• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python theano_lstm.StackedCells类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano_lstm.StackedCells的典型用法代码示例。如果您正苦于以下问题:Python StackedCells类的具体用法?Python StackedCells怎么用?Python StackedCells使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了StackedCells类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: __init__

    def __init__(self, t_layer_sizes, p_layer_sizes, dropout=0):

        self.t_layer_sizes = t_layer_sizes
        self.p_layer_sizes = p_layer_sizes

        # From our architecture definition, size of the notewise input
        self.t_input_size = 80

        # time network maps from notewise input size to various hidden sizes
        self.time_model = StackedCells( self.t_input_size, celltype=LSTM, layers = t_layer_sizes)
        self.time_model.layers.append(PassthroughLayer())

        # pitch network takes last layer of time model and state of last note, moving upward
        # and eventually ends with a two-element sigmoid layer
        p_input_size = t_layer_sizes[-1] + 2
        self.pitch_model = StackedCells( p_input_size, celltype=LSTM, layers = p_layer_sizes)
        self.pitch_model.layers.append(Layer(p_layer_sizes[-1], 2, activation = T.nnet.sigmoid))

        self.dropout = dropout

        self.conservativity = T.fscalar()
        self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))

        print "model-setup::Trace-1"
        self.setup_train()
        print "model-setup::Trace-2"
        self.setup_predict()
        print "model-setup::Trace-3"
        self.setup_slow_walk()
开发者ID:philippmuller,项目名称:hackmusic,代码行数:29,代码来源:model.py


示例2: Model

class Model(object):
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN,steps=40):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, output_size, activation = T.tanh))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self.steps=steps
        self.gfs=T.tensor3('gfs')#输入gfs数据
        self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
        self.layerstatus=None
        self.results=None
        self.cnt = T.tensor3('cnt')
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        self.create_predict_function()
        '''上面几步的意思就是先把公式写好'''
        
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self):#做一次predict的方法
        gfs=self.gfs
        pm25in=self.pm25in
        #初始第一次前传
        self.layerstatus=self.model.forward(T.concatenate([gfs[:,0],gfs[:,1],gfs[:,2],pm25in[:,0],pm25in[:,1],self.cnt[:,:,0]],axis=1))
        #results.shape?40*1
        self.results=self.layerstatus[-1]
        if self.steps > 1:
            self.layerstatus=self.model.forward(T.concatenate([gfs[:,1],gfs[:,2],gfs[:,3],pm25in[:,1],self.results,self.cnt[:,:,1]],axis=1),self.layerstatus)
            self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)      
            #前传之后step-2次
            for i in xrange(2,self.steps):
                self.layerstatus=self.model.forward(T.concatenate([gfs[:,i],gfs[:,i+1],gfs[:,i+2],T.shape_padright(self.results[:,i-2]),T.shape_padright(self.results[:,i-1]),self.cnt[:,:,i]],axis=1),self.layerstatus)
                #need T.shape_padright???
                self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
        return self.results
                      
    def create_predict_function(self):
        self.pred_fun = theano.function(inputs=[self.gfs,self.pm25in,self.cnt],outputs =self.predictions,allow_input_downcast=True)
                                        
    def __call__(self, gfs,pm25in):
        return self.pred_fun(gfs,pm25in)
开发者ID:subercui,项目名称:RNN_pm25,代码行数:52,代码来源:loadnpredict.py


示例3: Model

class Model(object):
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, output_size, stack_size, celltype=RNN,steps=40):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size]*stack_size)
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, output_size, activation = lambda x:x))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self.steps=steps
        self.gfs=T.tensor3('gfs')#输入gfs数据
        self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
        self.layerstatus=None
        self.results=None
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        self.create_predict_function()        
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self):#做一次predict的方法
        gfs=self.gfs
        pm25in=self.pm25in
        #初始第一次前传
        gfs_x=T.concatenate([gfs[:,0],gfs[:,1],gfs[:,2]],axis=1)
        pm25in_x=T.concatenate([pm25in[:,0],pm25in[:,1]],axis=1)
        self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x],axis=1))
        self.results=self.layerstatus[-1]
        pm25next=pm25in[:,1]-self.results
        if self.steps > 1:
            for i in xrange(1,self.steps):
                gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,i+2]],axis=1)
                pm25in_x=T.concatenate([pm25in_x[:,1:],pm25next],axis=1)
                self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x],axis=1),self.layerstatus)
                self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
                pm25next=pm25next-self.layerstatus[-1]                
        return self.results

    def create_predict_function(self):
        self.pred_fun = theano.function(inputs=[self.gfs,self.pm25in],outputs =self.predictions,allow_input_downcast=True)
                                                              
    def __call__(self, gfs,pm25in):
        return self.pred_fun(gfs,pm25in)
开发者ID:subercui,项目名称:RNN_pm25,代码行数:50,代码来源:pm25_predictor.py


示例4: __init__

 def __init__(self, hidden_size, input_size, n_components, stack_size=1,
              celltype=LSTM):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype,
                               layers=[hidden_size] * stack_size)
     # add an embedding
     self.model.layers.insert(0, Embedding(vocab_size, input_size))
     # add a classifier:
     self.model.layers.append(Layer(hidden_size, vocab_size,
                                    activation=linear))
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self._stop_word   = theano.shared(np.int32(999999999), name="stop word")
     self.for_how_long = T.ivector()
     self.input_mat = T.imatrix()
     self.priming_word = T.iscalar()
     self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
     # create symbolic variables for prediction:
     self.predictions = self.create_prediction()
     # create symbolic variable for greedy search:
     self.greedy_predictions = self.create_prediction(greedy=True)
     # create gradient training functions:
     self.create_cost_fun()
     self.create_training_function()
     self.create_predict_function()
开发者ID:markstoehr,项目名称:structured_gaussian_mixtures,代码行数:25,代码来源:old_mdn_lstm.py


示例5: __init__

    def __init__(self, input_parts, layer_sizes, output_size, window_size=0, dropout=0, mode="drop", unroll_batch_num=None):
        """
        Parameters:
            input_parts: A list of InputParts
            layer_sizes: A list of the form [ (indep, per_note), ... ] where
                    indep is the number of non-shifted cells to have, and
                    per_note is the number of cells to have per window note, which shift as the
                        network moves
                    Alternately can just be [ indep, ... ]
            output_size: An integer, the width of the desired output
            dropout: How much dropout to apply.
            mode: Either "drop" or "roll". If drop, discard memory that goes out of range. If roll, roll it instead
        """

        self.input_parts = input_parts
        self.window_size = window_size

        layer_sizes = [x if isinstance(x,tuple) else (x,0) for x in layer_sizes]
        self.layer_sizes = layer_sizes
        self.tot_layer_sizes = [(indep + per_note*self.window_size) for indep, per_note in layer_sizes]
        
        self.output_size = output_size
        self.dropout = dropout

        self.input_size = sum(part.PART_WIDTH for part in input_parts)

        self.cells = StackedCells( self.input_size, celltype=LSTM, activation=T.tanh, layers = self.tot_layer_sizes )
        self.cells.layers.append(Layer(self.tot_layer_sizes[-1], self.output_size, activation = lambda x:x))

        assert mode in ("drop", "roll"), "Must specify either drop or roll mode"
        self.mode = mode

        self.unroll_batch_num = unroll_batch_num
开发者ID:Impro-Visor,项目名称:lstmprovisor-python,代码行数:33,代码来源:relshift_lstm.py


示例6: __init__

 def __init__(self, hidden_size, input_size, output_size, stack_size, celltype=RNN,steps=40):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size]*stack_size)
     # add a classifier:
     self.model.layers.append(Layer(hidden_size, output_size, activation = lambda x:x))
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self.steps=steps
     self.gfs=T.tensor3('gfs')#输入gfs数据
     self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
     self.layerstatus=None
     self.results=None
     # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
     self.predictions = self.create_prediction()
     self.create_predict_function()        
开发者ID:subercui,项目名称:RNN_pm25,代码行数:15,代码来源:pm25_predictor.py


示例7: __init__

	def __init__(self, hidden_size, input_size, vocab_size, entropy_reg = 0.001, key_entropy_reg = 0.001, stack_size=1, celltype=LSTM):

		# core layer in RNN/LSTM
		self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)

		# add an embedding
		self.model.layers.insert(0, Embedding(vocab_size, input_size))

		# add a classifier:
		self.model.layers.append(Layer(hidden_size, vocab_size, activation = softmax))

		self.entropy_reg     = entropy_reg
		self.key_entropy_reg = key_entropy_reg

		self.turing_params = Parameters()
		#init turing machine model
		self.turing_updates , self.turing_predict = turing_model.build(self.turing_params , hidden_size , vocab_size)
		self.hidden_size = hidden_size         
		# inputs are matrices of indices,
		# each row is a sentence, each column a timestep
		self._stop_word   = theano.shared(np.int32(999999999), name="stop word")
		self.for_how_long = T.ivector()
		self.mask_matrix = T.imatrix()
		self.input_mat = T.imatrix()
		self.priming_word = T.iscalar()
		self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))

		# create symbolic variables for prediction:
		#change by darong #issue : what is greedy
		self.lstm_predictions = self.create_lstm_prediction()
		self.final_predictions,self.entropy,self.key_entropy = self.create_final_prediction()

		# create symbolic variable for greedy search:
		self.greedy_predictions = self.create_lstm_prediction(greedy=True)

		# create gradient training functions:
		self.create_cost_fun()#create 2 cost func(lstm final)

		self.lstm_lr = 0.01
		self.turing_lr = 0.01
		self.all_lr = 0.01
		self.create_training_function()#create 3 functions(lstm turing all)
		self.create_predict_function()#create 2 predictions(lstm final)

		# create ppl
		self.lstm_ppl = self.create_lstm_ppl()
		self.final_ppl = self.create_final_ppl()
		self.create_ppl_function()
开发者ID:darongliu,项目名称:Lstm_Turing_LM,代码行数:48,代码来源:lm_v4.py


示例8: __init__

 def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
     # add a classifier:
     self.model.layers.append(Layer(hidden_size, output_size, activation = T.tanh))
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self.steps=T.iscalar()
     self.gfs=T.matrix()#输入gfs数据
     self.pm25in=T.matrix()#pm25初始数据部分
     self.pm25target=T.matrix()#输出的目标target
     self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
     # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
     self.predictions = self.create_prediction()
     # create gradient training functions:
     self.create_cost_fun()
     self.create_training_function()
     self.create_predict_function()
     '''上面几步的意思就是先把公式写好'''
开发者ID:subercui,项目名称:RNN_pm25,代码行数:19,代码来源:ondev.py


示例9: __init__

 def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN,steps=40):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
     # add a classifier:
     self.model.layers.append(Layer(hidden_size, output_size, activation = T.tanh))
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self.steps=steps
     self.gfs=T.tensor3('gfs')#输入gfs数据
     self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
     self.layerstatus=None
     self.results=None
     self.cnt = T.tensor3('cnt')
     # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
     self.predictions = self.create_prediction()
     self.create_predict_function()
     self.pm25target=T.matrix('pm25target')#输出的目标target,这一版把target维度改了
     self.create_valid_error()
     self.create_validate_function()
     '''上面几步的意思就是先把公式写好'''
开发者ID:subercui,项目名称:RNN_pm25,代码行数:20,代码来源:PredictorOfflineDetachvalid.py


示例10: __init__

 def __init__(self, hidden_size, input_size, output_size, celltype=Layer):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype, layers =hidden_size)
     # add a classifier:
     self.regression=Layer(hidden_size[-1], output_size[0], activation = T.tanh)
     self.classifier=Layer(hidden_size[-1], output_size[1], activation = softmax)
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self.steps=T.iscalar('steps')
     self.x=T.tensor3('x')#输入gfs数据
     self.target0=T.tensor3('target0')#输出的目标target,这一版把target维度改了
     self.target1=T.itensor3('target1')
     self.layerstatus=None
     self.results=None
     # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
     self.predictions0,self.predictions1 = self.create_prediction()
     # create gradient training functions:
     #self.create_cost_fun()
     #self.create_valid_error()
     #self.create_training_function()
     self.create_predict_function()
     #self.create_validate_function()
     '''上面几步的意思就是先把公式写好'''
开发者ID:subercui,项目名称:BaikeBalance,代码行数:23,代码来源:load&test.py


示例11: __init__

 def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=Layer,steps=40):
     # declare model
     self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
     # add a classifier:
     self.model.layers.append(Layer(hidden_size, output_size, activation = T.tanh))
     # inputs are matrices of indices,
     # each row is a sentence, each column a timestep
     self.steps=steps
     self.stepsin=T.iscalar('stepsin')
     self.x=T.tensor3('x')#输入gfs数据
     self.target=T.tensor3('target')#输出的目标target,这一版把target维度改了
     self.layerstatus=None
     self.results=None
     # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
     self.predictions = self.create_prediction()
     self.predictions2 = self.create_prediction2()
     # create gradient training functions:
     self.create_cost_fun()
     self.create_valid_error()
     self.create_training_function()
     self.create_predict_function()
     self.create_validate_function()
     '''上面几步的意思就是先把公式写好'''
开发者ID:subercui,项目名称:BaikeBalance,代码行数:23,代码来源:MLP2.py


示例12: Model

class Model(object):

    def __init__(self, t_layer_sizes, p_layer_sizes, dropout=0):

        self.t_layer_sizes = t_layer_sizes
        self.p_layer_sizes = p_layer_sizes

        # From our architecture definition, size of the notewise input
        self.t_input_size = 80

        # time network maps from notewise input size to various hidden sizes
        self.time_model = StackedCells( self.t_input_size, celltype=LSTM, layers = t_layer_sizes)
        self.time_model.layers.append(PassthroughLayer())

        # pitch network takes last layer of time model and state of last note, moving upward
        # and eventually ends with a two-element sigmoid layer
        p_input_size = t_layer_sizes[-1] + 2
        self.pitch_model = StackedCells( p_input_size, celltype=LSTM, layers = p_layer_sizes)
        self.pitch_model.layers.append(Layer(p_layer_sizes[-1], 2, activation = T.nnet.sigmoid))

        self.dropout = dropout

        self.conservativity = T.fscalar()
        self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))

        print "model-setup::Trace-1"
        self.setup_train()
        print "model-setup::Trace-2"
        self.setup_predict()
        print "model-setup::Trace-3"
        self.setup_slow_walk()


    @property
    def params(self):
        return self.time_model.params + self.pitch_model.params

    @params.setter
    def params(self, param_list):
        ntimeparams = len(self.time_model.params)
        self.time_model.params = param_list[:ntimeparams]
        self.pitch_model.params = param_list[ntimeparams:]

    @property
    def learned_config(self):
        return [self.time_model.params, self.pitch_model.params, [l.initial_hidden_state for mod in (self.time_model, self.pitch_model) for l in mod.layers if has_hidden(l)]]

    @learned_config.setter
    def learned_config(self, learned_list):
        self.time_model.params = learned_list[0]
        self.pitch_model.params = learned_list[1]
        for l, val in zip((l for mod in (self.time_model, self.pitch_model) for l in mod.layers if has_hidden(l)), learned_list[2]):
            l.initial_hidden_state.set_value(val.get_value())

    def setup_train(self):

        # dimensions: (batch, time, notes, input_data) with input_data as in architecture
        self.input_mat = T.btensor4()
        # dimensions: (batch, time, notes, onOrArtic) with 0:on, 1:artic
        self.output_mat = T.btensor4()

        self.epsilon = np.spacing(np.float32(1.0))

        print "model-setup-train::Trace-1"


        def step_time(in_data, *other):
            other = list(other)
            split = -len(self.t_layer_sizes) if self.dropout else len(other)
            hiddens = other[:split]
            masks = [None] + other[split:] if self.dropout else []
            new_states = self.time_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)
            return new_states

        def step_note(in_data, *other):
            other = list(other)
            split = -len(self.p_layer_sizes) if self.dropout else len(other)
            hiddens = other[:split]
            masks = [None] + other[split:] if self.dropout else []
            new_states = self.pitch_model.forward(in_data, prev_hiddens=hiddens, dropout=masks)
            return new_states

        # We generate an output for each input, so it doesn't make sense to use the last output as an input.
        # Note that we assume the sentinel start value is already present
        # TEMP CHANGE: NO SENTINEL

        print "model-setup-train::Trace-2"

        input_slice = self.input_mat[:,0:-1]
        n_batch, n_time, n_note, n_ipn = input_slice.shape

        # time_inputs is a matrix (time, batch/note, input_per_note)
        time_inputs = input_slice.transpose((1,0,2,3)).reshape((n_time,n_batch*n_note,n_ipn))
        num_time_parallel = time_inputs.shape[1]

        # apply dropout
        if self.dropout > 0:
            time_masks = MultiDropout( [(num_time_parallel, shape) for shape in self.t_layer_sizes], self.dropout)
        else:
            time_masks = []
#.........这里部分代码省略.........
开发者ID:philippmuller,项目名称:hackmusic,代码行数:101,代码来源:model.py


示例13: __init__

class Model:
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, vocab_size, stack_size=1, celltype=LSTM):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add an embedding
        self.model.layers.insert(0, Embedding(vocab_size, input_size))
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, vocab_size, activation = softmax))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self._stop_word   = theano.shared(np.int32(999999999), name="stop word")
        self.for_how_long = T.ivector()
        self.input_mat = T.imatrix()
        self.priming_word = T.iscalar()
        self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
        # create symbolic variables for prediction:
        self.predictions = self.create_prediction()
        # create symbolic variable for greedy search:
        self.greedy_predictions = self.create_prediction(greedy=True)
        # create gradient training functions:
        self.create_cost_fun()
        self.create_training_function()
        self.create_predict_function()

    def stop_on(self, idx):
        self._stop_word.set_value(idx)

    @property
    def params(self):
        return self.model.params

    def create_prediction(self, greedy=False):
        def step(idx, *states):
            # new hiddens are the states we need to pass to LSTMs
            # from past. Because the StackedCells also include
            # the embeddings, and those have no state, we pass
            # a "None" instead:
            new_hiddens = [None] + list(states)

            new_states = self.model.forward(idx, prev_hiddens = new_hiddens)
            if greedy:
                new_idxes = new_states[-1]
                new_idx   = new_idxes.argmax()
                # provide a stopping condition for greedy search:
                return ([new_idx.astype(self.priming_word.dtype)] + new_states[1:-1]), theano.scan_module.until(T.eq(new_idx,self._stop_word))
            else:
                return new_states[1:]
        # in sequence forecasting scenario we take everything
        # up to the before last step, and predict subsequent
        # steps ergo, 0 ... n - 1, hence:
        inputs = self.input_mat[:, 0:-1]
        num_examples = inputs.shape[0]
        # pass this to Theano's recurrence relation function:

        # choose what gets outputted at each timestep:
        if greedy:
            outputs_info = [dict(initial=self.priming_word, taps=[-1])] + [initial_state_with_taps(layer) for layer in self.model.layers[1:-1]]
            result, _ = theano.scan(fn=step,
                                n_steps=200,
                                outputs_info=outputs_info)
        else:
            outputs_info = [initial_state_with_taps(layer, num_examples) for layer in self.model.layers[1:]]
            result, _ = theano.scan(fn=step,
                                sequences=[inputs.T],
                                outputs_info=outputs_info)

        if greedy:
            return result[0]
        # softmaxes are the last layer of our network,
        # and are at the end of our results list:
        return result[-1].transpose((2,0,1))
        # we reorder the predictions to be:
        # 1. what row / example
        # 2. what timestep
        # 3. softmax dimension

    def create_cost_fun (self):
        # create a cost function that
        # takes each prediction at every timestep
        # and guesses next timestep's value:
        what_to_predict = self.input_mat[:, 1:]
        # because some sentences are shorter, we
        # place masks where the sentences end:
        # (for how long is zero indexed, e.g. an example going from `[2,3)`)
        # has this value set 0 (here we substract by 1):
        for_how_long = self.for_how_long - 1
        # all sentences start at T=0:
        starting_when = T.zeros_like(self.for_how_long)

        self.cost = masked_loss(self.predictions,
                                what_to_predict,
                                for_how_long,
                                starting_when).sum()

#.........这里部分代码省略.........
开发者ID:cjam,项目名称:depth-sounder,代码行数:101,代码来源:Nonsense_Word_LSTM.py


示例14: __init__

class Model:
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN,steps=40):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, output_size, activation = lambda x:x))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self.steps=steps
        self.gfs=T.tensor3('gfs')#输入gfs数据
        self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
        self.pm25target=T.matrix('pm25target')#输出的目标target,这一版把target维度改了
        self.layerstatus=None
        self.results=None
        self.cnt = T.tensor3('cnt')
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        # create gradient training functions:
        self.create_cost_fun()
        self.create_valid_error()
        self.create_training_function()
        self.create_predict_function()
        self.create_validate_function()
        '''上面几步的意思就是先把公式写好'''
        
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self):#做一次predict的方法
        gfs=self.gfs
        pm25in=self.pm25in
        #初始第一次前传
        gfs_x=T.concatenate([gfs[:,0],gfs[:,1],gfs[:,2]],axis=1)
        pm25in_x=T.concatenate([pm25in[:,0],pm25in[:,1]],axis=1)
        self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,0]],axis=1))
        self.results=self.layerstatus[-1]
        for i in xrange(1,46):#前6次(0-5),输出之前的先做的6个frame,之后第7次是第1个输出
            gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,i+2]],axis=1)
            pm25in_x=T.concatenate([pm25in_x[:,1:],pm25in[:,i+1]],axis=1)
            self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,i]],axis=1),self.layerstatus)
            self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
        return self.results
        
    def create_cost_fun (self):                                 
        self.cost = (self.predictions[:,6:46] - self.pm25target[:,6:46]).norm(L=2)

    def create_valid_error(self):
        self.valid_error=T.mean(T.abs_(self.predictions[:,6:46] - self.pm25target[:,6:46]),axis=0)
                
    def create_predict_function(self):
        self.pred_fun = theano.function(inputs=[self.gfs,self.pm25in,self.cnt],outputs =self.predictions,allow_input_downcast=True)
                                 
    def create_training_function(self):
        updates, gsums, xsums, lr, max_norm = create_optimization_updates(self.cost, self.params, method="adadelta")#这一步Gradient Decent!!!!
        self.update_fun = theano.function(
            inputs=[self.gfs,self.pm25in, self.pm25target,self.cnt],
            outputs=self.cost,
            updates=updates,
            name='update_fun',
            profile=False,
            allow_input_downcast=True)
            
    def create_validate_function(self):
        self.valid_fun = theano.function(
            inputs=[self.gfs,self.pm25in, self.pm25target,self.cnt],
            outputs=self.valid_error,
            allow_input_downcast=True
        )
        
    def __call__(self, gfs,pm25in):
        return self.pred_fun(gfs,pm25in)
开发者ID:subercui,项目名称:RNN_pm25,代码行数:79,代码来源:1015Pm25RNN_DetachValid.py


示例15: __init__

class Model:
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN,steps=40):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, output_size, activation = T.tanh))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self.steps=steps
        self.gfs=T.matrix()#输入gfs数据
        self.pm25in=T.matrix()#pm25初始数据部分
        self.pm25target=T.matrix()#输出的目标target
        self.layerstatus=None
        self.results=None
        self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        # create gradient training functions:
        self.create_cost_fun()
        self.create_valid_error()
        self.create_training_function()
        self.create_predict_function()
        self.create_validate_function()
        '''上面几步的意思就是先把公式写好'''
        
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self):#做一次predict的方法
        gfs=self.gfs
        pm25in=self.pm25in
        #初始第一次前传
        self.layerstatus=self.model.forward(T.concatenate([gfs[0],gfs[1],gfs[2],pm25in[0],pm25in[1]],axis=0))
        self.results=T.shape_padright(self.layerstatus[-1])
        if self.steps > 1:
            self.layerstatus=self.model.forward(T.concatenate([gfs[1],gfs[2],gfs[3],pm25in[1],self.results[0]],axis=0),self.layerstatus)
            self.results=T.concatenate([self.results,T.shape_padright(self.layerstatus[-1])],axis=0)      
            #前传之后step-2次
            for i in xrange(2,self.steps):
                self.layerstatus=self.model.forward(T.concatenate([gfs[i],gfs[i+1],gfs[i+2],self.results[i-2],self.results[i-1]],axis=0),self.layerstatus)
                #need T.shape_padright???
                self.results=T.concatenate([self.results,T.shape_padright(self.layerstatus[-1])],axis=0)
        return self.results
        
    def create_cost_fun (self):                                 
        self.cost = (self.predictions - self.pm25target).norm(L=2) / self.steps

    def create_valid_error(self):
        self.valid_error=T.abs_(self.predictions - self.pm25target)
                
    def create_predict_function(self):
        self.pred_fun = theano.function(inputs=[self.gfs,self.pm25in],outputs =self.predictions,allow_input_downcast=True)
                                 
    def create_training_function(self):
        updates, gsums, xsums, lr, max_norm = create_optimization_updates(self.cost, self.params, method="adadelta")#这一步Gradient Decent!!!!
        self.update_fun = theano.function(
            inputs=[self.gfs,self.pm25in, self.pm25target],
            outputs=self.cost,
            updates=updates,
            name='update_fun',
            profile=True,
            allow_input_downcast=True)
            
    def create_validate_function(self):
        self.valid_fun = theano.function(
            inputs=[self.gfs,self.pm25in, self.pm25target],
            outputs=self.valid_error,
            allow_input_downcast=True
        )
        
    def __call__(self, gfs,pm25in):
        return self.pred_fun(gfs,pm25in)
开发者ID:subercui,项目名称:RNN_pm25,代码行数:80,代码来源:Pm25RNN_FORLOOP.py


示例16: __init__

class Model:
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, vocab_size, stack_size=1, celltype=LSTM):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add an embedding
        self.model.layers.insert(0, Embedding(vocab_size, input_size))
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, vocab_size, activation = softmax))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self._stop_word   = theano.shared(np.int32(999999999), name="stop word")
        self.for_how_long = T.ivector()
        self.input_mat = T.imatrix()
        self.priming_word = T.iscalar()
        self.srng = T.shared_randomstreams.RandomStreams(np.random.randint(0, 1024))
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        # create symbolic variable for greedy search:
        self.greedy_predictions = self.create_prediction(greedy=True)
        # create gradient training functions:
        self.create_cost_fun()
        self.create_training_function()
        self.create_predict_function()
        '''上面几步的意思就是先把公式写好'''
        
    def stop_on(self, idx):
        self._stop_word.set_value(idx)
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self,greedy=False):
        def step(idx,*states):
            new_hiddens=list(states)
            new_states=self.model.forward(idx,prev_hiddens = new_hiddens)
            if greedy:
                return
            else:
                return new_states#不论recursive与否,会全部输出
        
        inputs = self.input_mat[:,0:-1]
        num_examples = inputs.shape[0]
        if greedy:
            return
        else:
            outputs_info = [initial_state_with_taps(layer, num_examples) for layer in self.model.layers[1:]]
            result, _ = theano.scan(fn=step,
                                sequences=[inputs.T],
                                outputs_info=outputs_info)
                                

        return result[-1].transpose((2,0,1))
                                 
    def create_prediction(self, greedy=False):
        def step(idx, *states):
            # new hiddens are the states we need to pass to LSTMs
            # from past. Because the StackedCells also include
            # the embeddings, and those have no state, we pass
            # a "None" instead:
            new_hiddens = [None] + list(states)
            
            new_states = self.model.forward(idx, prev_hiddens = new_hiddens)#这一步更新!!!!,idx是layer_input
            #new_states是一个列表,包括了stackcells各个层的最新输出
            if greedy:
                new_idxes = new_states[-1]#即最后一层softmax的输出
                new_idx   = new_idxes.argmax()
                # provide a stopping condition for greedy search:
                return ([new_idx.astype(self.priming_word.dtype)] + new_states[1:-1]), theano.scan_module.until(T.eq(new_idx,self._stop_word))
            else:
                return new_states[1:]#除第0层之外,其他各层输出
       
        # in sequence forecasting scenario we take everything
        # up to the before last step, and predict subsequent
        # steps ergo, 0 ... n - 1, hence:
        inputs = self.input_mat[:, 0:-1]
        num_examples = inputs.shape[0]
        # pass this to Theano's recurrence relation function:
        
        # choose what gets outputted at each timestep:
        if greedy:
            outputs_info = [dict(initial=self.priming_word, taps=[-1])] + [initial_state_with_taps(layer) for layer in self.model.layers[1:-1]]
            result, _ = theano.scan(fn=step,
                                n_steps=200,
                                outputs_info=outputs_info)
        else:
            outputs_info = [initial_state_with_taps(layer, num_examples) for layer in self.model.layers[1:]]
            result, _ = theano.scan(fn=step,
                                sequences=[inputs.T],
                                outputs_info=outputs_info)
        '''就是这里sequences相当于每次把inputs的一个给到idx,改动这里使符合一次给多种的pm25形式'''
        '''outputs_info:就是说让scan把每回的输出重新传回fn的输入,而outputs_info就是第一回没有之前输出时,给入的值。于是output_info也暗示了这种回传的形式
        Second, if there is no accumulation of results, we can set outputs_info to None. This indicates to scan that it doesn’t need to pass the prior result to fn.'''
        
#.........这里部分代码省略.........
开发者ID:subercui,项目名称:RNN_pm25,代码行数:101,代码来源:tutorial.py


示例17: Model

class Model(object):
    """
    Simple predictive model for forecasting words from
    sequence using LSTMs. Choose how many LSTMs to stack
    what size their memory should be, and how many
    words can be predicted.
    """
    def __init__(self, hidden_size, input_size, output_size, stack_size=1, celltype=RNN,steps=40):
        # declare model
        self.model = StackedCells(input_size, celltype=celltype, layers =[hidden_size] * stack_size)
        # add a classifier:
        self.model.layers.append(Layer(hidden_size, output_size, activation = lambda x:x))
        # inputs are matrices of indices,
        # each row is a sentence, each column a timestep
        self.steps=steps
        self.gfs=T.tensor3('gfs')#输入gfs数据
        self.pm25in=T.tensor3('pm25in')#pm25初始数据部分
        self.layerstatus=None
        self.results=None
        self.cnt = T.tensor3('cnt')
        # create symbolic variables for prediction:(就是做一次整个序列完整的进行预测,得到结果是prediction)
        self.predictions = self.create_prediction()
        self.create_predict_function()
        self.pm25target=T.matrix('pm25target')#输出的目标target,这一版把target维度改了
        self.create_valid_error()
        self.create_validate_function()
        '''上面几步的意思就是先把公式写好'''
        
        
    @property
    def params(self):
        return self.model.params
        
    def create_prediction(self):#做一次predict的方法
        gfs=self.gfs
        pm25in=self.pm25in
        #初始第一次前传
        gfs_x=T.concatenate([gfs[:,0],gfs[:,1],gfs[:,2]],axis=1)
        pm25in_x=T.concatenate([pm25in[:,0],pm25in[:,1]],axis=1)
        self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,0]],axis=1))
        self.results=self.layerstatus[-1]
        for i in xrange(1,7):#前6次(0-5),输出之前的先做的6个frame,之后第7次是第1个输出
            gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,i+2]],axis=1)
            pm25in_x=T.concatenate([pm25in_x[:,1:],pm25in[:,i+1]],axis=1)
            self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,i]],axis=1),self.layerstatus)
            self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
        if self.steps > 1:
            gfs_x=T.concatenate([gfs_x[:,9:],gfs[:,9]],axis=1)
            pm25in_x=T.concatenate([pm25in_x[:,1:],T.shape_padright(self.results[:,-1])],axis=1)
            self.layerstatus=self.model.forward(T.concatenate([gfs_x,pm25in_x,self.cnt[:,:,7]],axis=1),self.layerstatus)
            self.results=T.concatenate([self.results,self.layerstatus[-1]],axis=1)
            #前传之后step-2次
      

鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python parameters.Parameters类代码示例发布时间:2022-05-27
下一篇:
Python theano_lstm.create_optimization_updates函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap