• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python shared_randomstreams.RandomStreams类代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.shared_randomstreams.RandomStreams的典型用法代码示例。如果您正苦于以下问题:Python RandomStreams类的具体用法?Python RandomStreams怎么用?Python RandomStreams使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。



在下文中一共展示了RandomStreams类的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: common_init

    def common_init(self, mr, vr, sr, di, ce, node_id):
        """
        Initialization function used by the base class and subclasses.
        """

        self.MEANRATE = mr
        self.VARRATE = vr
        self.STARVRATE = sr
        self.DIMS = di
        self.CENTS = ce
        self.ID = node_id
        srng = RandomStreams(seed=100)
        rv_u = srng.uniform((self.CENTS, self.DIMS))
        f = function([], rv_u)
        self.mean = 2*f()
        #print self.mean
        var1 = T.dscalar('var1')
        var2 = T.dmatrix('var2')
        var3 = T.mul
        self.var = theanoScaMatMul(0.001,np.ones((self.CENTS, self.DIMS)))
        self.starv = np.ones((self.CENTS, 1))
        self.belief = np.zeros((1, self.CENTS))
        self.children = []
        self.last = np.zeros((1, self.DIMS))
        self.whitening = False
开发者ID:cosmoharrigan,项目名称:python-destin,代码行数:25,代码来源:Clustering.py


示例2: theano_sentence_prediction

    def theano_sentence_prediction(self, Vs):
        #Make pairwise features. This is really just "tensor product with concatenation instead of multiplication". Is there a command for that?
        pairwise_vs, _ = theano.scan(fn=self.__pairwise_features,
                                  outputs_info=None,
                                  sequences=Vs,
                                  non_sequences=[Vs, Vs.shape[0]])

        if self.input_lstm_layer.training:
            srng = RandomStreams(seed=12345)
        
        full_matrix = self.input_lstm_layer.function(pairwise_vs)

        for layer in self.lstm_layers:            
            if self.input_lstm_layer.training:
                print("hah-train")
                full_matrix = T.switch(srng.binomial(size=(Vs.shape[0], Vs.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
            else:
                print("heh-notrain")
                full_matrix = 0.5 * full_matrix
            
            full_matrix = layer.function(full_matrix)

        if self.input_lstm_layer.training:
            print("hah-train")
            full_matrix = T.switch(srng.binomial(size=(Vs.shape[0], Vs.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
        else:
            print("heh-notrain")
            full_matrix = 0.5 * full_matrix
            
        final_matrix = self.output_convolution.function(full_matrix)

        return T.nnet.softmax(final_matrix)
开发者ID:MichSchli,项目名称:Speciale,代码行数:32,代码来源:corner_lstm.py


示例3: __init__

    def __init__(self, neurons, dimensions, count = 1, max_rate = (200, 300),
            intercept = (-1.0, 1.0), t_ref = 0.002, t_rc = 0.02, seed = None,
            type = 'lif', dt = 0.001, encoders = None, name = None, address = "localhost"):
        self.seed = seed
        self.neurons = neurons
        self.dimensions = dimensions
        self.count = count
        self.name = name
        self.address = address
        self.ticker_conn = None

        # create the neurons
        # TODO: handle different neuron types, which may have different parameters to pass in
        self.neuron = neuron.names[type]((count, self.neurons), t_rc = t_rc, t_ref = t_ref, dt = dt)

        # compute alpha and bias
        srng = RandomStreams(seed=seed)
        max_rates = srng.uniform([neurons], low=max_rate[0], high=max_rate[1])
        threshold = srng.uniform([neurons], low=intercept[0], high=intercept[1])
        alpha, self.bias = theano.function([], self.neuron.make_alpha_bias(max_rates,threshold))()
        self.bias = self.bias.astype('float32')

        # compute encoders
        self.encoders = make_encoders(neurons, dimensions, srng, encoders=encoders)
        self.encoders = (self.encoders.T * alpha).T

        # make default origin
        self.origin = dict(X=origin.Origin(self))
        self.accumulator = {}
开发者ID:LouisCastricato,项目名称:spike,代码行数:29,代码来源:ensemble.py


示例4: _dropout_from_layer

    def _dropout_from_layer(self, layer):

        stream = RandomStreams(self.numpy_range.randint(999999))

        mask = stream.binomial(size=layer.shape, n=1, p=(1-self._p), dtype=theano.config.floatX)

        return layer * Tensor.cast(mask, theano.config.floatX)
开发者ID:aviveise,项目名称:double_encoder,代码行数:7,代码来源:symmetric_dropout_hidden_layer.py


示例5: test_binomial_vector

    def test_binomial_vector(self):
        random = RandomStreams(utt.fetch_seed())
        n = tensor.lvector()
        prob = tensor.vector()
        out = random.binomial(n=n, p=prob)
        assert out.ndim == 1
        f = function([n, prob], out)

        n_val = [1, 2, 3]
        prob_val = numpy.asarray([.1, .2, .3], dtype=config.floatX)
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(n_val, prob_val)
        numpy_val0 = numpy_rng.binomial(n=n_val, p=prob_val)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(n_val[:-1], prob_val[:-1])
        numpy_val1 = numpy_rng.binomial(n=n_val[:-1], p=prob_val[:-1])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([n, prob], random.binomial(n=n, p=prob, size=(3,)))
        val2 = g(n_val, prob_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.binomial(n=n_val, p=prob_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, n_val[:-1], prob_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:30,代码来源:test_shared_randomstreams.py


示例6: test_uniform_vector

    def test_uniform_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dvector()
        high = tensor.dvector()
        out = random.uniform(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [.1, .2, .3]
        high_val = [1.1, 2.2, 3.3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy_rng.uniform(low=low_val, high=high_val)
        print('THEANO', val0)
        print('NUMPY', numpy_val0)
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy_rng.uniform(low=low_val[:-1], high=high_val[:-1])
        print('THEANO', val1)
        print('NUMPY', numpy_val1)
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.uniform(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.uniform(low=low_val, high=high_val, size=(3,))
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:34,代码来源:test_shared_randomstreams.py


示例7: _negative_sampling

    def _negative_sampling(self, num_negative_samples, target_indices):
        assert num_negative_samples > 0

        logging.debug('Stochastically sampling %d negative instances '
                      'out of %d classes (%.2f%%).',
                      num_negative_samples, self.num_entities,
                      100.0 *
                      float(num_negative_samples) / self.num_entities)

        from theano.tensor.shared_randomstreams import RandomStreams

        srng = RandomStreams(
            seed=np.random.randint(low=0, high=(1 << 30)))

        rng_sample_size = (self.batch_size, num_negative_samples,)

        logging.debug(
            'Using %s for random sample generation of %s tensors.',
            RandomStreams, rng_sample_size)

        logging.debug('For every batch %d random integers are sampled.',
                      np.prod(rng_sample_size))

        random_negative_indices = srng.choice(
            rng_sample_size,
            a=self.num_entities,
            p=self.clazz_distribution)

        if self.__DEBUG__:
            random_negative_indices = theano.printing.Print(
                'random_negative_indices')(random_negative_indices)

        return random_negative_indices
开发者ID:cvangysel,项目名称:SERT,代码行数:33,代码来源:models.py


示例8: test_multinomial_vector

    def test_multinomial_vector(self):
        random = RandomStreams(utt.fetch_seed())
        n = tensor.lvector()
        pvals = tensor.matrix()
        out = random.multinomial(n=n, pvals=pvals)
        assert out.ndim == 2
        f = function([n, pvals], out)

        n_val = [1, 2, 3]
        pvals_val = [[.1, .9], [.2, .8], [.3, .7]]
        pvals_val = numpy.asarray(pvals_val, dtype=config.floatX)
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(n_val, pvals_val)
        numpy_val0 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)])
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(n_val[:-1], pvals_val[:-1])
        numpy_val1 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val[:-1], pvals_val[:-1])])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([n, pvals], random.multinomial(n=n, pvals=pvals, size=(3,)))
        val2 = g(n_val, pvals_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy.asarray([numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)])
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, n_val[:-1], pvals_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:34,代码来源:test_shared_randomstreams.py


示例9: test_random_integers_vector

    def test_random_integers_vector(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.lvector()
        high = tensor.lvector()
        out = random.random_integers(low=low, high=high)
        assert out.ndim == 1
        f = function([low, high], out)

        low_val = [100, 200, 300]
        high_val = [110, 220, 330]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(low_val, high_val)
        numpy_val0 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val, high_val)])
        assert numpy.all(val0 == numpy_val0)

        # arguments of size (2,)
        val1 = f(low_val[:-1], high_val[:-1])
        numpy_val1 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val[:-1], high_val[:-1])])
        assert numpy.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = function([low, high], random.random_integers(low=low, high=high, size=(3,)))
        val2 = g(low_val, high_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy.asarray([numpy_rng.randint(low=lv, high=hv+1)
            for lv, hv in zip(low_val, high_val)])
        assert numpy.all(val2 == numpy_val2)
        self.assertRaises(ValueError, g, low_val[:-1], high_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:33,代码来源:test_shared_randomstreams.py


示例10: prediction

    def prediction(self, h, bias):
        srng = RandomStreams(seed=42)

        prop, mean_x, mean_y, std_x, std_y, rho, bernoulli = \
            self.compute_parameters(h, bias)

        mode = T.argmax(srng.multinomial(pvals=prop, dtype=prop.dtype), axis=1)

        v = T.arange(0, mean_x.shape[0])
        m_x = mean_x[v, mode]
        m_y = mean_y[v, mode]
        s_x = std_x[v, mode]
        s_y = std_y[v, mode]
        r = rho[v, mode]
        # cov = r * (s_x * s_y)

        normal = srng.normal((h.shape[0], 2))
        x = normal[:, 0]
        y = normal[:, 1]

        # x_n = T.shape_padright(s_x * x + cov * y + m_x)
        # y_n = T.shape_padright(s_y * y + cov * x + m_y)

        x_n = T.shape_padright(m_x + s_x * x)
        y_n = T.shape_padright(m_y + s_y * (x * r + y * T.sqrt(1.-r**2)))

        uniform = srng.uniform((h.shape[0],))
        pin = T.shape_padright(T.cast(bernoulli > uniform, floatX))

        return T.concatenate([x_n, y_n, pin], axis=1)
开发者ID:adbrebs,项目名称:handwriting,代码行数:30,代码来源:model.py


示例11: __init__

    def __init__(self, n_visible, n_hidden, weights=None, hidden_bias=None, visible_bias=None, random_on_gpu=False,
                 seed=69, activation=T.nnet.sigmoid):
        self.n_visible = n_visible
        self.n_hidden = n_hidden

        if random_on_gpu:
            self.t_rng = GPU_RandomStreams(seed)
        else:
            self.t_rng = RandomStreams(seed)

        if not weights:
            weights = np.asarray(
                np.random.normal(
                    scale=0.01,
                    size=(self.n_visible, self.n_hidden)),
                dtype=theano.config.floatX)
        self.ts_weights = theano.shared(value=weights, name='W', borrow=True)

        if not hidden_bias:
            hidden_bias = np.zeros(n_hidden, dtype=theano.config.floatX)

        self.ts_hidden_bias = theano.shared(value=hidden_bias, name='hb', borrow=True)

        if not visible_bias:
            visible_bias = np.zeros(n_visible, dtype=theano.config.floatX)

        self.ts_visible_bias = theano.shared(value=visible_bias, name='vb', borrow=True)

        self.x = T.matrix(name='x')

        self.activation = activation

        self.params = [self.ts_weights, self.ts_hidden_bias, self.ts_visible_bias]
开发者ID:Craftinity,项目名称:DA-AGH,代码行数:33,代码来源:autoencoders.py


示例12: theano_sentence_prediction

    def theano_sentence_prediction(self, Sentence, Chars, WordLengths):

        input_lstm_res_f = self.input_lstm_forward_layer.function(Sentence, Chars, WordLengths)
        input_lstm_res_b = self.input_lstm_backward_layer.function(Sentence, Chars, WordLengths)
        input_combined = T.concatenate((input_lstm_res_f, input_lstm_res_b), axis=1)

        #Make pairwise features. This is really just "tensor product with concatenation instead of multiplication". Is there a command for that?
        full_matrix, _ = theano.scan(fn=self.__pairwise_features,
                                  outputs_info=None,
                                  sequences=input_combined,
                                  non_sequences=[input_combined, Sentence.shape[0]])

        if len(self.lstm_layers) > 0 and self.lstm_layers[0].training:
            srng = RandomStreams(seed=12345)
            full_matrix = T.switch(srng.binomial(size=(Sentence.shape[0], Sentence.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
        else:
            full_matrix = 0.5 * full_matrix

        full_matrix = self.transition_layer.function(full_matrix)
            
        for layer in self.lstm_layers:
            if layer.training:
                print("hah-train")
                full_matrix = T.switch(srng.binomial(size=(Sentence.shape[0], Sentence.shape[0]+1, self.hidden_dimension*4), p=0.5), full_matrix, 0)
            else:
                print("heh-notrain")
                full_matrix = 0.5 * full_matrix
            
            
            full_matrix = layer.function(full_matrix)
        
        final_matrix = self.output_convolution.function(full_matrix)

        return T.nnet.softmax(final_matrix)
开发者ID:MichSchli,项目名称:Speciale,代码行数:34,代码来源:fourway_lstm_both.py


示例13: test_default_dtype

    def test_default_dtype(self):
        random = RandomStreams(utt.fetch_seed())
        low = tensor.dscalar()
        high = tensor.dscalar()

        # Should not silently downcast from low and high
        out0 = random.uniform(low=low, high=high, size=(42,))
        assert out0.dtype == 'float64'
        f0 = function([low, high], out0)
        val0 = f0(-2.1, 3.1)
        assert val0.dtype == 'float64'

        # Should downcast, since asked explicitly
        out1 = random.uniform(low=low, high=high, size=(42,), dtype='float32')
        assert out1.dtype == 'float32'
        f1 = function([low, high], out1)
        val1 = f1(-1.1, 1.1)
        assert val1.dtype == 'float32'

        # Should use floatX
        lowf = tensor.fscalar()
        highf = tensor.fscalar()
        outf = random.uniform(low=lowf, high=highf, size=(42,))
        assert outf.dtype == config.floatX
        ff = function([lowf, highf], outf)
        valf = ff(numpy.float32(-0.1), numpy.float32(0.3))
        assert valf.dtype == config.floatX
开发者ID:ChinaQuants,项目名称:Theano,代码行数:27,代码来源:test_shared_randomstreams.py


示例14: __init__

    def __init__(self, rng, train_input, test_input, n_in, n_out):

        # self.input = input.flatten(2)

        self.W = theano.shared(
            value=numpy.asarray(
                rng.uniform(
                    low=-numpy.sqrt(6. / (n_in + n_out)),
                    high=numpy.sqrt(6. / (n_in + n_out)),
                    size=(n_in, n_out)
                ),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )

        self.b = theano.shared(
            value=numpy.zeros((n_out,), dtype=theano.config.floatX),
            name='b',
            borrow=True
        )

        p = 0.5

        tmp_output = T.nnet.relu(T.dot(train_input.flatten(2), self.W) + self.b)
        srng = RandomStreams(rng.randint(1234))
        mask = (srng.uniform(size=tmp_output.shape) < p)/p

        self.train_output = tmp_output * mask
        self.test_output = T.nnet.relu(T.dot(test_input.flatten(2), self.W) + self.b)
        self.params = [self.W, self.b]
开发者ID:yangli625,项目名称:ReId_theano,代码行数:32,代码来源:Layer.py


示例15: test_normal_vector

    def test_normal_vector(self):
        random = RandomStreams(utt.fetch_seed())
        avg = tensor.dvector()
        std = tensor.dvector()
        out = random.normal(avg=avg, std=std)
        assert out.ndim == 1
        f = function([avg, std], out)

        avg_val = [1, 2, 3]
        std_val = [.1, .2, .3]
        seed_gen = numpy.random.RandomState(utt.fetch_seed())
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))

        # Arguments of size (3,)
        val0 = f(avg_val, std_val)
        numpy_val0 = numpy_rng.normal(loc=avg_val, scale=std_val)
        assert numpy.allclose(val0, numpy_val0)

        # arguments of size (2,)
        val1 = f(avg_val[:-1], std_val[:-1])
        numpy_val1 = numpy_rng.normal(loc=avg_val[:-1], scale=std_val[:-1])
        assert numpy.allclose(val1, numpy_val1)

        # Specifying the size explicitly
        g = function([avg, std], random.normal(avg=avg, std=std, size=(3,)))
        val2 = g(avg_val, std_val)
        numpy_rng = numpy.random.RandomState(int(seed_gen.randint(2**30)))
        numpy_val2 = numpy_rng.normal(loc=avg_val, scale=std_val, size=(3,))
        assert numpy.allclose(val2, numpy_val2)
        self.assertRaises(ValueError, g, avg_val[:-1], std_val[:-1])
开发者ID:ChinaQuants,项目名称:Theano,代码行数:30,代码来源:test_shared_randomstreams.py


示例16: CTC_train

 def CTC_train(self):
     CTC_LOSSs = T.cast(T.mean(self.CTC_LOSS(), axis=0), "float32")
     train_data_d = []
     train_data_m = []
     train_data_m_s = [] 
     learning_rate = T.scalar()
     decay = T.scalar()
     seed = np.random.randint(10e6)
     rng = RandomStreams(seed=seed)
     grad_rate = 0.8
     for data in self.train_data:
         data_d = rng.binomial((1,), p=grad_rate, dtype="float32")[0]*T.grad(CTC_LOSSs, data)
         train_data_d.append(data_d)
         data_m_s = theano.shared(np.zeros(data.get_value().shape).astype(np.float32))
         train_data_m_s.append(data_m_s)
         data_m = data_m_s*decay + (1-decay)*data_d**2
         train_data_m.append(data_m)
     #self.grad_test = theano.function([self.X, self.Y], train_data_d[-4])
     #self.data_d_print = theano.function([self.X,self.Y],train_data_d[0][0])
     #upd = [(d,d-learning_rate*d_d)for d,d_d in zip(self.train_data,train_data_d)]
     upd = [(d, d-learning_rate*d_d/T.sqrt(d_m+1e-4))for d,d_d,d_m in zip(self.train_data,train_data_d,train_data_m)]
     upd1 = [(d_m_s, decay*d_m_s+(1-decay)*d_d**2) for d_m_s,d_d in zip(train_data_m_s,train_data_d)]
     upd +=upd1    
     #self.test = theano.function([self.X,self.Y],train_data_d[0])
     self.sgd_train = theano.function([self.X, self.Y, learning_rate, decay],
                                      [],
                                      updates = upd
                                      )
开发者ID:nightinwhite,项目名称:Theano-NN_Starter,代码行数:28,代码来源:Layer.py


示例17: __init__

  def __init__(self, input, filter_shape, corruption_level = 0.1, 
               shared_W = None, shared_b = None, image_shape = None, 
               poolsize = (2,2)):

    theano_rng = RandomStreams()
    
    fan_in = numpy.prod(filter_shape[1:])
    fan_out = filter_shape[0] * numpy.prod(filter_shape[2:])

    center = theano.shared(value = 1, name="center")
    scale = theano.shared(value = 2, name="scale")

    if shared_W != None and shared_b != None :
        self.W = shared_W
        self.b = shared_b
    else:
        initial_W = numpy.asarray( numpy.random.uniform(
              low = -numpy.sqrt(6./(fan_in+fan_out)),
              high = numpy.sqrt(6./(fan_in+fan_out)),
              size = filter_shape), dtype = theano.config.floatX)
        initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.W = theano.shared(value = initial_W, name = "W")
        self.b = theano.shared(value = initial_b, name = "b")
    
 
    initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX)

    self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime")
 
    self.x = input

    self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x

    conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape,
                            image_shape=image_shape, border_mode='valid')
    
    self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x'))
    
    da_filter_shape = [ filter_shape[1], filter_shape[0], 
                        filter_shape[2], filter_shape[3] ]
    initial_W_prime =  numpy.asarray( numpy.random.uniform( \
              low = -numpy.sqrt(6./(fan_in+fan_out)), \
              high = numpy.sqrt(6./(fan_in+fan_out)), \
              size = da_filter_shape), dtype = theano.config.floatX)
    self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime")

    conv2_out = conv.conv2d(self.y, self.W_prime,
                            filter_shape = da_filter_shape,
                            border_mode='full')

    self.z =  (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale

    scaled_x = (self.x + center) / scale

    self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 )

    self.cost = T.mean(self.L)

    self.params = [ self.W, self.b, self.b_prime ] 
开发者ID:sauravbiswasiupr,项目名称:image_transformations,代码行数:59,代码来源:stacked_convolutional_dae.py


示例18: __init__

    def __init__(self,X,mask,shape,is_train=1,p=0.5,state_pre=None):
        prefix="GRU"
        self.in_size,self.hidden_size=shape

        self.W_xr=theano.shared(value=np.asarray((np.random.randn(self.in_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_xr')
        self.W_hr=theano.shared(value=np.asarray((np.random.randn(self.hidden_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_hr')
        self.b_r=theano.shared(value=np.asarray(np.zeros(self.hidden_size),dtype=theano.config.floatX),
                               name=prefix+'_b_r')

        self.W_xz=theano.shared(value=np.asarray((np.random.randn(self.in_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_xz')
        self.W_hz=theano.shared(value=np.asarray((np.random.randn(self.hidden_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_hz')
        self.b_z=theano.shared(value=np.asarray(np.zeros(self.hidden_size),dtype=theano.config.floatX),
                               name=prefix+'_b_z')

        self.W_xh=theano.shared(value=np.asarray((np.random.randn(self.in_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_xh')
        self.W_hh=theano.shared(value=np.asarray((np.random.randn(self.hidden_size,self.hidden_size) * 0.1),dtype=theano.config.floatX),
                                name=prefix+'_W_hh')
        self.b_h=theano.shared(value=np.asarray(np.zeros(self.hidden_size),dtype=theano.config.floatX),
                               name=prefix+'_b_h')

        self.X=X
        self.mask=mask


        batch_size=self.X.shape[1]
        if state_pre==None:
            state_pre=T.zeros((batch_size,self.hidden_size),dtype=theano.config.floatX)

        def _step(x,m,h_tm1):
            r=T.nnet.sigmoid(T.dot(x,self.W_xr) + T.dot(h_tm1,self.W_hr) +self.b_r)
            z=T.nnet.sigmoid(T.dot(x,self.W_xz) + T.dot(h_tm1,self.W_hz) +self.b_z)

            gh=T.tanh(T.dot(x , self.W_xh) + T.dot(r * h_tm1 , self.W_hh) + self.b_h)

            h_t=z * h_tm1 + (T.ones_like(z) - z) * gh

            h_t = h_t * m[:,None]

            return h_t

        h,_=theano.scan(fn=_step,
                        sequences=[self.X,self.mask],
                        outputs_info=state_pre)
        self.h=h
        if p>0:
            trng=RandomStreams(12345)
            drop_mask=trng.binomial(n=1,p=1-p,size=h.shape,dtype=theano.config.floatX)
            self.activation=T.switch(T.eq(is_train,1),h*drop_mask,h*(1-p))
        else:
            self.activation=T.switch(T.eq(is_train,1),h,h)

        self.params=[self.W_xr,self.W_hr,self.b_r,
                     self.W_xz,self.W_hz,self.b_z,
                     self.W_xh,self.W_hh,self.b_h]
开发者ID:jiangnanHugo,项目名称:seq2seq,代码行数:59,代码来源:gru.py


示例19: build_model

def build_model(tparams, options):
    trng = RandomStreams(1234)
    use_noise = theano.shared(numpy.float32(0.))

    # description string: #words x #samples
    if options['use_target_as_input']:
        x = tensor.tensor3('x', dtype='float32')
    else:
        x = tensor.matrix('x', dtype='int64')
    mask = tensor.matrix('mask', dtype='float32')
    # context: #samples x dim
    ctx = tensor.matrix('ctx', dtype='float32')

    n_timesteps = x.shape[0]
    n_samples = x.shape[1]

    # word embedding
    if options['use_target_as_input']:
        emb = x
    else:
        emb = tparams['Wemb'][x.flatten()].reshape([n_timesteps, n_samples, options['dim_word']])
    # decoder
    if options.setdefault('feedforward', False):
        proj_h = tensor.dot(emb, tparams['Wff'])
        proj_h = (proj_h * mask[:,:,None]).sum(axis=0)
        proj_h = proj_h / mask.sum(axis=0)[:,None]
    elif options.setdefault('regress', False):
        proj_h = (emb * mask[:,:,None]).sum(axis=0)
        proj_h = tensor.dot(proj_h, tparams['Wff'])
        proj_h = proj_h / mask.sum(axis=0)[:,None]
    else:
        proj = get_layer('lstm')[1](tparams, emb, options, 
                                    prefix='encoder', 
                                    mask=mask)
        proj_h = proj[0]
        if options['use_mean']:
            proj_h = (proj_h * mask[:,:,None]).sum(axis=0)
            proj_h = proj_h / mask.sum(axis=0)[:,None]
        else:
            proj_h = proj_h[-1]

    if 'n_layers' in options:
        for lidx in xrange(1, options['n_layers']):
            proj_h = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_out_%d'%lidx, activ='tanh')
    out = get_layer('ff')[1](tparams, proj_h, options, prefix='ff_out', activ='linear')

    # cost
    if options['loss_type'] == 'cosine':
        out = out / tensor.sqrt((out ** 2).sum(1))[:,None]
        cost = 1. - (out * ctx).sum(1)
    elif options['loss_type'] == 'ranking':
        out = out / tensor.sqrt((out ** 2).sum(1))[:,None]
        rndidx = trng.permutation(n=ctx.shape[0])
        ctx_rnd = ctx[rndidx]
        cost = tensor.maximum(0., 1 - (out * ctx).sum(1) + (out * ctx_rnd).sum(1))
    else:
        raise Exception('Unknown loss function')

    return trng, use_noise, x, mask, ctx, cost
开发者ID:JHnlp,项目名称:DefGen2,代码行数:59,代码来源:defgen_rev.py


示例20: kmeans

def kmeans(train_set_x):

    if train_set_x is None:
        train_set_x = T.matrix('train_set_x')

    ########################
    # Normalize the inputs #
    ########################

    epsilon_norm = 10
    epsilon_zca = 0.015
    K = 500

    train_set_x = train_set_x - T.mean(train_set_x, axis=0) / T.sqrt(T.var(train_set_x, axis=0) + epsilon_norm)

    #####################
    # Whiten the inputs #
    #####################

    # a simple choice of whitening transform is the ZCA whitening transform
    # epsilon_zca is small constant
    # for contrast-normalizaed data, setting epsilon_zca to 0.01 for 16-by-16 pixel patches,
    #                                                 or to  0.1 for 8-by-8   pixel patches
    # is good starting point
    cov = T.dot(train_set_x, T.transpose(train_set_x)) / train_set_x.shape[1]
    U, S, V = linalg.svd(cov)
    tmp = T.dot(U, T.diag(1/T.sqrt(S + epsilon_zca)))
    tmp = T.dot(tmp, T.transpose(U))
    whitened_x = T.dot(tmp, train_set_x)

    ######################
    # Training the Model #
    ######################

    # Initialization
    dimension_size = whitened_x.shape[0]
    num_samples = whitened_x.shape[1]
    srng = RandomStreams(seed=234)

    D = srng.normal(size=(dimension_size, K))
    D = D / T.sqrt(T.sum(T.sqr(D), axis=0))

    # typically 10 iterations is enough
    num_iteration = 15

    # compute new centroids, D_new
    for i in xrange(num_iteration):

        dx = T.dot(D.T, whitened_x)
        arg_max_dx = T.argmax(dx, axis=0)
        s = dx[arg_max_dx, T.arange(num_samples)]

        S = T.zeros((K, num_samples))
        S = T.set_subtensor(S[arg_max_dx, T.arange(num_samples)], s)
        D = T.dot(whitened_x, T.transpose(S)) + D

        D = D / T.sqrt(T.sum(T.sqr(D), axis=0))

    return D
开发者ID:jsungjei,项目名称:Deep-Learning-for-the-Real-World,代码行数:59,代码来源:problem_30.py



注:本文中的theano.tensor.shared_randomstreams.RandomStreams类示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python downsample.max_pool_2d函数代码示例发布时间:2022-05-27
下一篇:
Python opt.in2out函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap