• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python common.checkParams函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中thunder.utils.common.checkParams函数的典型用法代码示例。如果您正苦于以下问题:Python checkParams函数的具体用法?Python checkParams怎么用?Python checkParams使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了checkParams函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: similarity

    def similarity(self, other, metric='distance', thresh=5):
        """
        Estimate similarity between sources in self and other.

        Will compute the fraction of sources in self that are found
        in other, based on a given distance metric and a threshold.
        The fraction is estimated as the number of sources in self
        found in other, divided by the total number of sources in self.

        Parameters
        ----------
        other : SourceModel
            The sources to compare to

        metric : str, optional, default = "distance"
            Metric to use when computing distances

        thresh : scalar, optional, default = 5
            The distance below which a source is considered found
        """

        checkParams(metric, ['distance'])

        if metric == 'distance':
            vals = self.distance(other, minDistance=thresh)
            vals[isnan(vals)] = inf
        else:
            raise Exception("Metric not recognized")

        hits = sum(vals < thresh) / float(len(self.sources))

        return hits
开发者ID:symvou,项目名称:thunder,代码行数:32,代码来源:source.py


示例2: distance

    def distance(self, other, method='euclidean'):
        """
        Distance between the center of this source and another.

        Parameters
        ----------
        other : Source, or array-like
            Either another source, or the center coordinates of another source

        method : str
            Specify a distance measure to used for spatial distance between source
            centers. Current options include Euclidean distance ('euclidean') and 
            L1-norm ('l1'). 

        """
        from numpy.linalg import norm

        checkParams(method, ['euclidean', 'l1'])

        if method == 'l1':
            order = 1
        else:
            order = 2

        if isinstance(other, Source):
            return norm(self.center - other.center, ord=order)
        elif isinstance(other, list) or isinstance(other, ndarray):
            return norm(self.center - asarray(other), ord=order)
开发者ID:EricSchles,项目名称:thunder,代码行数:28,代码来源:source.py


示例3: detrend

    def detrend(self, method='linear', **kwargs):
        """
        Detrend time series data with linear or nonlinear detrending
        Preserve intercept so that subsequent steps can adjust the baseline

        Parameters
        ----------
        method : str, optional, default = 'linear'
            Detrending method

        order : int, optional, default = 5
            Order of polynomial, for non-linear detrending only
        """
        checkParams(method, ['linear', 'nonlinear'])

        if method.lower() == 'linear':
            order = 1
        else:
            if 'order' in kwargs:
                order = kwargs['order']
            else:
                order = 5

        def func(y):
            x = arange(len(y))
            p = polyfit(x, y, order)
            p[-1] = 0
            yy = polyval(p, x)
            return y - yy

        return self.applyValues(func, keepIndex=True)
开发者ID:GusLab,项目名称:thunder,代码行数:31,代码来源:timeseries.py


示例4: makeExample

    def makeExample(self, dataset=None, **opts):
        """
        Make an example data set for testing analyses.

        Options include 'pca', 'factor', 'kmeans', 'ica', 'sources'
        See thunder.utils.datasets for detailed options.

        Parameters
        ----------
        dataset : str
            Which dataset to generate

        Returns
        -------
        data : RDD of (tuple, array) pairs
            Generated dataset

        """
        from thunder.utils.datasets import DATASET_MAKERS

        if dataset is None:
            return sorted(DATASET_MAKERS.keys())

        checkParams(dataset, DATASET_MAKERS.keys())

        return DataSets.make(self._sc, dataset, **opts)
开发者ID:broxtronix,项目名称:thunder,代码行数:26,代码来源:context.py


示例5: loadSeries

    def loadSeries(self, dataPath, nkeys=None, nvalues=None, inputFormat='binary', minPartitions=None,
                   confFilename='conf.json', keyType=None, valueType=None):
        """
        Loads a Series object from data stored as text or binary files.

        Supports single files or multiple files stored on a local file system, a networked file system (mounted
        and available on all cluster nodes), Amazon S3, or HDFS.

        Parameters
        ----------
        dataPath: string
            Path to data files or directory, specified as either a local filesystem path or in a URI-like format,
            including scheme. A dataPath argument may include a single '*' wildcard character in the filename. Examples
            of valid dataPaths include 'a/local/relative/directory/*.stack", "s3n:///my-s3-bucket/data/mydatafile.tif",
            "/mnt/my/absolute/data/directory/", or "file:///mnt/another/data/directory/".

        nkeys: int, optional (but required if `inputFormat` is 'text')
            dimensionality of data keys. (For instance, (x,y,z) keyed data for 3-dimensional image timeseries data.)
            For text data, number of keys must be specified in this parameter; for binary data, number of keys must be
            specified either in this parameter or in a configuration file named by the 'conffile' argument if this
            parameter is not set.

        nvalues: int, optional (but required if `inputFormat` is 'text')
            Number of values expected to be read. For binary data, nvalues must be specified either in this parameter
            or in a configuration file named by the 'conffile' argument if this parameter is not set.

        inputFormat: {'text', 'binary'}. optional, default 'binary'
            Format of data to be read.

        minPartitions: int, optional
            Explicitly specify minimum number of Spark partitions to be generated from this data. Used only for
            text data. Default is to use minParallelism attribute of Spark context object.

        confFilename: string, optional, default 'conf.json'
            Path to JSON file with configuration options including 'nkeys', 'nvalues', 'keytype', and 'valuetype'.
            If a file is not found at the given path, then the base directory given in 'datafile'
            will also be checked. Parameters `nkeys` or `nvalues` that are specified as explicit arguments to this
            method will take priority over those found in conffile if both are present.

        Returns
        -------
        data: thunder.rdds.Series
            A newly-created Series object, wrapping an RDD of series data. This RDD will have as keys an n-tuple
            of int, with n given by `nkeys` or the configuration passed in `conffile`. RDD values will be a numpy
            array of length `nvalues` (or as specified in the passed configuration file).
        """
        checkParams(inputFormat, ['text', 'binary'])

        from thunder.rdds.fileio.seriesloader import SeriesLoader
        loader = SeriesLoader(self._sc, minPartitions=minPartitions)

        if inputFormat.lower() == 'text':
            data = loader.fromText(dataPath, nkeys=nkeys)
        else:
            # must be either 'text' or 'binary'
            data = loader.fromBinary(dataPath, confFilename=confFilename, nkeys=nkeys, nvalues=nvalues,
                                     keyType=keyType, valueType=valueType)
        return data
开发者ID:industrial-sloth,项目名称:thunder,代码行数:58,代码来源:context.py


示例6: overlap

    def overlap(self, other, method='support', counts=False, symmetric=True):
        """
        Compute the overlap between this source and other, in terms
        of either support or similarity of coefficients.

        Support computes the number of overlapping pixels relative
        to the union of both sources. Correlation computes the similarity
        of the weights (not defined for binary masks).

        Parameters
        ----------
        other : Source
            The source to compute overlap with.

        method : str
            Compare either support of source coefficients ('support'), or the 
            source spatial filters (not yet implemented).

        counts : boolean, optional, default = True
            Whether to return raw counts when computing support, otherwise
            return a fraction.

        """
        checkParams(method, ['support', 'corr'])

        coordsSelf = aslist(self.coordinates)
        coordsOther = aslist(other.coordinates)

        intersection = [a for a in coordsSelf if a in coordsOther]
        complementLeft = [a for a in coordsSelf if a not in intersection]
        complementRight = [a for a in coordsOther if a not in intersection]
        hits = len(intersection)

        if symmetric is True:
            misses = len(complementLeft + complementRight)
        else:
            misses = len(complementLeft)

        if method == 'support':
            if counts:
                return hits, misses
            else:
                return hits/float(hits+misses)

        if method == 'corr':
            from scipy.stats import spearmanr

            if not (hasattr(self, 'values') and hasattr(other, 'values')):
                raise Exception('Sources must have values to compute correlation')
            else:
                valuesSelf = aslist(self.values)
                valuesOther = aslist(other.values)
            if len(intersection) > 0:
                rho, _ = spearmanr(valuesSelf[intersection], valuesOther[intersection])
            else:
                rho = 0.0
            return (rho * hits)/float(hits + misses)
开发者ID:EricSchles,项目名称:thunder,代码行数:57,代码来源:source.py


示例7: __new__

    def __new__(cls, method, **kwargs):

        from thunder.extraction.block.methods.nmf import BlockNMF
        from thunder.extraction.feature.methods.localmax import LocalMax

        EXTRACTION_METHODS = {
            'nmf': BlockNMF,
            'localmax': LocalMax
        }

        checkParams(method, EXTRACTION_METHODS.keys())
        return EXTRACTION_METHODS[method](**kwargs)
开发者ID:symvou,项目名称:thunder,代码行数:12,代码来源:extraction.py


示例8: normalize

    def normalize(self, baseline='percentile', window=None, perc=20, offset=0.1):
        """
        Normalize each time series by subtracting and dividing by a baseline.

        Baseline can be derived from a global mean or percentile,
        or a smoothed percentile estimated within a rolling window.

        Parameters
        ----------
        baseline : str, optional, default = 'percentile'
            Quantity to use as the baseline, options are 'mean', 'percentile', 'window', or 'window-fast'

        window : int, optional, default = 6
            Size of window for baseline estimation, for 'window' and 'window-fast' baseline only

        perc : int, optional, default = 20
            Percentile value to use, for 'percentile', 'window', or 'window-fast' baseline only

        offset : float, optional, default = 0.1
            Scalar added to baseline during division
        """
        checkParams(baseline, ['mean', 'percentile', 'window', 'window-fast'])
        method = baseline.lower()
    
        from warnings import warn
        if not (method == 'window' or method == 'window-fast') and window is not None:
            warn('Setting window without using method "window" has no effect')

        if method == 'mean':
            baseFunc = mean

        if method == 'percentile':
            baseFunc = lambda x: percentile(x, perc)

        if method == 'window':
            if window & 0x1:
                left, right = (ceil(window/2), ceil(window/2) + 1)
            else:
                left, right = (window/2, window/2)

            n = len(self.index)
            baseFunc = lambda x: asarray([percentile(x[max(ix-left, 0):min(ix+right+1, n)], perc)
                                          for ix in arange(0, n)])

        if method == 'window-fast':
            from scipy.ndimage.filters import percentile_filter
            baseFunc = lambda x: percentile_filter(x.astype(float64), perc, window, mode='nearest')

        def get(y):
            b = baseFunc(y)
            return (y - b) / (b + offset)

        return self.applyValues(get, keepIndex=True)
开发者ID:GusLab,项目名称:thunder,代码行数:53,代码来源:timeseries.py


示例9: __new__

    def __new__(cls, method, **kwargs):

        from thunder.registration.methods.crosscorr import CrossCorr, PlanarCrossCorr

        REGMETHODS = {
            'crosscorr': CrossCorr,
            'planarcrosscorr': PlanarCrossCorr
        }

        checkParams(method, REGMETHODS.keys())

        return REGMETHODS[method](kwargs)
开发者ID:Peichao,项目名称:thunder,代码行数:12,代码来源:registration.py


示例10: export

def export(data, outputDirPath, outputFilename, outputFormat, sorting=False):
    """
    Export data to a variety of local formats.

    Can export local arrays or a Series. If passed a Series,
    it will first be packed into one or more local arrrays.

    Parameters
    ----------
    data : Series, or numpy array
        The data to export

    outputDirPath : str
        Output directory

    outputFilename : str
        Output filename

    outputFormat : str
        Output format ("matlab", "npy", or "text")

    """

    from thunder.rdds.series import Series
    from scipy.io import savemat

    checkParams(outputFormat, ['matlab', 'npy', 'text'])

    if not os.path.exists(outputDirPath):
        os.makedirs(outputDirPath)

    filename = os.path.join(outputDirPath, outputFilename)

    def write(array, file, format, varname=None):
        if format == 'matlab':
            savemat(file+".mat", mdict={varname: array}, oned_as='column', do_compression='true')
        if format == 'npy':
            save(file, array)
        if format == 'text':
            savetxt(file+".txt", array, fmt="%.6f")

    if isinstance(data, Series):
        # force calculation of dimensions
        _tmp = data.dims
        if size(data.index) > 1:
            for ix in data.index:
                result = data.select(ix).pack(sorting=sorting)
                write(result, filename+"_"+str(ix), outputFormat, varname=outputFilename+"_"+str(ix))
        else:
            result = data.pack(sorting=sorting)
            write(result, filename, outputFormat, varname=outputFilename+"_"+str(data.index))
    else:
        write(data, filename, outputFormat, varname=outputFilename)
开发者ID:industrial-sloth,项目名称:thunder,代码行数:53,代码来源:export.py


示例11: overlap

    def overlap(self, other, method="fraction"):
        """
        Compute the overlap between this source and other.

        Options are a symmetric measure of overlap based on the fraction
        of intersecting pixels relative to the union ('fraction'), an assymmetric
        measure of overlap that expresses detected intersecting pixels
        (relative to this source) using precision and recall rates ('rates'), or
        a correlation coefficient of the weights within the intersection
        (not defined for binary weights) ('correlation')

        Parameters
        ----------
        other : Source
            The source to compute overlap with.

        method : str
            Which estimate of overlap to compute, options are
            'fraction' (symmetric) 'rates' (asymmetric) or 'correlation'
        """
        checkParams(method, ["fraction", "rates", "correlation"])

        coordsSelf = aslist(self.coordinates)
        coordsOther = aslist(other.coordinates)

        intersection = [a for a in coordsSelf if a in coordsOther]
        nhit = float(len(intersection))
        ntotal = float(len(set([tuple(x) for x in coordsSelf] + [tuple(x) for x in coordsOther])))

        if method == "rates":
            recall = nhit / len(coordsSelf)
            precision = nhit / len(coordsOther)
            return recall, precision

        if method == "fraction":
            return nhit / float(ntotal)

        if method == "correlation":
            from scipy.stats import spearmanr

            if not (hasattr(self, "values") and hasattr(other, "values")):
                raise ValueError("Sources must have values to compute correlation")
            else:
                valuesSelf = aslist(self.values)
                valuesOther = aslist(other.values)
            if len(intersection) > 0:
                left = [v for v, c in zip(valuesSelf, coordsSelf) if c in coordsOther]
                right = [v for v, c in zip(valuesOther, coordsOther) if c in coordsSelf]
                rho, _ = spearmanr(left, right)
            else:
                rho = 0.0
            return rho
开发者ID:GusLab,项目名称:thunder,代码行数:52,代码来源:source.py


示例12: similarity

    def similarity(self, other, metric="distance", thresh=5, minDistance=inf):
        """
        Estimate similarity to another set of sources using recall and precision.

        Will compute the number of sources in self that are also
        in other, based on a given distance metric and a threshold.
        The recall rate is the number of matches divided by the number in self,
        and the precision rate is the number of matches divided by the number in other.
        Typically self is ground truth and other is an estimate.
        The F score is defined as 2 * (recall * precision) / (recall + precision)

        Before computing metrics, all sources in self are matched to other,
        and a minimum distance can be set to control matching.

        Parameters
        ----------
        other : SourceModel
            The sources to compare to.

        metric : str, optional, default = 'distance'
            Metric to use when computing distances,
            options include 'distance' and 'overlap'

        thresh : scalar, optional, default = 5
            The distance below which a source is considered found.

        minDistance : scalar, optional, default = inf
            Minimum distance to use when matching indices.
        """
        checkParams(metric, ["distance", "overlap"])

        if metric == "distance":
            # when evaluating distances,
            # minimum distance should be the threshold
            if minDistance == inf:
                minDistance = thresh
            vals = self.distance(other, minDistance=minDistance)
            vals[isnan(vals)] = inf
            compare = lambda x: x < thresh
        elif metric == "overlap":
            vals = self.overlap(other, method="fraction", minDistance=minDistance)
            vals[isnan(vals)] = 0
            compare = lambda x: x > thresh
        else:
            raise Exception("Metric not recognized")

        recall = sum(map(compare, vals)) / float(self.count)
        precision = sum(map(compare, vals)) / float(other.count)
        score = 2 * (recall * precision) / (recall + precision)

        return recall, precision, score
开发者ID:GusLab,项目名称:thunder,代码行数:51,代码来源:source.py


示例13: export

    def export(self, data, filename, outputFormat=None, overwrite=False, varname=None):
        """
        Export local array data to a variety of formats.

        Can write to a local file sytem or S3 (destination inferred from filename schema).
        S3 writing useful for persisting arrays when working in an environment without
        accessible local storage.

        Parameters
        ----------
        data : array-like
            The data to export

        filename : str
            Output location (path/to/file.ext)

        outputFormat : str, optional, default = None
            Ouput format ("npy", "mat", or "txt"), if not provided will
            try to infer from file extension.

        overwrite : boolean, optional, default = False
            Whether to overwrite if directory or file already exists

        varname : str, optional, default = None
            Variable name for writing "mat" formatted files
        """
        from numpy import save, savetxt, asarray
        from scipy.io import savemat
        from StringIO import StringIO

        from thunder.rdds.fileio.writers import getFileWriterForPath

        path, file, outputFormat = handleFormat(filename, outputFormat)
        checkParams(outputFormat, ["npy", "mat", "txt"])
        clazz = getFileWriterForPath(filename)
        writer = clazz(path, file, overwrite=overwrite, awsCredentialsOverride=self._credentials)

        stream = StringIO()

        if outputFormat == "mat":
            varname = os.path.splitext(file)[0] if varname is None else varname
            savemat(stream, mdict={varname: data}, oned_as='column', do_compression='true')
        if outputFormat == "npy":
            save(stream, data)
        if outputFormat == "txt":
            if asarray(data).ndim > 2:
                raise Exception("Cannot write data with more than two dimensions to text")
            savetxt(stream, data)

        stream.seek(0)
        writer.writeFile(stream.buf)
开发者ID:logang,项目名称:thunder,代码行数:51,代码来源:context.py


示例14: similarity

    def similarity(self, other, metric='distance', thresh=5, minDistance=inf):
        """
        Estimate similarity between sources in self and other.

        Will compute the fraction of sources in self that are found
        in other, based on a given distance metric and a threshold.
        The fraction is estimated as the number of sources in self
        found in other, divided by the total number of sources in self.

        Before computing metrics, all sources in self are matched to other,
        and a minimum distance can be set to control matching.

        Parameters
        ----------
        other : SourceModel
            The sources to compare to

        metric : str, optional, default = "distance"
            Metric to use when computing distances,
            options include 'distance' and 'overlap'

        thresh : scalar, optional, default = 5
            The distance below which a source is considered found

        minDistance : scalar, optional, default = inf
            Minimum distance to use when matching indices
        """
        checkParams(metric, ['distance', 'overlap'])

        if metric == 'distance':
            # when evaluating distances,
            # minimum distance should be the threshold
            if minDistance == inf:
                minDistance = thresh
            vals = self.distance(other, minDistance=minDistance)
            vals[isnan(vals)] = inf
            compare = lambda x: x < thresh
        elif metric == 'overlap':
            vals = self.overlap(other, method='support', minDistance=minDistance)
            vals[isnan(vals)] = 0
            compare = lambda x: x > thresh
        else:
            raise Exception("Metric not recognized")

        hits = sum(map(compare, vals)) / float(len(self.sources))

        return hits
开发者ID:aaronkerlin,项目名称:thunder,代码行数:47,代码来源:source.py


示例15: loadExampleS3

    def loadExampleS3(self, dataset=None):
        """
        Load an example data set from S3.

        Info on the included datasets can be found at the CodeNeuro data repository
        (http://datasets.codeneuro.org/). If called with None, will return
        list of available datasets.

        Parameters
        ----------
        dataset : str
            Which dataset to load

        Returns
        -------
        data : a Data object (usually a Series or Images)
            The dataset as one of Thunder's data objects

        params : dict
            Parameters or metadata for dataset
        """
        DATASETS = {
            'ahrens.lab/direction.selectivity': 'ahrens.lab/direction.selectivity/1/',
            'ahrens.lab/optomotor.response': 'ahrens.lab/optomotor.response/1/',
            'svoboda.lab/tactile.navigation': 'svoboda.lab/tactile.navigation/1/'
        }

        if dataset is None:
            return DATASETS.keys()

        if 'local' in self._sc.master:
            raise Exception("Must be running on an EC2 cluster to load this example data set")

        checkParams(dataset, DATASETS.keys())

        basePath = 's3n://neuro.datasets/'
        dataPath = DATASETS[dataset]

        data = self.loadSeries(basePath + dataPath + 'series')
        params = self.loadParams(basePath + dataPath + 'params/covariates.json')

        return data, params
开发者ID:logang,项目名称:thunder,代码行数:42,代码来源:context.py


示例16: makeExample

    def makeExample(self, dataset, **opts):
        """
        Make an example data set for testing analyses.

        Options include 'pca', 'kmeans', and 'ica'.
        See thunder.utils.datasets for detailed options.

        Parameters
        ----------
        dataset : str
            Which dataset to generate

        Returns
        -------
        data : RDD of (tuple, array) pairs
            Generated dataset

        """
        checkParams(dataset, ['kmeans', 'pca', 'ica'])

        return DataSets.make(self._sc, dataset, **opts)
开发者ID:industrial-sloth,项目名称:thunder,代码行数:21,代码来源:context.py


示例17: loadSeriesLocal

    def loadSeriesLocal(self, dataFilePath, inputFormat='npy', minPartitions=None, keyFilePath=None, varName=None):
        """
        Load a Series object from a local file (either npy or MAT format).

        File should contain a 1d or 2d matrix, where each row
        of the input matrix is a record.

        Keys can be provided in a separate file (with variable name 'keys', for MAT files).
        If not provided, linear indices will be used for keys.

        Parameters
        ----------
        dataFilePath: str
            File to import

        varName : str, optional, default = None
            Variable name to load (for MAT files only)

        keyFilePath : str, optional, default = None
            File containing the keys for each record as another 1d or 2d array

        minPartitions : Int, optional, default = 1
            Number of partitions for RDD
        """

        checkParams(inputFormat, ['mat', 'npy'])

        from thunder.rdds.fileio.seriesloader import SeriesLoader
        loader = SeriesLoader(self._sc, minPartitions=minPartitions)

        if inputFormat.lower() == 'mat':
            if varName is None:
                raise Exception('Must provide variable name for loading MAT files')
            data = loader.fromMatLocal(dataFilePath, varName, keyFilePath)
        else:
            data = loader.fromNpyLocal(dataFilePath, keyFilePath)

        return data
开发者ID:industrial-sloth,项目名称:thunder,代码行数:38,代码来源:context.py


示例18: loadImages

    def loadImages(self, dataPath, dims=None, inputFormat='stack', ext=None, dtype='int16',
                   startIdx=None, stopIdx=None, recursive=False, nplanes=None, npartitions=None,
                   renumber=False):
        """
        Loads an Images object from data stored as a binary image stack, tif, or png files.

        Supports single files or multiple files, stored on a local file system, a networked file sytem
        (mounted and available on all nodes), or Amazon S3. HDFS is not currently supported for image file data.

        Parameters
        ----------
        dataPath: string
            Path to data files or directory, specified as either a local filesystem path or in a URI-like format,
            including scheme. A dataPath argument may include a single '*' wildcard character in the filename. Examples
            of valid dataPaths include 'a/local/relative/directory/*.stack", "s3n:///my-s3-bucket/data/mydatafile.tif",
            "/mnt/my/absolute/data/directory/", or "file:///mnt/another/data/directory/".

        dims: tuple of positive int, optional (but required if inputFormat is 'stack')
            Dimensions of input image data, similar to a numpy 'shape' parameter, for instance (1024, 1024, 48). Binary
            stack data will be interpreted as coming from a multidimensional array of the specified dimensions. Stack
            data should be stored in row-major order (Fortran or Matlab convention) rather than column-major order (C
            or python/numpy convention), where the first dimension corresponds to that which is changing most rapidly
            on disk. So for instance given dims of (x, y, z), the coordinates of the data in a binary stack file
            should be ordered as [(x0, y0, z0), (x1, y0, zo), ..., (xN, y0, z0), (x0, y1, z0), (x1, y1, z0), ...,
            (xN, yM, z0), (x0, y0, z1), ..., (xN, yM, zP)].
            If inputFormat is 'png' or 'tif', the dims parameter (if any) will be ignored; data dimensions
            will instead be read out from the image file headers.

        inputFormat: {'stack', 'png', 'tif'}. optional, default 'stack'
            Expected format of the input data. 'stack' indicates flat files of raw binary data. 'png' or 'tif' indicate
            image files of the corresponding formats. Each page of a multipage tif file will be interpreted as a
            separate z-plane. For all formats, separate files are interpreted as distinct time points, with ordering
            given by lexicographic sorting of file names.

        ext: string, optional, default None
            Extension required on data files to be loaded. By default will be "stack" if inputFormat=="stack", "tif" for
            inputFormat=='tif', and 'png' for inputFormat="png".

        dtype: string or numpy dtype. optional, default 'int16'
            Data type of the image files to be loaded, specified as a numpy "dtype" string. If inputFormat is
            'tif' or 'png', the dtype parameter (if any) will be ignored; data type will instead be read out from the
            tif headers.

        startIdx: nonnegative int, optional
            startIdx and stopIdx are convenience parameters to allow only a subset of input files to be read in. These
            parameters give the starting index (inclusive) and final index (exclusive) of the data files to be used
            after lexicographically sorting all input data files matching the dataPath argument. For example,
            startIdx=None (the default) and stopIdx=10 will cause only the first 10 data files in dataPath to be read
            in; startIdx=2 and stopIdx=3 will cause only the third file (zero-based index of 2) to be read in. startIdx
            and stopIdx use the python slice indexing convention (zero-based indexing with an exclusive final position).

        stopIdx: nonnegative int, optional
            See startIdx.

        recursive: boolean, default False
            If true, will recursively descend directories rooted at dataPath, loading all files in the tree that
            have an appropriate extension. Recursive loading is currently only implemented for local filesystems
            (not s3).

        nplanes: positive integer, default None
            If passed, will cause a single image file to be subdivided into multiple records. Every
            `nplanes` z-planes (or multipage tif pages) in the file will be taken as a new record, with the
            first nplane planes of the first file being record 0, the second nplane planes being record 1, etc,
            until the first file is exhausted and record ordering continues with the first nplane planes of the
            second file, and so on. With nplanes=None (the default), a single file will be considered as
            representing a single record. Keys are calculated assuming that all input files contain the same
            number of records; if the number of records per file is not the same across all files,
            then `renumber` should be set to True to ensure consistent keys.

        npartitions: positive int, optional
            If specified, request a certain number of partitions for the underlying Spark RDD. Default is 1
            partition per image file.

        renumber: boolean, optional, default False
            If renumber evaluates to True, then the keys for each record will be explicitly recalculated after
            all images are loaded. This should only be necessary at load time when different files contain
            different number of records. See Images.renumber().

        Returns
        -------
        data: thunder.rdds.Images
            A newly-created Images object, wrapping an RDD of <int index, numpy array> key-value pairs.

        """
        checkParams(inputFormat, ['stack', 'png', 'tif', 'tif-stack'])

        from thunder.rdds.fileio.imagesloader import ImagesLoader
        loader = ImagesLoader(self._sc)

        if not ext:
            ext = DEFAULT_EXTENSIONS.get(inputFormat.lower(), None)

        if inputFormat.lower() == 'stack':
            data = loader.fromStack(dataPath, dims, dtype=dtype, ext=ext, startIdx=startIdx, stopIdx=stopIdx,
                                    recursive=recursive, nplanes=nplanes, npartitions=npartitions)
        elif inputFormat.lower().startswith('tif'):
            data = loader.fromTif(dataPath, ext=ext, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive,
                                  nplanes=nplanes, npartitions=npartitions)
        else:
            if nplanes:
#.........这里部分代码省略.........
开发者ID:industrial-sloth,项目名称:thunder,代码行数:101,代码来源:context.py


示例19: loadExample

    def loadExample(self, dataset=None):
        """
        Load a local example data set for testing analyses.

        Some of these data sets are extremely downsampled and should be considered
        useful only for testing the API. If called with None,
        will return list of available datasets.

        Parameters
        ----------
        dataset : str
            Which dataset to load

        Returns
        -------
        data : Data object
            Generated dataset as a Thunder data objects (e.g Series or Images)
        """
        import atexit
        import shutil
        import tempfile
        from pkg_resources import resource_listdir, resource_filename

        DATASETS = {
            'iris': 'iris',
            'fish-series': 'fish/series',
            'fish-images': 'fish/images',
            'mouse-series': 'mouse/series',
            'mouse-images': 'mouse/images',
            'mouse-params': 'mouse/params'
        }

        if dataset is None:
            return sorted(DATASETS.keys())

        checkParams(dataset, DATASETS.keys())

        if 'ec2' in self._sc.master:
            tmpdir = os.path.join('/root/thunder/python/thunder/utils', 'data', DATASETS[dataset])
        else:
            tmpdir = tempfile.mkdtemp()
            atexit.register(shutil.rmtree, tmpdir)

            def copyLocal(target):
                files = resource_listdir('thunder.utils.data', target)
                for f in files:
                    path = resource_filename('thunder.utils.data', os.path.join(target, f))
                    shutil.copy(path, tmpdir)

            copyLocal(DATASETS[dataset])

        npartitions = self._sc.defaultParallelism

        if dataset == "iris":
            return self.loadSeries(tmpdir)
        elif dataset == "fish-series":
            return self.loadSeries(tmpdir).astype('float')
        elif dataset == "fish-images":
            return self.loadImages(tmpdir, inputFormat="tif", npartitions=npartitions)
        elif dataset == "mouse-series":
            return self.loadSeries(tmpdir).astype('float')
        elif dataset == "mouse-images":
            return self.loadImages(tmpdir, npartitions=npartitions)
        elif dataset == "mouse-params":
            return self.loadParams(os.path.join(tmpdir, 'covariates.json'))
开发者ID:logang,项目名称:thunder,代码行数:65,代码来源:context.py


示例20: convertImagesToSeries

    def convertImagesToSeries(self, dataPath, outputDirPath, dims=None, inputFormat='stack', ext=None,
                              dtype='int16', blockSize="150M", blockSizeUnits="pixels", startIdx=None, stopIdx=None,
                              shuffle=True, overwrite=False, recursive=False, nplanes=None, npartitions=None,
                              renumber=False, confFilename='conf.json'):
        """
        Write out Images data as Series data, saved in a flat binary format.

        The resulting files may subsequently be read in using ThunderContext.loadSeries().
        Loading Series data directly will likely be faster than converting image data
        to a Series object through loadImagesAsSeries().

        Parameters
        ----------
        dataPath: string
            Path to data files or directory, as either a local filesystem path or a URI.
            May include a single '*' wildcard in the filename. Examples of valid dataPaths include
            'local/directory/*.stack", "s3n:///my-s3-bucket/data/", or "file:///mnt/another/directory/".

        outputDirPath: string
            Path to directory to write Series file output. May be either a path on the local file system
            or a URI-like format, such as "local/directory", "s3n:///my-s3-bucket/data/",
            or "file:///mnt/another/directory/". If the directory exists and 'overwrite' is True,
            the existing directory and all its contents will be deleted and overwritten.

        dims: tuple of  

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python rss_news_feed_parser.RssNewsFeedParser类代码示例发布时间:2022-05-27
下一篇:
Python readers.fromlist函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap