• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python unittest_tools.assert_allclose函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tests.unittest_tools.assert_allclose函数的典型用法代码示例。如果您正苦于以下问题:Python assert_allclose函数的具体用法?Python assert_allclose怎么用?Python assert_allclose使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了assert_allclose函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_concatenate

    def test_concatenate(self):
        def ref(*inputs):
            axis = inputs[0]
            tensors = inputs[1:]

            return numpy.concatenate(tensors, axis)

        seed = utt.fetch_seed()
        rng = numpy.random.RandomState(seed)

        imgsize_list = ((5, 5), (6, 6), (6, 6), (8, 8))
        n, c = 4, 2

        axis = 1

        image = T.dtensor4('image')
        image1 = T.dtensor4('image1')
        for imgsize in imgsize_list:
            imval = rng.rand(n, c, imgsize[0], imgsize[1])

            output_ref = ref(axis, imval, imval)

            Opout = self.mkl_concatenate_func(axis, image, image1)
            f = function([image, image1], [Opout, ])
            output_mkl = f(imval, imval)

            utt.assert_allclose(output_mkl, output_ref)
开发者ID:pcs-theano,项目名称:Theano,代码行数:27,代码来源:test_concatenate.py


示例2: run_gradweight

    def run_gradweight(self, inputs_shape, filters_shape, dCdH_shape,
                       subsample=(1, 1, 1)):
        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        dCdH_val = numpy.random.random(dCdH_shape).astype('float32')
        inputs = shared(inputs_val)
        dCdH = shared(dCdH_val)

        conv = theano.tensor.nnet.convGrad3D(V=inputs, dCdH=dCdH,
                                             WShape=filters_shape,
                                             d=subsample)
        img = gpu_contiguous(inputs.dimshuffle(0, 4, 1, 2, 3))
        topgrad = gpu_contiguous(dCdH.dimshuffle(0, 4, 1, 2, 3))
        if (subsample == (1, 1, 1)):
            conv_gemm = GpuCorr3dMM_gradWeights(subsample=subsample)(img,
                                                                     topgrad)
        else:
            conv_gemm = GpuCorr3dMM_gradWeights(subsample=subsample)(
                img, topgrad, shape=filters_shape[1:4])
        conv_gemm = conv_gemm.dimshuffle(0, 2, 3, 4, 1)
        f_ref = theano.function([], conv)
        f = theano.function([], conv_gemm, mode=mode_with_gpu)

        res_ref = f_ref()
        res = f()
        utt.assert_allclose(res_ref, res)
开发者ID:12190143,项目名称:Theano,代码行数:25,代码来源:test_gemmcorr3d.py


示例3: cmp

        def cmp(n, m, f, f_gpu):
            data = numpy.arange(n * m, dtype='float32').reshape(n, m)
            gdata = numpy.asarray(data)[:, :, None, None]

            out = f(data)
            gout = numpy.asarray(f_gpu(gdata))[:, :, 0, 0]
            utt.assert_allclose(out, gout)
开发者ID:nke001,项目名称:Theano,代码行数:7,代码来源:test_dnn.py


示例4: run_gradinput

    def run_gradinput(self, inputs_shape, filters_shape,
                      subsample=(1, 1, 1)):

        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        filters_val = numpy.random.random(filters_shape).astype('float32')

        inputs = shared(inputs_val)
        filters = shared(filters_val)
        bias = shared(numpy.zeros(filters_shape[4]).astype('float32'))
        conv = theano.tensor.nnet.convTransp3D(W=filters,
                                               b=bias,
                                               d=subsample,
                                               H=inputs)
        f_ref = theano.function([], conv)
        res_ref = f_ref()

        # Get bottom shape using convTransp3D
        bottom_shape = res_ref.shape
        bottom_val = numpy.random.random(bottom_shape).astype('float32')
        bottom = shared(bottom_val)

        weight = gpu_contiguous(filters.dimshuffle(0, 4, 1, 2, 3))
        top = gpu_contiguous(inputs.dimshuffle(0, 4, 1, 2, 3))
        if (subsample == (1, 1, 1)):
            conv_gemm = GpuCorr3dMM_gradInputs(subsample=subsample)(
                kern=weight, topgrad=top)
        else:
            conv_gemm = GpuCorr3dMM_gradInputs(subsample=subsample)(
                kern=weight, topgrad=top,
                shape=bottom.shape[1:4])
        conv_gemm = conv_gemm.dimshuffle(0, 2, 3, 4, 1)
        f = theano.function([], conv_gemm, mode=mode_with_gpu)

        res = f()
        utt.assert_allclose(res_ref, res)
开发者ID:12190143,项目名称:Theano,代码行数:35,代码来源:test_gemmcorr3d.py


示例5: test_opt_convgrad3d_gemm

    def test_opt_convgrad3d_gemm(self):
        inputs_shape = (16, 10, 12, 16, 1)
        filters_shape = (10, 6, 12, 4, 1)
        dCdH_shape = (16, 5, 1, 13, 10)

        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        dCdH_val = numpy.random.random(dCdH_shape).astype('float32')

        inputs = shared(inputs_val)
        dCdH = shared(dCdH_val)

        conv = theano.tensor.nnet.convGrad3D(V=inputs, dCdH=dCdH,
                                             WShape=filters_shape,
                                             d=(1, 1, 1))
        mode = mode_with_gpu.including('convgrad3d_gemm')

        f_ref = theano.function([], conv)
        f_gemm = theano.function([], conv, mode=mode)

        # make sure we inserted the gemm trickery
        topo = f_gemm.maker.fgraph.toposort()
        assert sum(isinstance(n.op, GpuCorr3dMM_gradWeights) for n in topo) > 0

        res_ref = f_ref()
        res_gemm = f_gemm()
        utt.assert_allclose(res_ref, res_gemm)
开发者ID:12190143,项目名称:Theano,代码行数:26,代码来源:test_gemmcorr3d.py


示例6: gemm_directly

def gemm_directly(bs, ch, nf, rImg1, rImg2, rFlt1, rFlt2, subsx, subsy,
                  direction):
    ishape = (bs, ch, rImg1, rImg2)
    kshape = (nf, ch, rFlt1, rFlt2)
    subsample = (subsx, subsy)

    npy_img = theano._asarray(numpy.random.rand(*ishape), dtype='float32')
    npy_kern = theano._asarray(numpy.random.rand(*kshape), dtype='float32')

    i = cuda_tensor4()
    k = cuda_tensor4()

    if direction == 'fprop':
        cpuval = py_conv(npy_img, npy_kern, 'valid', subsample)
        op = theano.sandbox.cuda.blas.GpuCorrMM(border_mode='valid',
                                                subsample=subsample)(i, k)
        f = theano.function([i, k], op, mode=theano_mode)
        gpuval = f(npy_img, npy_kern[:,:,::-1,::-1])
    elif direction == 'bprop img':
        cpuval = py_conv(npy_img, npy_kern, 'full', subsample)
        op = theano.sandbox.cuda.blas.GpuCorrMM_gradInputs(
            border_mode='valid', subsample=subsample)(i, k)
        f = theano.function([i, k], op, mode=theano_mode)
        gpuval = f(npy_kern.transpose(1, 0, 2, 3), npy_img)
    elif direction == 'bprop kern':
        cpuval = py_conv(npy_img, npy_kern, 'valid', subsample)
        op = theano.sandbox.cuda.blas.GpuCorrMM_gradWeights(
            border_mode='valid', subsample=subsample)(i, k)
        f = theano.function([i, k], op, mode=theano_mode)
        gpuval = numpy.array(f(
                npy_img.transpose(1, 0, 2, 3),
                npy_kern.transpose(1, 0, 2, 3)[:,:,::-1,::-1])).transpose(
            1, 0, 2, 3)

    assert_allclose(cpuval, gpuval, rtol=1e-4)
开发者ID:alouisos,项目名称:Theano,代码行数:35,代码来源:test_conv_cuda_ndarray.py


示例7: test_elemwise_pow

def test_elemwise_pow():
    # Test that GpuElemwise(pow) can compile with any combination of integer
    # or float input dtype.
    dtypes = ["uint8", "uint16", "uint32", "uint64",
              "int8", "int16", "int32", "int64",
              "float16", "float32", "float64"]

    for dtype_base in dtypes:
        for dtype_exp in dtypes:

            # Compile a gpu function with the specified dtypes
            base_val = np.random.randint(0, 5, size=10).astype(dtype_base)
            exp_val = np.random.randint(0, 3, size=10).astype(dtype_exp)

            base = theano.tensor.vector(dtype=dtype_base)
            exp = gpuarray_shared_constructor(exp_val)
            assert exp.dtype == dtype_exp
            output = base ** exp
            f = theano.function([base], output, mode=mode_with_gpu)
            theano.printing.debugprint(f)
            # We don't transfer to the GPU when the output dtype is int*
            n = len([n for n in f.maker.fgraph.apply_nodes
                     if isinstance(n.op, GpuElemwise)])
            assert n == (output.dtype in tensor.float_dtypes)

            # Call the function to make sure the output is valid
            out = f(base_val)
            expected_out = base_val ** exp_val
            assert_allclose(out, expected_out)
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:29,代码来源:test_elemwise.py


示例8: test_irfft

    def test_irfft(self):
        inputs_val = np.random.random((1, N, N)).astype(theano.config.floatX)
        inputs = theano.shared(inputs_val)

        rfft = fft.rfft(inputs)
        f_rfft = theano.function([], rfft)
        res_fft = f_rfft()

        m = rfft.type()
        irfft = fft.irfft(m)
        f_irfft = theano.function([m], irfft)
        res_irfft = f_irfft(res_fft)

        utt.assert_allclose(inputs_val, np.asarray(res_irfft))

        inputs_val = np.random.random((1, N, N, 2)).astype(theano.config.floatX)
        inputs = theano.shared(inputs_val)

        irfft = fft.irfft(inputs)
        f_irfft = theano.function([], irfft)
        res_irfft = f_irfft()
        inputs_ref = inputs_val[..., 0] + inputs_val[..., 1] * 1j

        irfft_ref = np.fft.irfftn(inputs_ref, axes=(1, 2))

        utt.assert_allclose(irfft_ref, res_irfft, atol=1e-4, rtol=1e-4)
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:26,代码来源:test_fft.py


示例9: run_conv_valid

    def run_conv_valid(self, inputs_shape, filters_shape, pad=False):
        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        filters_val = numpy.random.random(filters_shape).astype('float32')

        inputs = shared(inputs_val)
        filters = shared(filters_val)
        bias = shared(numpy.zeros(filters_shape[0]).astype('float32'))

        # Flip filter as conv3D compute correlation
        filters_flip = filters[:, ::-1, ::-1, ::-1, :]
        # filters_flip = filters
        conv_ref = theano.tensor.nnet.conv3D(V=inputs, W=filters_flip,
                                             b=bias, d=(1, 1, 1))

        conv_fft = theano.sandbox.cuda.fftconv.conv3d_fft(
            inputs.dimshuffle(0, 4, 1, 2, 3),
            filters.dimshuffle(0, 4, 1, 2, 3),
            border_mode="valid",
            pad_last_dim=pad)
        conv_fft = conv_fft.dimshuffle(0, 2, 3, 4, 1)

        f_ref = theano.function([], conv_ref, mode="FAST_RUN")
        mode = mode_with_gpu
        mode.check_py_code = False
        f_fft = theano.function([], conv_fft, mode=mode)

        res_ref = f_ref()
        res_fft = f_fft()
        utt.assert_allclose(res_ref, res_fft, rtol=1e-05, atol=1e-05)
开发者ID:12190143,项目名称:Theano,代码行数:29,代码来源:test_fftconv.py


示例10: test_None

 def test_None(self):
     a = tensor.dmatrix()
     l = sort(a, None)
     f = theano.function([a], l)
     gv = f(self.m_val)
     gt = np.sort(self.m_val, None)
     utt.assert_allclose(gv, gt)
开发者ID:Theano,项目名称:Theano,代码行数:7,代码来源:test_sort.py


示例11: test_1Drfft

    def test_1Drfft(self):
        inputs_val = np.random.random((1, N)).astype(theano.config.floatX)

        x = T.matrix('x')
        rfft = fft.rfft(x)
        f_rfft = theano.function([x], rfft)
        res_rfft = f_rfft(inputs_val)
        res_rfft_comp = (np.asarray(res_rfft[:, :, 0]) +
                         1j * np.asarray(res_rfft[:, :, 1]))

        rfft_ref = np.fft.rfft(inputs_val, axis=1)

        utt.assert_allclose(rfft_ref, res_rfft_comp)

        m = rfft.type()
        print(m.ndim)
        irfft = fft.irfft(m)
        f_irfft = theano.function([m], irfft)
        res_irfft = f_irfft(res_rfft)

        utt.assert_allclose(inputs_val, np.asarray(res_irfft))

        # The numerical gradient of the FFT is sensitive, must set large
        # enough epsilon to get good accuracy.
        eps = 1e-1

        def f_rfft(inp):
            return fft.rfft(inp)
        inputs_val = np.random.random((1, N)).astype(theano.config.floatX)
        utt.verify_grad(f_rfft, [inputs_val], eps=eps)

        def f_irfft(inp):
            return fft.irfft(inp)
        inputs_val = np.random.random((1, N // 2 + 1, 2)).astype(theano.config.floatX)
        utt.verify_grad(f_irfft, [inputs_val], eps=eps)
开发者ID:DEVESHTARASIA,项目名称:Theano,代码行数:35,代码来源:test_fft.py


示例12: test3

 def test3(self):
     a = tensor.dvector()
     w2 = sort(a)
     f = theano.function([a], w2)
     gv = f(self.v_val)
     gt = np.sort(self.v_val)
     utt.assert_allclose(gv, gt)
开发者ID:Theano,项目名称:Theano,代码行数:7,代码来源:test_sort.py


示例13: with_linker

    def with_linker(self, linker, op, type, rand_val):
        for xsh, ysh in [((3, 5), (3, 5)),
                         ((3, 5), (1, 5)),
                         ((3, 5), (3, 1)),
                         ((1, 5), (5, 1)),
                         ((1, 1), (1, 1)),
                         ((self.openmp_minsize,), (self.openmp_minsize,)),
                         ((self.openmp_minsize_sqrt,
                           self.openmp_minsize_sqrt),
                          (self.openmp_minsize_sqrt,
                           self.openmp_minsize_sqrt)),
                         ((2, 3, 4, 5), (2, 3, 4, 5)),
                         ((2, 3, 4, 5), (1, 3, 1, 5)),
                         ((2, 3, 4, 5), (1, 1, 1, 1)),
                         ((), ())]:
            x = type('float64', [(entry == 1) for entry in xsh])('x')
            y = type('float64', [(entry == 1) for entry in ysh])('y')
            e = op(scalar.add)(x, y)
            f = copy(linker).accept(FunctionGraph([x, y], [e])).make_function()
            xv = rand_val(xsh)
            yv = rand_val(ysh)
            zv = xv + yv

            unittest_tools.assert_allclose(f(xv, yv), zv)

            #test Elemwise.infer_shape
            #the Shape op don't implement c_code!
            if isinstance(linker, gof.PerformLinker):
                x = type('float64', [(entry == 1) for entry in xsh])('x')
                y = type('float64', [(entry == 1) for entry in ysh])('y')
                e = op(scalar.add)(x, y)
                f = copy(linker).accept(FunctionGraph(
                    [x, y], [e.shape])).make_function()
                assert tuple(f(xv, yv)) == tuple(zv.shape)
开发者ID:AI-Cdrone,项目名称:Theano,代码行数:34,代码来源:test_elemwise.py


示例14: test_relu_grad

    def test_relu_grad(self):
        seed = utt.fetch_seed()
        rng = numpy.random.RandomState(seed)

        imgsize_list = ((5, 5), (6, 6), (6, 6), (8, 8))
        n, c = 4, 2

        axis = 1

        image = T.dtensor4('image')
        image1 = T.dtensor4('image1')
        for imgsize in imgsize_list:
            imval = rng.rand(n, c, imgsize[0], imgsize[1])

            out = T.concatenate([image, image1], axis)
            sum_ref = T.sum(out)
            gx_ref = T.grad(sum_ref, [image, image1])
            f_ref = theano.function([image, image1], outputs=gx_ref, mode=mode_without_mkl)
            output_ref = f_ref(imval, imval)

            out_mkl = self.mkl_concatenate_func(axis, image, image1)
            sum_mkl = T.sum(out_mkl)
            gx_mkl = T.grad(sum_mkl, [image, image1])
            f_mkl = theano.function([image, image1], outputs=gx_mkl)
            output_mkl = f_mkl(imval, imval)

            utt.assert_allclose(output_mkl, output_ref)
开发者ID:pcs-theano,项目名称:Theano,代码行数:27,代码来源:test_concatenate.py


示例15: test_hgemm_swap

def test_hgemm_swap():
    from theano.sandbox.cuda import nvcc_compiler
    if nvcc_compiler.nvcc_version < '7.5':
        raise SkipTest("SgemmEx is only avaialble on cuda 7.5+")

    v = tensor.vector(dtype='float16')
    m = tensor.matrix(dtype='float16')
    m2 = tensor.matrix(dtype='float16')
    m32 = tensor.matrix(dtype='float32')

    # test that we don't try to replace anything but matrix x matrix in float16
    f = theano.function([v, m], tensor.dot(v, m), mode=mode_with_gpu)
    assert len([node for node in f.maker.fgraph.apply_nodes
                if isinstance(node.op, GpuGemm)]) == 0

    f = theano.function([m32, m], tensor.dot(m32, m), mode=mode_with_gpu)
    assert len([node for node in f.maker.fgraph.apply_nodes
                if isinstance(node.op, GpuGemm)]) == 0

    f = theano.function([m, m2], tensor.dot(m, m2), mode=mode_with_gpu)
    assert len([node for node in f.maker.fgraph.apply_nodes
                if isinstance(node.op, GpuGemm)]) == 1

    v1 = numpy.random.random((3, 4)).astype('float16')
    v2 = numpy.random.random((4, 2)).astype('float16')

    of = f(v1, v2)
    on = numpy.dot(v1, v2)

    utt.assert_allclose(of, on)
开发者ID:caglar,项目名称:Theano,代码行数:30,代码来源:test_blas.py


示例16: run_conv_full

    def run_conv_full(self, inputs_shape, filters_shape, pad=False):
        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        filters_val = numpy.random.random(filters_shape).astype('float32')

        inputs = shared(inputs_val)
        filters = shared(filters_val)
        bias = shared(numpy.zeros(filters_shape[4]).astype('float32'))

        conv_ref = theano.tensor.nnet.convTransp3D(
            W=filters, b=bias, d=(1, 1, 1),
            H=inputs)

        filters = filters.dimshuffle(4, 0, 1, 2, 3)
        inputs = inputs.dimshuffle(0, 4, 1, 2, 3)
        conv_fft = theano.sandbox.cuda.fftconv.conv3d_fft(inputs, filters,
                                                          border_mode="full",
                                                          pad_last_dim=pad)
        conv_fft = conv_fft.dimshuffle(0, 2, 3, 4, 1)

        f_ref = theano.function([], conv_ref)
        f_fft = theano.function([], conv_fft, mode=mode_with_gpu)

        res_ref = f_ref()
        res_fft = f_fft()
        utt.assert_allclose(res_ref, res_fft, rtol=1e-04, atol=1e-04)
开发者ID:12190143,项目名称:Theano,代码行数:25,代码来源:test_fftconv.py


示例17: cmp

            def cmp(a_shp, b_shp):

                a = numpy.random.randn(* a_shp).astype(numpy.float32)
                b = numpy.random.randn(* b_shp).astype(numpy.float32)

                x = tensor.ftensor3()
                y = tensor.ftensor3()

                f = theano.function([x, y],
                                    batched_dot(x, y),
                                    mode=mode_with_gpu)

                z0 = numpy.asarray(f(a, b))

                ga = cuda_ndarray.CudaNdarray(a)
                gb = cuda_ndarray.CudaNdarray(b)

                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)
                z1 = numpy.asarray(f(ga, gb))

                z_test = numpy.sum(
                    a[:, :, :, None] * b[:, None, :, :], axis=-2)

                unittest_tools.assert_allclose(z0, z_test)
                unittest_tools.assert_allclose(z1, z_test)
开发者ID:ChinaQuants,项目名称:Theano,代码行数:28,代码来源:test_blas.py


示例18: test_opt_convgrad3d_fft

    def test_opt_convgrad3d_fft(self):
        inputs_shape = (2, 17, 15, 16, 1)
        filters_shape = (10, 6, 7, 4, 1)
        dCdH_shape = (inputs_shape[0],
                      inputs_shape[1] - filters_shape[1] + 1,
                      inputs_shape[2] - filters_shape[2] + 1,
                      inputs_shape[3] - filters_shape[3] + 1,
                      filters_shape[0])

        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        dCdH_val = numpy.random.random(dCdH_shape).astype('float32')

        inputs = shared(inputs_val)
        dCdH = shared(dCdH_val)

        conv = theano.tensor.nnet.convGrad3D(V=inputs, dCdH=dCdH,
                                             WShape=filters_shape,
                                             d=(1, 1, 1))
        mode = mode_with_gpu.including('convgrad3d_fft')
        mode.check_py_code = False

        f_ref = theano.function([], conv, mode="FAST_RUN")
        f_fft = theano.function([], conv, mode=mode)

        # make sure we inserted the fft trickery
        topo = f_fft.maker.fgraph.toposort()
        assert sum(isinstance(n.op, theano.sandbox.cuda.fftconv.CuFFTOp)
                   for n in topo) == 2

        res_ref = f_ref()
        res_fft = f_fft()

        utt.assert_allclose(res_ref, res_fft, rtol=1e-04, atol=1e-04)
开发者ID:12190143,项目名称:Theano,代码行数:33,代码来源:test_fftconv.py


示例19: cmp

    def cmp(n, m):
        data = numpy.random.uniform(1e-7, 1, (n, m)).astype(dtype=dtypeInput)
        b_data = numpy.random.uniform(1e-7, 1, (m,)).astype(dtype=dtypeBias)

        out = f(data, b_data)
        gout = f_gpu(data, b_data)
        utt.assert_allclose(out, gout)
开发者ID:eulerreich,项目名称:Theano,代码行数:7,代码来源:test_nnet.py


示例20: test_opt_convtransp3d_fft

    def test_opt_convtransp3d_fft(self):
        inputs_shape = (2, 9, 16, 12, 10)
        filters_shape = (10, 3, 8, 4, 1)

        inputs_val = numpy.random.random(inputs_shape).astype('float32')
        filters_val = numpy.random.random(filters_shape).astype('float32')
        bias = shared(numpy.zeros(filters_shape[4]).astype('float32'))

        inputs = shared(inputs_val)
        filters = shared(filters_val)

        conv = theano.tensor.nnet.convTransp3D(W=filters, b=bias, d=(1, 1, 1),
                                               H=inputs)
        mode = mode_with_gpu.including('convtransp3d_fft')

        f_ref = theano.function([], conv)
        f_fft = theano.function([], conv, mode=mode)

        # make sure we inserted the fft trickery
        topo = f_fft.maker.fgraph.toposort()
        assert sum(isinstance(n.op, theano.sandbox.cuda.fftconv.CuFFTOp)
                   for n in topo) == 2

        res_ref = f_ref()
        res_fft = f_fft()

        utt.assert_allclose(res_ref, res_fft, rtol=1e-04, atol=1e-04)
开发者ID:12190143,项目名称:Theano,代码行数:27,代码来源:test_fftconv.py



注:本文中的theano.tests.unittest_tools.assert_allclose函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python unittest_tools.fetch_seed函数代码示例发布时间:2022-05-27
下一篇:
Python disturb_mem.disturb_mem函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap