epoch=10000, trunc_step=10):
    optimizer = optim.Adam(model.parameters(), lr=0.01)
    M_all = Variable(torch.zeros(model.n_class, model.n_dim))
    B_all = Variable(torch.zeros(model.n_class))
    for epoch in range(n_epoch):
        loss = 0
        M_step, B_step = [], []
        for step in range(trunc_step):
            data = generate_data(cluster_center)
            optimizer.zero_grad()
            x, y = Variable(torch.from_numpy(data[0])).float(), Variable(torch.from_numpy(data[1]))
            w, b = model(x)
            M = Variable(torch.zeros(model.n_class_n, model.n_dim))
            B = Variable(torch.zeros(model.n_class_n))
            for k in range(model.n_class_n):
                M[k] = torch.cat((w[:, 0][y == model.n_class_l + k].view(-1, 1),
                                  w[:, 1][y == model.n_class_l + k].view(-1, 1)), 1).mean(0)
                B[k] = b[y == model.n_class_l + k].mean()
            if step == 0:
                M_ = M
                B_ = B
            else:
                M_ = step / (step + 1) * M_step[-1] + 1 / (step + 1) * M
                B_ = step / (step + 1) * B_step[-1] + 1 / (step + 1) * B
            M_step.append(M_)
            B_step.append(B_)
            pred = torch.mm(x, M_.t()) + B_.view(1, -1).expand_as(torch.mm(x, M_.t()))
            loss += F.cross_entropy(pred, y)
        loss.backward()
        optimizer.step()
        print('Train Epoch: {}\tLoss: {:.6f}'.format(epoch, loss.data[0]))
    return M_all, B_all, cluster_center
开发者ID:yangyi02,项目名称:my-scripts,代码行数:32,代码来源:learning_to_learn_lifelong_newclass_trunc.py


示例18: data_generator

def data_generator(args, screens, variables, labels, episodes):
    # remove short episodes
    episode_min_size = args.episode_size*args.skiprate
    episodes = episodes[episodes[:, 1]-episodes[:, 0] > episode_min_size]
    episodes_num = len(episodes)
    #
    batch_size = args.batch_size
    step_idx = episodes[:, 0].copy() + np.random.randint(args.skiprate, size=episodes_num)
    step_screens = np.ndarray(shape=(batch_size, *screens.shape[1:]), dtype=np.float32)
    step_variables = np.ndarray(shape=(batch_size, *variables.shape[1:]), dtype=np.float32)
    step_labels = np.ndarray(shape=(batch_size,), dtype=np.int)
    step_terminals = np.ones(shape=(batch_size, 1), dtype=np.float32)
    # select episodes for the initial batch
    batch_episodes = np.random.randint(episodes_num, size=batch_size)
    while True:
        for i in range(batch_size):
            idx = batch_episodes[i]
            step_screens[i, :] = screens[step_idx[idx]] / 127.5 - 1.0
            step_variables[i, :] = variables[step_idx[idx]] / 100
            step_labels[i] = labels[step_idx[idx]]
            step_idx[idx] += args.skiprate
            if step_idx[idx] > episodes[idx][1]:
                step_idx[idx] = episodes[idx][0] + np.random.randint(args.skiprate)
                step_terminals[i] = 0
                # reached terminal state, select a new episode
                batch_episodes[i] = np.random.randint(episodes_num)
            else:
                step_terminals[i] = 1

        yield torch.from_numpy(step_screens), \
              torch.from_numpy(step_variables), \
              torch.from_numpy(step_labels), \
              torch.from_numpy(step_terminals)
开发者ID:shubhampachori12110095,项目名称:doom-net-pytorch,代码行数:33,代码来源:imitation_lstm.py


示例19: load_pretrained_npy

def load_pretrained_npy(faster_rcnn_model, fname):
    params = np.load(fname).item()
    # vgg16
    vgg16_dict = faster_rcnn_model.rpn.features.state_dict()
    for name, val in list(vgg16_dict.items()):
        # # print name
        # # print val.size()
        # # print param.size()
        if name.find('bn.') >= 0:
            continue
        i, j = int(name[4]), int(name[6]) + 1
        ptype = 'weights' if name[-1] == 't' else 'biases'
        key = 'conv{}_{}'.format(i, j)
        param = torch.from_numpy(params[key][ptype])

        if ptype == 'weights':
            param = param.permute(3, 2, 0, 1)

        val.copy_(param)

    # fc6 fc7
    frcnn_dict = faster_rcnn_model.state_dict()
    pairs = {'fc6.fc': 'fc6', 'fc7.fc': 'fc7'}
    for k, v in list(pairs.items()):
        key = '{}.weight'.format(k)
        param = torch.from_numpy(params[v]['weights']).permute(1, 0)
        frcnn_dict[key].copy_(param)

        key = '{}.bias'.format(k)
        param = torch.from_numpy(params[v]['biases'])
        frcnn_dict[key].copy_(param)
开发者ID:jjprincess,项目名称:yolo2-pytorch,代码行数:31,代码来源:network.py


示例20: corrupt

 def corrupt(self, src, rel, dst):
     prob = self.bern_prob[rel]
     selection = torch.bernoulli(prob).numpy().astype('int64')
     ent_random = choice(self.n_ent, len(src))
     src_out = (1 - selection) * src.numpy() + selection * ent_random
     dst_out = selection * dst.numpy() + (1 - selection) * ent_random
     return torch.from_numpy(src_out), torch.from_numpy(dst_out)
开发者ID:cai-lw,项目名称:KBGAN,代码行数:7,代码来源:corrupter.py



注:本文中的torch.from_numpy函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python torch.gather函数代码示例发布时间:2022-05-27
下一篇:
Python torch.eye函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap