• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python torch.exp函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中torch.exp函数的典型用法代码示例。如果您正苦于以下问题:Python exp函数的具体用法?Python exp怎么用?Python exp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了exp函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: predictive_elbo

    def predictive_elbo(self, x, k, s):
        # No pW or qW

        self.B = x.size()[0] #batch size
        # self.k = k  #number of z samples aka particles P
        # self.s = s  #number of W samples

        elbo1s = []
        for i in range(s):

            Ws, logpW, logqW = self.sample_W()  #_ , [1], [1]

            mu, logvar = self.encode(x)  #[B,Z]
            z, logpz, logqz = self.sample_z(mu, logvar, k=k) #[P,B,Z], [P,B]

            x_hat = self.decode(Ws, z) #[P,B,X]
            logpx = log_bernoulli(x_hat, x)  #[P,B]

            elbo = logpx + logpz - logqz #[P,B]
            if k>1:
                max_ = torch.max(elbo, 0)[0] #[B]
                elbo = torch.log(torch.mean(torch.exp(elbo - max_), 0)) + max_ #[B]
            # elbo1 = elbo1 #+ (logpW - logqW)*.00000001 #[B], logp(x|W)p(w)/q(w)
            elbo1s.append(elbo)

        elbo1s = torch.stack(elbo1s) #[S,B]
        if s>1:
            max_ = torch.max(elbo1s, 0)[0] #[B]
            elbo1 = torch.log(torch.mean(torch.exp(elbo1s - max_), 0)) + max_ #[B]            

        elbo = torch.mean(elbo1s) #[1]
        return elbo#, logprobs2[0], logprobs2[1], logprobs2[2], logprobs2[3], logprobs2[4]
开发者ID:chriscremer,项目名称:Other_Code,代码行数:32,代码来源:bvae_pytorch4_plot_true_posterior.py


示例2: forward

    def forward(self, feat, right, wrong, batch_wrong, fake=None, fake_diff_mask=None):

        num_wrong = wrong.size(1)
        batch_size = feat.size(0)

        feat = feat.view(-1, self.ninp, 1)
        right_dis = torch.bmm(right.view(-1, 1, self.ninp), feat)
        wrong_dis = torch.bmm(wrong, feat)
        batch_wrong_dis = torch.bmm(batch_wrong, feat)

        wrong_score = torch.sum(torch.exp(wrong_dis - right_dis.expand_as(wrong_dis)),1) \
                + torch.sum(torch.exp(batch_wrong_dis - right_dis.expand_as(batch_wrong_dis)),1)

        loss_dis = torch.sum(torch.log(wrong_score + 1))
        loss_norm = right.norm() + feat.norm() + wrong.norm() + batch_wrong.norm()

        if fake:
            fake_dis = torch.bmm(fake.view(-1, 1, self.ninp), feat)
            fake_score = torch.masked_select(torch.exp(fake_dis - right_dis), fake_diff_mask)

            margin_score = F.relu(torch.log(fake_score + 1) - self.margin)
            loss_fake = torch.sum(margin_score)
            loss_dis += loss_fake
            loss_norm += fake.norm()

        loss = (loss_dis + 0.1 * loss_norm) / batch_size
        if fake:
            return loss, loss_fake.data[0] / batch_size
        else:
            return loss
开发者ID:AashishV,项目名称:visDial.pytorch,代码行数:30,代码来源:model.py


示例3: guide

 def guide(num_particles):
     q1 = pyro.param("q1", torch.tensor(pi1, requires_grad=True))
     q2 = pyro.param("q2", torch.tensor(pi2, requires_grad=True))
     with pyro.iarange("particles", num_particles):
         z = pyro.sample("z", dist.Normal(q2, 1.0).expand_by([num_particles]))
         zz = torch.exp(z) / (1.0 + torch.exp(z))
         pyro.sample("y", dist.Bernoulli(q1 * zz))
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:test_enum.py


示例4: sample

    def sample(self, mu, logvar, k):

        # print (mu)
        # print (logvar)


        if torch.cuda.is_available():
            eps = Variable(torch.FloatTensor(k, self.B, self.z_size).normal_()).cuda() #[P,B,Z]

            # print (mu.size())
            # print (logvar.size())
            # print (eps.size())

            z = eps.mul(torch.exp(.5*logvar)) + mu  #[P,B,Z]
            logpz = lognormal(z, Variable(torch.zeros(self.B, self.z_size).cuda()), 
                                Variable(torch.zeros(self.B, self.z_size)).cuda())  #[P,B]



            # logqz = lognormal(z, mu, logvar)

            logqz = lognormal(z, Variable(mu.data), Variable(logvar.data))



        else:
            eps = Variable(torch.FloatTensor(k, self.B, self.z_size).normal_())#[P,B,Z]
            z = eps.mul(torch.exp(.5*logvar)) + mu  #[P,B,Z]
            logpz = lognormal(z, Variable(torch.zeros(self.B, self.z_size)), 
                                Variable(torch.zeros(self.B, self.z_size)))  #[P,B]
            logqz = lognormal(z, mu, logvar) 
        return z, logpz, logqz
开发者ID:chriscremer,项目名称:Other_Code,代码行数:32,代码来源:vae_with_policy.py


示例5: get_positive_expectation

def get_positive_expectation(p_samples, measure, average=True):
    log_2 = math.log(2.)

    if measure == 'GAN':
        Ep = - F.softplus(-p_samples)
    elif measure == 'JSD':
        Ep = log_2 - F.softplus(- p_samples)
    elif measure == 'X2':
        Ep = p_samples ** 2
    elif measure == 'KL':
        Ep = p_samples + 1.
    elif measure == 'RKL':
        Ep = -torch.exp(-p_samples)
    elif measure == 'DV':
        Ep = p_samples
    elif measure == 'H2':
        Ep = 1. - torch.exp(-p_samples)
    elif measure == 'W1':
        Ep = p_samples
    else:
        raise_measure_error(measure)

    if average:
        return Ep.mean()
    else:
        return Ep
开发者ID:rdevon,项目名称:cortex,代码行数:26,代码来源:gan.py


示例6: _kl_uniform_gumbel

def _kl_uniform_gumbel(p, q):
    common_term = q.scale / (p.high - p.low)
    high_loc_diff = (p.high - q.loc) / q.scale
    low_loc_diff = (p.low - q.loc) / q.scale
    t1 = common_term.log() + 0.5 * (high_loc_diff + low_loc_diff)
    t2 = common_term * (torch.exp(-high_loc_diff) - torch.exp(-low_loc_diff))
    return t1 - t2
开发者ID:Jsmilemsj,项目名称:pytorch,代码行数:7,代码来源:kl.py


示例7: encode_and_logprob

    def encode_and_logprob(self, x):

        for i in range(len(self.first_half_weights)-1):
            x = self.act_func(self.first_half_weights[i](x))

            # pre_act = self.first_half_weights[i](x) #[B,D]
            # # pre_act_with_noise = Variable(torch.randn(1, self.arch_2[i][1]).type(self.dtype)) * pre_act
            # probs = torch.ones(1, self.arch_2[i][1]) * .5
            # pre_act_with_noise = Variable(torch.bernoulli(probs).type(self.dtype)) * pre_act
            # x = self.act_func(pre_act_with_noise)

        mean = self.first_half_weights[-1](x)
        logvar = self.q_logvar(x)

        # print (logvar)
        #Sample

        eps = Variable(torch.randn(1, self.z_size)) #.type(self.dtype))
        # x =  (torch.sqrt(torch.exp(W_logvars)) * eps) + W_means 
        x =  (torch.exp(.5*logvar) * eps) + mean 

        logq = -torch.mean(  logvar.sum(1) + ((x - mean).pow(2)/torch.exp(logvar)).sum(1))
        logp = torch.mean( x.pow(2).sum(1))


        return x, logq+logp
开发者ID:chriscremer,项目名称:Other_Code,代码行数:26,代码来源:bottleneck_BNN_q.py


示例8: forward

    def forward(self, true_binary, rule_masks, raw_logits):
        if cmd_args.loss_type == 'binary':
            exp_pred = torch.exp(raw_logits) * rule_masks

            norm = F.torch.sum(exp_pred, 2, keepdim=True)
            prob = F.torch.div(exp_pred, norm)

            return F.binary_cross_entropy(prob, true_binary) * cmd_args.max_decode_steps

        if cmd_args.loss_type == 'perplexity':
            return my_perp_loss(true_binary, rule_masks, raw_logits)

        if cmd_args.loss_type == 'vanilla':
            exp_pred = torch.exp(raw_logits) * rule_masks + 1e-30
            norm = torch.sum(exp_pred, 2, keepdim=True)
            prob = torch.div(exp_pred, norm)

            ll = F.torch.abs(F.torch.sum( true_binary * prob, 2))
            mask = 1 - rule_masks[:, :, -1]
            logll = mask * F.torch.log(ll)

            loss = -torch.sum(logll) / true_binary.size()[1]
            
            return loss
        print('unknown loss type %s' % cmd_args.loss_type)
        raise NotImplementedError
开发者ID:nair-p,项目名称:sdvae,代码行数:26,代码来源:mol_decoder.py


示例9: log_uniform_candidate_sampler

    def log_uniform_candidate_sampler(self, targets, choice_func=_choice):
        # returns sampled, true_expected_count, sampled_expected_count
        # targets = (batch_size, )
        #
        #  samples = (n_samples, )
        #  true_expected_count = (batch_size, )
        #  sampled_expected_count = (n_samples, )

        # see: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/range_sampler.h
        # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/range_sampler.cc

        # algorithm: keep track of number of tries when doing sampling,
        #   then expected count is
        #   -expm1(num_tries * log1p(-p))
        # = (1 - (1-p)^num_tries) where p is self._probs[id]

        np_sampled_ids, num_tries = choice_func(self._num_words, self._num_samples)

        sampled_ids = torch.from_numpy(np_sampled_ids).to(targets.device)

        # Compute expected count = (1 - (1-p)^num_tries) = -expm1(num_tries * log1p(-p))
        # P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)
        target_probs = torch.log((targets.float() + 2.0) / (targets.float() + 1.0)) / self._log_num_words_p1
        target_expected_count = -1.0 * (torch.exp(num_tries * torch.log1p(-target_probs)) - 1.0)
        sampled_probs = torch.log((sampled_ids.float() + 2.0) /
                                  (sampled_ids.float() + 1.0)) / self._log_num_words_p1
        sampled_expected_count = -1.0 * (torch.exp(num_tries * torch.log1p(-sampled_probs)) - 1.0)

        sampled_ids.requires_grad_(False)
        target_expected_count.requires_grad_(False)
        sampled_expected_count.requires_grad_(False)

        return sampled_ids, target_expected_count, sampled_expected_count
开发者ID:ziaridoy20,项目名称:allennlp,代码行数:33,代码来源:sampled_softmax_loss.py


示例10: bbox_transform_inv

def bbox_transform_inv(boxes, deltas):
  # Input should be both tensor or both Variable and on the same device
  if len(boxes) == 0:
    return deltas.detach() * 0

  widths = boxes[:, 2] - boxes[:, 0] + 1.0
  heights = boxes[:, 3] - boxes[:, 1] + 1.0
  ctr_x = boxes[:, 0] + 0.5 * widths
  ctr_y = boxes[:, 1] + 0.5 * heights

  dx = deltas[:, 0::4]
  dy = deltas[:, 1::4]
  dw = deltas[:, 2::4]
  dh = deltas[:, 3::4]
  
  pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1)
  pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1)
  pred_w = torch.exp(dw) * widths.unsqueeze(1)
  pred_h = torch.exp(dh) * heights.unsqueeze(1)

  pred_boxes = torch.cat(\
    [_.unsqueeze(2) for _ in [pred_ctr_x - 0.5 * pred_w,\
                              pred_ctr_y - 0.5 * pred_h,\
                              pred_ctr_x + 0.5 * pred_w,\
                              pred_ctr_y + 0.5 * pred_h]], 2).view(len(boxes), -1)

  return pred_boxes
开发者ID:sunshinezhihuo,项目名称:AlphaPose,代码行数:27,代码来源:bbox_transform.py


示例11: guide

        def guide():
            mu_q = pyro.param("mu_q", Variable(self.analytic_mu_n.data + 0.334 * torch.ones(2),
                                               requires_grad=True))
            log_sig_q = pyro.param("log_sig_q", Variable(
                                   self.analytic_log_sig_n.data - 0.29 * torch.ones(2),
                                   requires_grad=True))
            mu_q_prime = pyro.param("mu_q_prime", Variable(torch.Tensor([-0.34, 0.52]),
                                    requires_grad=True))
            kappa_q = pyro.param("kappa_q", Variable(torch.Tensor([0.74]),
                                 requires_grad=True))
            log_sig_q_prime = pyro.param("log_sig_q_prime",
                                         Variable(-0.5 * torch.log(1.2 * self.lam0.data),
                                                  requires_grad=True))
            sig_q, sig_q_prime = torch.exp(log_sig_q), torch.exp(log_sig_q_prime)
            mu_latent_dist = dist.Normal(mu_q, sig_q, reparameterized=repa2)
            mu_latent = pyro.sample("mu_latent", mu_latent_dist,
                                    baseline=dict(use_decaying_avg_baseline=use_decaying_avg_baseline))
            mu_latent_prime_dist = dist.Normal(kappa_q.expand_as(mu_latent) * mu_latent + mu_q_prime,
                                               sig_q_prime,
                                               reparameterized=repa1)
            pyro.sample("mu_latent_prime",
                        mu_latent_prime_dist,
                        baseline=dict(nn_baseline=mu_prime_baseline,
                                      nn_baseline_input=mu_latent,
                                      use_decaying_avg_baseline=use_decaying_avg_baseline))

            return mu_latent
开发者ID:Magica-Chen,项目名称:pyro,代码行数:27,代码来源:test_tracegraph_elbo.py


示例12: model

 def model(num_particles):
     with pyro.iarange("particles", num_particles):
         q3 = pyro.param("q3", torch.tensor(pi3, requires_grad=True))
         q4 = pyro.param("q4", torch.tensor(0.5 * (pi1 + pi2), requires_grad=True))
         z = pyro.sample("z", dist.Normal(q3, 1.0).expand_by([num_particles]))
         zz = torch.exp(z) / (1.0 + torch.exp(z))
         pyro.sample("y", dist.Bernoulli(q4 * zz))
开发者ID:lewisKit,项目名称:pyro,代码行数:7,代码来源:test_enum.py


示例13: get_negative_expectation

def get_negative_expectation(q_samples, measure, average=True):
    log_2 = math.log(2.)

    if measure == 'GAN':
        Eq = F.softplus(-q_samples) + q_samples
    elif measure == 'JSD':
        Eq = F.softplus(-q_samples) + q_samples - log_2
    elif measure == 'X2':
        Eq = -0.5 * ((torch.sqrt(q_samples ** 2) + 1.) ** 2)
    elif measure == 'KL':
        Eq = torch.exp(q_samples)
    elif measure == 'RKL':
        Eq = q_samples - 1.
    elif measure == 'DV':
        Eq = log_sum_exp(q_samples, 0) - math.log(q_samples.size(0))
    elif measure == 'H2':
        Eq = torch.exp(q_samples) - 1.
    elif measure == 'W1':
        Eq = q_samples
    else:
        raise_measure_error(measure)

    if average:
        return Eq.mean()
    else:
        return Eq
开发者ID:rdevon,项目名称:cortex,代码行数:26,代码来源:gan.py


示例14: mmd

def mmd(Mxx, Mxy, Myy, sigma):
    scale = Mxx.mean()
    Mxx = torch.exp(-Mxx / (scale * 2 * sigma * sigma))
    Mxy = torch.exp(-Mxy / (scale * 2 * sigma * sigma))
    Myy = torch.exp(-Myy / (scale * 2 * sigma * sigma))
    mmd = math.sqrt(Mxx.mean() + Myy.mean() - 2 * Mxy.mean())

    return mmd
开发者ID:RobinROAR,项目名称:TensorflowTutorialsCode,代码行数:8,代码来源:metric.py


示例15: guide

 def guide():
     alpha_q_log = pyro.param("alpha_q_log",
                              Variable(self.log_alpha_n.data + 0.17, requires_grad=True))
     beta_q_log = pyro.param("beta_q_log",
                             Variable(self.log_beta_n.data - 0.143, requires_grad=True))
     alpha_q, beta_q = torch.exp(alpha_q_log), torch.exp(beta_q_log)
     pyro.sample("p_latent", dist.beta, alpha_q, beta_q)
     pyro.map_data("aaa", self.data, lambda i, x: None, batch_size=self.batch_size)
开发者ID:Magica-Chen,项目名称:pyro,代码行数:8,代码来源:test_inference.py


示例16: optimize_cnt

def optimize_cnt(worm_img, skel_prev, skel_width, segment_length,  n_epochs = 1000):
    
    
    #this is the variable that is going t obe modified
    skel_r = skel_prev.data #+ torch.zeros(*skel_prev.size()).normal_()
    skel_r = torch.nn.Parameter(skel_r)
    
    optimizer = optim.Adam([skel_r], lr=0.1)
    for ii in range(n_epochs):
        skel_map = get_skel_map(skel_r, skel_width)
        #skel_map += 1e-3
        
        p_w = (skel_map*worm_img)
        
        skel_map_inv = (-skel_map).add_(1)
        worm_img_inv = (-worm_img).add_(1)
        p_bng = (skel_map_inv*worm_img_inv)
        
        #p_bng = torch.sqrt(p_bng)
        
        
        #c_loss = F.binary_cross_entropy(p_w, p_bng)
        c_loss = -(p_bng*torch.log(p_w + 1.e-3) + p_w*torch.log(p_bng + 1.e-3)).mean()
        
        ds = skel_r[1:] - skel_r[:-1]
        dds = ds[1:] - ds[:-1]
        #seg_mean = seg_sizes.mean()
        
        cont_loss = ds.norm(p=2)
        curv_loss = dds.norm(p=2)
        
        seg_sizes = ((ds).pow(2)).sum(1).sqrt()
        d1 = seg_sizes-segment_length*0.9
        d2 = seg_sizes-segment_length*1.5
        seg_loss = (torch.exp(-d1) + torch.exp(d2)).mean()
        
        
        #(seg_sizes-segment_length).cosh().mean()
        #seg_loss = ((seg_sizes - segment_length)).cosh().mean()
        #seg_mean_loss = ((seg_mean-seg_sizes).abs() + 1e-5).mean()
        
        loss = 100*c_loss + 50*seg_loss + cont_loss +  curv_loss
        #loss = 50*c_loss + seg_loss
        optimizer.zero_grad()
        loss.backward()
        
        #torch.nn.utils.clip_grad_norm([skel_r], 0.001)
        optimizer.step()
        
        if ii % 250 == 0:
            print(ii,
                  loss.data[0], 
                  c_loss.data[0],
                  seg_loss.data[0], 
                  cont_loss.data[0],
                  curv_loss.data[0]
                  )
    return skel_r, skel_map
开发者ID:ver228,项目名称:Work_In_Progress,代码行数:58,代码来源:draw_maps.py


示例17: sample

    def sample(self, fc_feats, att_feats, opt={}):
        sample_max = opt.get('sample_max', 1)
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        if beam_size > 1:
            return self.sample_beam(fc_feats, att_feats, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)

        # embed fc and att feats
        fc_feats = self.fc_embed(fc_feats)
        _att_feats = self.att_embed(att_feats.view(-1, self.att_feat_size))
        att_feats = _att_feats.view(*(att_feats.size()[:-1] + (self.rnn_size,)))

        # Project the attention feats first to reduce memory and computation comsumptions.
        p_att_feats = self.ctx2att(att_feats.view(-1, self.rnn_size))
        p_att_feats = p_att_feats.view(*(att_feats.size()[:-1] + (self.att_hid_size,)))

        seq = []
        seqLogprobs = []
        for t in range(self.seq_length + 1):
            if t == 0: # input <bos>
                it = fc_feats.data.new(batch_size).long().zero_()
            elif sample_max:
                sampleLogprobs, it = torch.max(logprobs.data, 1)
                it = it.view(-1).long()
            else:
                if temperature == 1.0:
                    prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
                else:
                    # scale logprobs by temperature
                    prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                it = torch.multinomial(prob_prev, 1).cuda()
                sampleLogprobs = logprobs.gather(1, Variable(it, requires_grad=False)) # gather the logprobs at sampled positions
                it = it.view(-1).long() # and flatten indices for downstream processing

            xt = self.embed(Variable(it, requires_grad=False))

            if t >= 1:
                # stop when all finished
                if t == 1:
                    unfinished = it > 0
                else:
                    unfinished = unfinished * (it > 0)
                if unfinished.sum() == 0:
                    break
                it = it * unfinished.type_as(it)
                seq.append(it) #seq[t] the input of t+2 time step

                seqLogprobs.append(sampleLogprobs.view(-1))

            output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state)
            logprobs = F.log_softmax(self.logit(output))

        return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1)
开发者ID:littlebadRobot,项目名称:AI_challenger_Chinese_Caption,代码行数:56,代码来源:AttModel.py


示例18: _gaussian_kl_divergence

    def _gaussian_kl_divergence(self, p, q):
        p_mean = p[0][:Z_DIM]
        p_logstd = p[0][Z_DIM:]
        p_var = T.sqrt(T.exp(p_logstd))
        q_mean = q[0][:Z_DIM]
        q_logstd = q[0][Z_DIM:]
        q_var = T.sqrt(T.exp(q_logstd))

        kl = (T.log(q_var/p_var) + (p_var + (p_mean-q_mean)*(p_mean-q_mean))/q_var - 1) * 0.5
        return T.sum(kl)
开发者ID:andreofner,项目名称:MERLIN,代码行数:10,代码来源:merlin.py


示例19: model

 def model():
     alpha_p_log = pyro.param(
         "alpha_p_log", Variable(
             self.alpha_p_log_0.clone(), requires_grad=True), tags="model")
     beta_p_log = pyro.param(
         "beta_p_log", Variable(
             self.beta_p_log_0.clone(), requires_grad=True), tags="model")
     alpha_p, beta_p = torch.exp(alpha_p_log), torch.exp(beta_p_log)
     lambda_latent = pyro.sample("lambda_latent", dist.gamma, alpha_p, beta_p)
     pyro.observe("obs", dist.poisson, self.data, lambda_latent)
     return lambda_latent
开发者ID:Magica-Chen,项目名称:pyro,代码行数:11,代码来源:test_inference.py


示例20: mean_kl

 def mean_kl(self, new_dist_info, old_dist_info):
     old_log_std = old_dist_info[2]
     new_log_std = new_dist_info[2]
     old_std = torch.exp(old_log_std)
     new_std = torch.exp(new_log_std)
     old_mean = old_dist_info[1]
     new_mean = new_dist_info[1]
     Nr = (old_mean - new_mean) ** 2 + old_std ** 2 - new_std ** 2
     Dr = 2 * new_std ** 2 + 1e-8
     sample_kl = torch.sum(Nr / Dr + new_log_std - old_log_std, dim=1)
     return torch.mean(sample_kl)
开发者ID:Divye02,项目名称:hand_vil,代码行数:11,代码来源:gaussian_cnn.py



注:本文中的torch.exp函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python torch.eye函数代码示例发布时间:2022-05-27
下一篇:
Python torch.equal函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap