本文整理汇总了Python中torch.abs函数的典型用法代码示例。如果您正苦于以下问题:Python abs函数的具体用法?Python abs怎么用?Python abs使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了abs函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: kurtosis_score
def kurtosis_score(x, dim=0):
'''Test whether a dataset has normal kurtosis.
This function tests the null hypothesis that the kurtosis
of the population from which the sample was drawn is that
of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.
ripoff from: `scipy.stats.kurtosistest`.
Args:
a: Array of the sample data
axis: Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
Returns:
statistic: The computed z-score for this test.
p-value: A 2-sided chi squared probability for the hypothesis test.
'''
x, n, dim = _x_n_dim(x, dim)
if n < 20:
raise ValueError(
"Number of elements has to be >= 20 to compute kurtosis")
b2 = (x**4).mean(dim) / (x**2).mean(dim)**2
E = 3.0 * (n - 1) / (n + 1)
varb2 = 24.0 * n * (n - 2) * (n - 3) / ((n + 1)**2 * (n + 3) * (n + 5))
x = (b2 - E) / math.sqrt(varb2)
sqrtbeta1 = 6.0 * (n * n - 5 * n + 2) / ((n + 7) * (n + 9)) *\
math.sqrt((6.0 * (n + 3) * (n + 5)) / (n * (n - 2) * (n - 3)))
A = 6.0 + 8.0 / sqrtbeta1 * \
(2.0 / sqrtbeta1 + math.sqrt(1 + 4.0 / (sqrtbeta1**2)))
term1 = 1 - 2 / (9.0 * A)
denom = 1 + x * math.sqrt(2 / (A - 4.0))
term2 = torch.sign(denom) * torch.pow((1 - 2.0 / A) /
torch.abs(denom), 1 / 3.0)
Z = (term1 - term2) / math.sqrt(2 / (9.0 * A))
return Z, 1 + torch.erf(-math.sqrt(0.5) * torch.abs(Z))
开发者ID:ModarTensai,项目名称:network_moments,代码行数:34,代码来源:stats.py
示例2: forward
def forward(self, agent_qs, states):
"""Forward pass for the mixer.
Arguments:
agent_qs: Tensor of shape [B, T, n_agents, n_actions]
states: Tensor of shape [B, T, state_dim]
"""
bs = agent_qs.size(0)
states = states.reshape(-1, self.state_dim)
agent_qs = agent_qs.view(-1, 1, self.n_agents)
# First layer
w1 = th.abs(self.hyper_w_1(states))
b1 = self.hyper_b_1(states)
w1 = w1.view(-1, self.n_agents, self.embed_dim)
b1 = b1.view(-1, 1, self.embed_dim)
hidden = F.elu(th.bmm(agent_qs, w1) + b1)
# Second layer
w_final = th.abs(self.hyper_w_final(states))
w_final = w_final.view(-1, self.embed_dim, 1)
# State-dependent bias
v = self.V(states).view(-1, 1, 1)
# Compute final output
y = th.bmm(hidden, w_final) + v
# Reshape and return
q_tot = y.view(bs, -1, 1)
return q_tot
开发者ID:jamescasbon,项目名称:ray,代码行数:26,代码来源:mixers.py
示例3: __call__
def __call__(self, module, features):
statistics = self.get_statistics(features)
self.statistics = statistics
if self.mode == 'store':
self.stored[module] = statistics.detach()
elif self.mode == 'match':
if statistics.ndimension() == 2:
if self.method == 'maximize':
self.losses[module] = - statistics[0, self.map_index]
else:
self.losses[module] = torch.abs(300 - statistics[0, self.map_index])
else:
ws = self.window_size
t = statistics.detach() * 0
s_cc = statistics[:1, :, t.shape[2] // 2 - ws:t.shape[2] // 2 + ws, t.shape[3] // 2 - ws:t.shape[3] // 2 + ws] #* 1.0
t_cc = t[:1, :, t.shape[2] // 2 - ws:t.shape[2] // 2 + ws, t.shape[3] // 2 - ws:t.shape[3] // 2 + ws] #* 1.0
t_cc[:, self.map_index,...] = 1
if self.method == 'maximize':
self.losses[module] = -(s_cc * t_cc.contiguous()).sum()
else:
self.losses[module] = torch.abs(200 -(s_cc * t_cc.contiguous())).sum()
开发者ID:1exx,项目名称:deep-image-prior,代码行数:29,代码来源:matcher.py
示例4: test_MultivariateNormalQMCEngineDegenerate
def test_MultivariateNormalQMCEngineDegenerate(self, cuda=False):
device = torch.device("cuda") if cuda else torch.device("cpu")
for dtype in (torch.float, torch.double):
# X, Y iid standard Normal and Z = X + Y, random vector (X, Y, Z)
mean = torch.zeros(3, device=device, dtype=dtype)
cov = torch.tensor(
[[1, 0, 1], [0, 1, 1], [1, 1, 2]], device=device, dtype=dtype
)
engine = MultivariateNormalQMCEngine(mean=mean, cov=cov, seed=12345)
samples = engine.draw(n=2000)
self.assertEqual(samples.dtype, dtype)
self.assertEqual(samples.device.type, device.type)
self.assertTrue(torch.all(torch.abs(samples.mean(dim=0)) < 1e-2))
self.assertTrue(torch.abs(torch.std(samples[:, 0]) - 1) < 1e-2)
self.assertTrue(torch.abs(torch.std(samples[:, 1]) - 1) < 1e-2)
self.assertTrue(torch.abs(torch.std(samples[:, 2]) - math.sqrt(2)) < 1e-2)
for i in (0, 1, 2):
_, pval = shapiro(samples[:, i].cpu().numpy())
self.assertGreater(pval, 0.9)
cov = np.cov(samples.cpu().numpy().transpose())
self.assertLess(np.abs(cov[0, 1]), 1e-2)
self.assertLess(np.abs(cov[0, 2] - 1), 1e-2)
# check to see if X + Y = Z almost exactly
self.assertTrue(
torch.all(
torch.abs(samples[:, 0] + samples[:, 1] - samples[:, 2]) < 1e-5
)
)
开发者ID:saschwan,项目名称:botorch,代码行数:28,代码来源:test_normal.py
示例5: simplax
def simplax(surrogate, x, logits, mixtureweights, k=1):
B = logits.shape[0]
probs = torch.softmax(logits, dim=1)
cat = RelaxedOneHotCategorical(probs=probs, temperature=torch.tensor([1.]).cuda())
outputs = {}
net_loss = 0
surr_loss = 0
for jj in range(k):
cluster_S = cat.rsample()
cluster_H = H(cluster_S)
logq = cat.log_prob(cluster_S.detach()).view(B,1)
logpx_given_z = logprob_undercomponent(x, component=cluster_H)
logpz = torch.log(mixtureweights[cluster_H]).view(B,1)
logpxz = logpx_given_z + logpz #[B,1]
f = logpxz - logq - 1.
surr_input = torch.cat([cluster_S, x, logits], dim=1) #[B,21]
surr_pred = surrogate.net(surr_input)
net_loss += - torch.mean((f.detach() - surr_pred.detach()) * logq + surr_pred)
# surr_loss += torch.mean(torch.abs(f.detach()-1.-surr_pred))
# grad_logq = torch.mean( torch.autograd.grad([torch.mean(logq)], [logits], create_graph=True, retain_graph=True)[0], dim=1, keepdim=True)
# grad_surr = torch.mean( torch.autograd.grad([torch.mean(surr_pred)], [logits], create_graph=True, retain_graph=True)[0], dim=1, keepdim=True)
grad_logq = torch.autograd.grad([torch.mean(logq)], [logits], create_graph=True, retain_graph=True)[0]
grad_surr = torch.autograd.grad([torch.mean(surr_pred)], [logits], create_graph=True, retain_graph=True)[0]
surr_loss = torch.mean(((f.detach() - surr_pred) * grad_logq + grad_surr)**2)
surr_dif = torch.mean(torch.abs(f.detach() - surr_pred))
# surr_loss = torch.mean(torch.abs(f.detach() - surr_pred))
grad_path = torch.autograd.grad([torch.mean(surr_pred)], [logits], create_graph=True, retain_graph=True)[0]
grad_score = torch.autograd.grad([torch.mean((f.detach() - surr_pred.detach()) * logq)], [logits], create_graph=True, retain_graph=True)[0]
grad_path = torch.mean(torch.abs(grad_path))
grad_score = torch.mean(torch.abs(grad_score))
net_loss = net_loss/ k
surr_loss = surr_loss/ k
outputs['net_loss'] = net_loss
outputs['f'] = f
outputs['logpx_given_z'] = logpx_given_z
outputs['logpz'] = logpz
outputs['logq'] = logq
outputs['surr_loss'] = surr_loss
outputs['surr_dif'] = surr_dif
outputs['grad_path'] = grad_path
outputs['grad_score'] = grad_score
return outputs #net_loss, f, logpx_given_z, logpz, logq, surr_loss, surr_dif, grad_path, grad_score
开发者ID:chriscremer,项目名称:Other_Code,代码行数:57,代码来源:gmm_cleaned_v5.py
示例6: argwhere_nonzero
def argwhere_nonzero(layer, batchnorm=False):
indices=[]
# for batchnorms we want to do the opposite
if batchnorm:
for idx,w in enumerate(layer):
if torch.sum(torch.abs(w)).data.cpu().numpy() == 0.:
indices.append(idx)
else:
for idx,w in enumerate(layer):
if torch.sum(torch.abs(w)).data.cpu().numpy() != 0.:
indices.append(idx)
return indices
开发者ID:howtocodewang,项目名称:DeepCompression-PyTorch,代码行数:13,代码来源:utils.py
示例7: test_NormalQMCEngineShapiroInvTransform
def test_NormalQMCEngineShapiroInvTransform(self):
engine = NormalQMCEngine(d=2, seed=12345, inv_transform=True)
samples = engine.draw(n=250)
self.assertEqual(samples.dtype, torch.float)
self.assertTrue(torch.all(torch.abs(samples.mean(dim=0)) < 1e-2))
self.assertTrue(torch.all(torch.abs(samples.std(dim=0) - 1) < 1e-2))
# perform Shapiro-Wilk test for normality
for i in (0, 1):
_, pval = shapiro(samples[:, i])
self.assertGreater(pval, 0.9)
# make sure samples are uncorrelated
cov = np.cov(samples.numpy().transpose())
self.assertLess(np.abs(cov[0, 1]), 1e-2)
开发者ID:saschwan,项目名称:botorch,代码行数:13,代码来源:test_normal.py
示例8: pairwise_distance
def pairwise_distance(x1, x2, p=2, eps=1e-6):
r"""
Computes the batchwise pairwise distance between vectors v1,v2:
.. math ::
\Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}
Args:
x1: first input tensor
x2: second input tensor
p: the norm degree. Default: 2
eps (float, optional): Small value to avoid division by zero. Default: 1e-6
Shape:
- Input: :math:`(N, D)` where `D = vector dimension`
- Output: :math:`(N, 1)`
Example::
>>> input1 = autograd.Variable(torch.randn(100, 128))
>>> input2 = autograd.Variable(torch.randn(100, 128))
>>> output = F.pairwise_distance(input1, input2, p=2)
>>> output.backward()
"""
assert x1.size() == x2.size(), "Input sizes must be equal."
assert x1.dim() == 2, "Input must be a 2D matrix."
diff = torch.abs(x1 - x2)
out = torch.pow(diff + eps, p).sum(dim=1, keepdim=True)
return torch.pow(out, 1. / p)
开发者ID:athiwatp,项目名称:pytorch,代码行数:29,代码来源:functional.py
示例9: _mu_law
def _mu_law(self, x):
m = self._variable(torch.FloatTensor(1))
m[:] = self.n_categories + 1
s = torch.sign(x)
x = torch.abs(x)
x = s * (torch.log(1 + (self.n_categories * x)) / torch.log(m))
return x
开发者ID:JohnVinyard,项目名称:zounds,代码行数:7,代码来源:sample_embedding.py
示例10: forward
def forward(self, x1, x2):
out1 = self.forward_one(x1)
out2 = self.forward_one(x2)
dis = torch.abs(out1 - out2)
out = self.out(dis)
# return self.sigmoid(out)
return out
开发者ID:fangpin,项目名称:siamese-pytorch,代码行数:7,代码来源:model.py
示例11: skewness_score
def skewness_score(x, dim=0):
'''Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of
the population that the sample was drawn from is the same
as that of a corresponding normal distribution.
ripoff from: `scipy.stats.skewtest`.
Args:
a: Array of the sample data
axis: Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
Returns:
statistic: The computed z-score for this test.
p-value: A 2-sided chi squared probability for the hypothesis test.
'''
x, n, dim = _x_n_dim(x, dim)
b2 = (x**3).mean(dim) / (x**2).mean(dim)**1.5
y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
beta2 = 3.0 * (n**2 + 27 * n - 70) * (n + 1) * (n + 3) /\
((n - 2.0) * (n + 5) * (n + 7) * (n + 9))
W2 = -1.0 + math.sqrt(2 * (beta2 - 1))
delta = 1.0 / math.sqrt(0.5 * math.log(W2))
alpha = math.sqrt(2.0 / (W2 - 1))
y[y == 0] = 1
yalpha = y / alpha
Z = delta * torch.log(yalpha + torch.sqrt(yalpha**2 + 1))
return Z, 1 + torch.erf(-math.sqrt(0.5) * torch.abs(Z))
开发者ID:ModarTensai,项目名称:network_moments,代码行数:28,代码来源:stats.py
示例12: forward
def forward(self, frame, policies):
# x: [B,2,84,84]
self.B = frame.size()[0]
#Predict mask
pre_mask = self.predict_mask_nosigmoid(frame)
mask = F.sigmoid(pre_mask)
masked_frame = frame * mask
kls = []
for i in range(len(policies)):
policy = policies[i]
log_dist_mask = policy.action_logdist(masked_frame)
log_dist_true = policy.action_logdist(frame)
action_dist_kl = torch.sum((log_dist_true - log_dist_mask)*torch.exp(log_dist_true), dim=1) #[B]
action_dist_kl = torch.mean(action_dist_kl) # * 1000
kls.append(action_dist_kl)
kls = torch.stack(kls) #[policies, B]
action_dist_kl = torch.mean(action_dist_kl) #[1] #over batch and over policies
pre_mask = pre_mask.view(self.B, -1)
mask_cost = torch.abs(pre_mask + 20)
# mask_sum = torch.mean(torch.sum(mask_cost, dim=1)) * .00001
# mask_cost = torch.mean(mask_cost) * .00001
mask_cost = torch.mean(mask_cost) * .01
loss = action_dist_kl + mask_cost
return loss, action_dist_kl, mask_cost
开发者ID:chriscremer,项目名称:Other_Code,代码行数:33,代码来源:learn_to_mask_amortized_vae_policies.py
示例13: test_train
def test_train(self):
self._metric.train()
calls = [[torch.FloatTensor([0.0]), torch.LongTensor([0])],
[torch.FloatTensor([0.0, 0.1, 0.2, 0.3]), torch.LongTensor([0, 1, 2, 3])]]
for i in range(len(self._states)):
self._metric.process(self._states[i])
self.assertEqual(2, len(self._metric_function.call_args_list))
for i in range(len(self._metric_function.call_args_list)):
self.assertTrue(torch.eq(self._metric_function.call_args_list[i][0][0], calls[i][0]).all)
self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[i][0][1], -calls[i][1])), 1e-12).all)
self._metric_function.reset_mock()
self._metric.process_final({})
self._metric_function.assert_called_once()
self.assertTrue(torch.eq(self._metric_function.call_args_list[0][0][1], torch.LongTensor([0, 1, 2, 3, 4])).all)
self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[0][0][0], -torch.FloatTensor([0.0, 0.1, 0.2, 0.3, 0.4]))), 1e-12).all)
开发者ID:little1tow,项目名称:torchbearer,代码行数:16,代码来源:test_wrappers.py
示例14: test_mu_law_companding
def test_mu_law_companding(self):
sig = self.sig.clone()
quantization_channels = 256
sig = self.sig.numpy()
sig = sig / np.abs(sig).max()
self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)
sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)
sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
sig = self.sig.clone()
sig = sig / torch.abs(sig).max()
self.assertTrue(sig.min() >= -1. and sig.max() <= 1.)
sig_mu = transforms.MuLawEncoding(quantization_channels)(sig)
self.assertTrue(sig_mu.min() >= 0. and sig.max() <= quantization_channels)
sig_exp = transforms.MuLawExpanding(quantization_channels)(sig_mu)
self.assertTrue(sig_exp.min() >= -1. and sig_exp.max() <= 1.)
repr_test = transforms.MuLawEncoding(quantization_channels)
repr_test.__repr__()
repr_test = transforms.MuLawExpanding(quantization_channels)
repr_test.__repr__()
开发者ID:SsnL,项目名称:audio,代码行数:29,代码来源:test_transforms.py
示例15: test_regularization
def test_regularization(self):
penalty = self.model.get_regularization_penalty().data
assert (penalty > 0).all()
penalty2 = 0
# Config specifies penalty as
# "regularizer": [
# ["weight$", {"type": "l2", "alpha": 10}],
# ["bias$", {"type": "l1", "alpha": 5}]
# ]
for name, parameter in self.model.named_parameters():
if name.endswith("weight"):
weight_penalty = 10 * torch.sum(torch.pow(parameter, 2))
penalty2 += weight_penalty
elif name.endswith("bias"):
bias_penalty = 5 * torch.sum(torch.abs(parameter))
penalty2 += bias_penalty
assert (penalty == penalty2.data).all()
# You get a RuntimeError if you call `model.forward` twice on the same inputs.
# The data and config are such that the whole dataset is one batch.
training_batch = next(self.iterator(self.instances, num_epochs=1))
validation_batch = next(self.iterator(self.instances, num_epochs=1))
training_loss = self.trainer._batch_loss(training_batch, for_training=True).data
validation_loss = self.trainer._batch_loss(validation_batch, for_training=False).data
# Training loss should have the regularization penalty, but validation loss should not.
assert (training_loss != validation_loss).all()
# Training loss should equal the validation loss plus the penalty.
penalized = validation_loss + penalty
assert (training_loss == penalized).all()
开发者ID:pyknife,项目名称:allennlp,代码行数:35,代码来源:simple_tagger_test.py
示例16: evalAccuracy
def evalAccuracy(model, device, args, outPutType, test_X, test_Y, validEval = False) :
model_training_orig = model.training
setModelMode(model, False)
N_test = len(test_Y)*len(test_Y[0])
totals = 0
for b_data, b_labels in zip(test_X, test_Y):
b_data = torch.from_numpy(b_data).to(device)
b_labels = torch.from_numpy(b_labels).to(device)
b_labels = b_labels.view(b_labels.shape[0],-1 ) # make it the same shape as output
yhat = model(b_data) # need to compute the Yhat again, as this is the yhat AFTER updating the weights, not before as in 'learn()' function
b_data = None
# depending on if we are in a classification or regression problem, we evaluate performance differently
if outPutType == OUT_REGRESSION :
currentRate = torch_pearsonr( yhat.view(-1) , b_labels.view(-1))**2
N_test = len(test_Y) # as we are testing correlation, the N should refer to the number of batches, and NOT the total number of observations
elif outPutType == OUT_MULTICLASS :
currentRate = calc_Accuracy(yhat,b_labels ) # calculate accuracy, this is ROUNDED
else : # mean absolute error
currentRate = -torch.mean(torch.abs(yhat - b_labels)) # negative as the rest of the metrics are accuracy, IE the greater the error, the lower the accuracy
N_test = len(test_Y) # as we are testing correlation, the N should refer to the number of batches, and NOT the total number of observations
currentRate = float(currentRate.detach().cpu().numpy() ) # need to move it back to CPU
totals = totals +currentRate # sum in all minibatches
accuracy = round( float(totals)/N_test,5)
setModelMode(model, model_training_orig)
return(accuracy)
开发者ID:mkelcb,项目名称:knet,代码行数:29,代码来源:knet_main_pytorch.py
示例17: test_autograd_closure
def test_autograd_closure(self):
x = Variable(torch.Tensor([0.4]), requires_grad=True)
y = Variable(torch.Tensor([0.7]), requires_grad=True)
trace = torch._C._tracer_enter((x, y), 1)
z = torch.sigmoid(x * (x + y))
w = torch.abs(x * x * x + y) + Variable(torch.ones(1))
torch._C._tracer_exit((z, w))
torch._C._jit_pass_lint(trace)
(z * w).backward()
torch._C._jit_pass_dce(trace)
torch._C._jit_pass_lint(trace)
x_grad = x.grad.data.clone()
x.grad.data.zero_()
function = torch._C._jit_createAutogradClosure(trace)
torch._C._jit_pass_lint(trace)
z2, w2 = function()(x, y)
(z2 * w2).backward()
self.assertEqual(z, z2)
self.assertEqual(w, w2)
self.assertEqual(x.grad.data, x_grad)
开发者ID:Northrend,项目名称:pytorch,代码行数:26,代码来源:test_jit.py
示例18: evaluate_post_training
def evaluate_post_training(self, edp: EvaluationDataPage) -> CpeDetails:
cpe_details = CpeDetails()
self.score_cpe("Reward", edp, cpe_details.reward_estimates)
if (
self.metrics_to_score is not None
and edp.logged_metrics is not None
and self.action_names is not None
):
for i, metric in enumerate(self.metrics_to_score):
logger.info(
"--------- Running CPE on metric: {} ---------".format(metric)
)
metric_reward_edp = edp.set_metric_as_reward(i, len(self.action_names))
cpe_details.metric_estimates[metric] = CpeEstimateSet()
self.score_cpe(
metric, metric_reward_edp, cpe_details.metric_estimates[metric]
)
# Compute MC Loss on Aggregate Reward
cpe_details.mc_loss = float(
torch.mean(torch.abs(edp.logged_values - edp.model_values))
)
return cpe_details
开发者ID:sra4077,项目名称:Horizon,代码行数:28,代码来源:evaluator.py
示例19: apply_global_reward
def apply_global_reward(self, rewards: torch.Tensor, next_iteration: int):
std_dev = torch.std(rewards)
if torch.abs(std_dev) > 1e-6:
normalized_rewards = (rewards - torch.mean(rewards)) / std_dev
for parent_tensor in self.parent_tensors.values():
parent_tensor.grad.zero_()
for i, individual in enumerate(self.population_tensors):
for tensor_name, parent_tensor in self.parent_tensors.items():
individual_tensor = individual[tensor_name]
# Subtract the parent to get the gradient estimate
individual_tensor.sub_(parent_tensor)
# Amplify the gradient by the reward
individual_tensor.mul_(normalized_rewards[i])
# Divide by a normalizing constant
individual_tensor.div_(
self.es_params.population_size
* self.es_params.mutation_power
* -1
)
parent_tensor.grad += individual_tensor
self.optimizer.step()
self.populate_children(next_iteration)
开发者ID:sra4077,项目名称:Horizon,代码行数:27,代码来源:evolution_pool.py
示例20: get_loss
def get_loss(self, y_pred, y_true, X=None, training=False):
y_true = to_tensor(y_true, device='cpu')
loss_a = torch.abs(y_true.float() - y_pred[:, 1]).mean()
loss_b = ((y_true.float() - y_pred[:, 1]) ** 2).mean()
if training:
self.history.record_batch('loss_a', to_numpy(loss_a))
self.history.record_batch('loss_b', to_numpy(loss_b))
return loss_a + loss_b
开发者ID:YangHaha11514,项目名称:skorch,代码行数:8,代码来源:test_net.py
注:本文中的torch.abs函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论