本文整理汇总了Python中theano.tensor.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了sqrt函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: get_updates_adadelta
def get_updates_adadelta(grads,params,decay=0.95):
decay = constantX(decay)
print 'build updates with adadelta'
for param, grad in zip(params, grads):
# mean_squared_grad := E[g^2]_{t-1}
mean_square_grad = sharedX(numpy.zeros(param.get_value().shape, dtype=floatX))
# mean_square_dx := E[(\Delta x)^2]_{t-1}
mean_square_dx = sharedX(numpy.zeros(param.get_value().shape, dtype=floatX))
if param.name is not None:
mean_square_grad.name = 'mean_square_grad_' + param.name
mean_square_dx.name = 'mean_square_dx_' + param.name
# Accumulate gradient
new_mean_squared_grad = \
decay * mean_square_grad +\
(1. - decay) * T.sqr(grad)
# Compute update
epsilon = constantX(1e-7)
rms_dx_tm1 = T.sqrt(mean_square_dx + epsilon)
rms_grad_t = T.sqrt(new_mean_squared_grad + epsilon)
delta_x_t = - rms_dx_tm1 / rms_grad_t * grad
# Accumulate updates
new_mean_square_dx = \
decay * mean_square_dx + \
(1. - decay) * T.sqr(delta_x_t)
# Apply update
updates[mean_square_grad] = new_mean_squared_grad
updates[mean_square_dx] = new_mean_square_dx
updates[param] = param + delta_x_t
开发者ID:nehz,项目名称:NeuralNet,代码行数:31,代码来源:rnn-draw.py
示例2: adadelta
def adadelta(lr,tparams,grads,x,mask,y,cost):
zipped_grads = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_grad' % k)
for k, p in tparams.items()]
running_up2 = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rup2' % k)
for k, p in tparams.items()]
running_grads2 = [theano.shared(p.get_value() * numpy_floatX(0.),
name='%s_rgrad2' % k)
for k, p in tparams.items()]
zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2))
for rg2, g in zip(running_grads2, grads)]
f_grad_shared = theano.function([x, mask, y], cost, updates=zgup + rg2up,
name='adadelta_f_grad_shared')
updir = [-T.sqrt(ru2 + 1e-6) / T.sqrt(rg2 + 1e-6) * zg
for zg, ru2, rg2 in zip(zipped_grads,
running_up2,
running_grads2)]
ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2))
for ru2, ud in zip(running_up2, updir)]
#梯度更新字典
param_up = [(p, p + ud) for p, ud in zip(tparams.values(), updir)]
f_update = theano.function([lr], [], updates=ru2up + param_up,
on_unused_input='ignore',
name='adadelta_f_update')
return f_grad_shared, f_update
开发者ID:LibCorner,项目名称:Theano_note,代码行数:32,代码来源:optimizer.py
示例3: buildUpdatesSimpleMomentum
def buildUpdatesSimpleMomentum(self, batchTrainer, momentum,
batchLearningRate, error):
deltaParams = T.grad(error, batchTrainer.params)
updates = []
parametersTuples = zip(batchTrainer.params,
deltaParams,
batchTrainer.oldUpdates,
batchTrainer.oldMeanSquare,
batchTrainer.hasNormConstraint)
for param, delta, oldUpdate, oldMeanSquare, hasNormConstraint in parametersTuples:
paramUpdate = momentum * oldUpdate
if self.rmsprop:
meanSquare = 0.9 * oldMeanSquare + 0.1 * delta ** 2
paramUpdate += - batchLearningRate * delta / T.sqrt(meanSquare + 1e-8)
updates.append((oldMeanSquare, meanSquare))
else:
paramUpdate += - batchLearningRate * delta
newParam = param + paramUpdate
if self.normConstraint is not None and hasNormConstraint:
norms = SquaredElementWiseNorm(newParam)
rescaled = norms > self.normConstraint
factors = T.ones(norms.shape, dtype=theanoFloat) / T.sqrt(norms) * np.sqrt(self.normConstraint, dtype='float32') - 1.0
replaceNewParam = (factors * rescaled) * newParam
replaceNewParam += newParam
newParam = replaceNewParam
# paramUpdate = newParam - param
updates.append((param, newParam))
updates.append((oldUpdate, paramUpdate))
return updates
开发者ID:valadhi,项目名称:AttachmentDBN,代码行数:35,代码来源:ann.py
示例4: batchnorm
def batchnorm(X, rescale=None, reshift=None, u=None, s=None, e=1e-8):
"""
batchnorm with support for not using scale and shift parameters
as well as inference values (u and s) and partial batchnorm (via a)
will detect and use convolutional or fully connected version
"""
g = rescale
b = reshift
if X.ndim == 4:
if u is not None and s is not None:
# use normalization params given a priori
b_u = u.dimshuffle('x', 0, 'x', 'x')
b_s = s.dimshuffle('x', 0, 'x', 'x')
else:
# compute normalization params from input
b_u = T.mean(X, axis=[0, 2, 3]).dimshuffle('x', 0, 'x', 'x')
b_s = T.mean(T.sqr(X - b_u), axis=[0, 2, 3]).dimshuffle('x', 0, 'x', 'x')
# batch normalize
X = (X - b_u) / T.sqrt(b_s + e)
if g is not None and b is not None:
# apply rescale and reshift
X = X*T.exp(0.2*g.dimshuffle('x', 0, 'x', 'x')) + b.dimshuffle('x', 0, 'x', 'x')
elif X.ndim == 2:
if u is None and s is None:
# compute normalization params from input
u = T.mean(X, axis=0)
s = T.mean(T.sqr(X - u), axis=0)
# batch normalize
X = (X - u) / T.sqrt(s + e)
if g is not None and b is not None:
# apply rescale and reshift
X = X*T.exp(0.2*g) + b
else:
raise NotImplementedError
return X
开发者ID:Philip-Bachman,项目名称:Sequential-Generation,代码行数:35,代码来源:NetLayers.py
示例5: get_mu_sigma
def get_mu_sigma(self, X_noisy, t):
"""
Generate mu and sigma for one step in the reverse trajectory,
starting from a minibatch of images X_noisy, and at timestep t.
"""
Z = self.mlp.apply(X_noisy)
mu_coeff, beta_coeff = self.temporal_readout(Z, t)
# reverse variance is perturbation around forward variance
beta_forward = self.get_beta_forward(t)
# make impact of beta_coeff scaled appropriately with mu_coeff
beta_coeff_scaled = beta_coeff / np.sqrt(self.trajectory_length).astype(theano.config.floatX)
beta_reverse = T.nnet.sigmoid(beta_coeff_scaled + util.logit(beta_forward))
# # reverse mean is decay towards mu_coeff
# mu = (X_noisy - mu_coeff)*T.sqrt(1. - beta_reverse) + mu_coeff
# reverse mean is a perturbation around the mean under forward
# process
# # DEBUG -- use these lines to test objective is 0 for isotropic Gaussian model
# beta_reverse = beta_forward
# mu_coeff = mu_coeff*0
mu = X_noisy*T.sqrt(1. - beta_forward) + mu_coeff*T.sqrt(beta_forward)
sigma = T.sqrt(beta_reverse)
mu.name = 'mu p'
sigma.name = 'sigma p'
return mu, sigma
开发者ID:Sohl-Dickstein,项目名称:Diffusion-Probabilistic-Models,代码行数:28,代码来源:model.py
示例6: sample_s_given_ghv
def sample_s_given_ghv(self, g_sample, h_sample, v_sample, rng=None, size=None):
"""
Generates sample from p(s | g, h, v)
"""
s_mean = self.s_given_ghv(g_sample, h_sample, v_sample)
rng = self.theano_rng if rng is None else rng
size = size if size else self.batch_size
if self.flags['truncate_s']:
s_sample = truncated.truncated_normal(
size=(size, self.n_s),
avg = s_mean,
std = T.sqrt(1./self.alpha_prec),
lbound = self.truncation_bound['s'],
ubound = self.truncation_bound['s'],
theano_rng = rng,
dtype=floatX)
else:
s_sample = rng.normal(
size=(size, self.n_s),
avg = s_mean,
std = T.sqrt(1./self.alpha_prec),
dtype=floatX)
return s_sample
开发者ID:gdesjardins,项目名称:hossrbm,代码行数:25,代码来源:implicit_hossrbm_v05_2.py
示例7: adadelta
def adadelta(lr, tparams, grads, inp, cost):
zipped_grads = [theano.shared(p.get_value() * numpy.float32(0.),
name='%s_grad' % k)
for k, p in tparams.iteritems()]
running_up2 = [theano.shared(p.get_value() * numpy.float32(0.),
name='%s_rup2' % k)
for k, p in tparams.iteritems()]
running_grads2 = [theano.shared(p.get_value() * numpy.float32(0.),
name='%s_rgrad2' % k)
for k, p in tparams.iteritems()]
zgup = [(zg, g) for zg, g in zip(zipped_grads, grads)]
rg2up = [(rg2, 0.95 * rg2 + 0.05 * (g ** 2))
for rg2, g in zip(running_grads2, grads)]
f_grad_shared = theano.function(inp, cost, updates=zgup+rg2up,
profile=profile)
updir = [-tensor.sqrt(ru2 + 1e-6) / tensor.sqrt(rg2 + 1e-6) * zg
for zg, ru2, rg2 in zip(zipped_grads, running_up2,
running_grads2)]
ru2up = [(ru2, 0.95 * ru2 + 0.05 * (ud ** 2))
for ru2, ud in zip(running_up2, updir)]
param_up = [(p, p + ud) for p, ud in zip(itemlist(tparams), updir)]
f_update = theano.function([lr], [], updates=ru2up+param_up,
on_unused_input='ignore', profile=profile)
return f_grad_shared, f_update
开发者ID:G-Wang,项目名称:dl4mt-material,代码行数:29,代码来源:nmt.py
示例8: ADAMopt
def ADAMopt(self, tVars, loss, lr, momentum=0):
i = T.iscalar('i'); lr = T.fscalar('lr');
grads = T.grad(loss, tVars)
'''ADAM Code from
https://github.com/danfischetti/deep-recurrent-attentive-writer/blob/master/DRAW/adam.py
'''
self.m = [theano.shared(name = 'm', \
value = np.zeros(param.get_value().shape,dtype=theano.config.floatX)) for param in model.params]
self.v = [theano.shared(name = 'v', \
value = np.zeros(param.get_value().shape,dtype=theano.config.floatX)) for param in model.params]
self.t = theano.shared(name = 't',value = np.asarray(1).astype(theano.config.floatX))
updates = [(self.t,self.t+1)]
for param, gparam,m,v in zip(model.params, gparams, self.m, self.v):
b1_t = 1-(1-beta1)*(l**(self.t-1))
m_t = b1_t*gparam + (1-b1_t)*m
updates.append((m,m_t))
v_t = beta2*(gparam**2)+(1-beta2)*v
updates.append((v,v_t))
m_t_bias = m_t/(1-(1-beta1)**self.t)
v_t_bias = v_t/(1-(1-beta2)**self.t)
if param.get_value().ndim == 1:
updates.append((param,param - 5*lr*m_t_bias/(T.sqrt(v_t_bias)+epsilon)))
else:
updates.append((param,param - lr*m_t_bias/(T.sqrt(v_t_bias)+epsilon)))
return theano.function([], loss, updates=updates)
开发者ID:lebek,项目名称:reversible-raytracer,代码行数:29,代码来源:optimize.py
示例9: applyConstraint
def applyConstraint(self, param):
if param.ndim != 4 and param.ndim != 2:
warnings.warn("Norm constraints are normally applied to matrices"
+" or 4-dimensional tensors, but currently got "
+"%d dimensions, please make sure this is the desired"
+" parameter to apply norm constraints" % param.ndim)
needFlip = False
if param.ndim == 4: # a hack for conv layer filters
prevShape = param.shape
# conv layer filter shape is (nChannelOut, nChannelIn, r, c)
param = param.flatten(2)
# now it is (nout, nin), which is different from (nin, nout)
# from fulling connected networks, so need to flip here
needFlip = True
if needFlip:
col_norm = T.sqrt(T.sum(T.sqr(param), axis=1, keepdims=True))
else:
col_norm = T.sqrt(T.sum(T.sqr(param), axis=0, keepdims=True))
param /= (col_norm+1e-7)
param *= self.norm
if needFlip:
param = param.reshape(prevShape)
return param
开发者ID:ybzhou,项目名称:Gemini,代码行数:28,代码来源:constraints.py
示例10: get_updates
def get_updates(self, params, loss):
grads = self.get_gradients(loss, params)
accumulators = [shared_zeros(p.get_value().shape) for p in params]
delta_accumulators = [shared_zeros(p.get_value().shape) for p in params]
self.updates = []
n_step = theano.shared(1.0)
self.updates.append((n_step, n_step + 1))
for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators):
g_noise = self.rng.normal(p.shape, 0, T.sqrt(n_step ** - 0.55), dtype='float32')
g_deviated = g + g_noise
new_a = self.rho * a + (1 - self.rho) * g_deviated ** 2 # update accumulator
self.updates.append((a, new_a))
# use the new accumulator and the *old* delta_accumulator
update = g_deviated * T.sqrt(d_a + self.epsilon) / T.sqrt(new_a +
self.epsilon)
new_p = p - self.lr * update
self.updates.append((p, new_p))
# update delta_accumulator
new_d_a = self.rho * d_a + (1 - self.rho) * update ** 2
self.updates.append((d_a, new_d_a))
return self.updates
开发者ID:chubbymaggie,项目名称:NL2code,代码行数:26,代码来源:optimizers.py
示例11: forward
def forward(self,input_org,train=True,update_batch_stat=True,finetune=False):
print "Layer/BatchNormalization"
ldim,cdim,rdim = self._internal_shape(input_org)
input = input_org.reshape((ldim,cdim,rdim))
if (train):
mean = T.mean(input, axis=(0, 2), keepdims=True )
var = T.mean((input-mean)**2, axis=(0, 2), keepdims=True)
if(update_batch_stat):
finetune_N = theano.clone(self.finetune_N, share_inputs=False)
if(finetune):
finetune_N.default_update = finetune_N+1
ratio = T.cast(1-1.0/(finetune_N+1),theano.config.floatX)
else:
finetune_N.default_update = 0
ratio = self.moving_avg_ratio
m = ldim*rdim
scale = T.cast(m/(m-1.0),theano.config.floatX)
est_mean = theano.clone(self.est_mean, share_inputs=False)
est_var = theano.clone(self.est_var, share_inputs=False)
est_mean.default_update = T.cast(ratio*self.est_mean + (1-ratio)*mean,theano.config.floatX)
est_var.default_update = T.cast(ratio*self.est_var + (1-ratio)*scale*var,theano.config.floatX)
mean += 0 * est_mean
var += 0 * est_var
output = self._pbc(self.gamma) * (input - self._pbc(mean)) \
/ T.sqrt(1e-6+self._pbc(var)) + self._pbc(self.beta)
else:
output = self._pbc(self.gamma) * (input - self._pbc(self.est_mean)) \
/ T.sqrt(1e-6+self._pbc(self.est_var)) + self._pbc(self.beta)
return output.reshape(input_org.shape)
开发者ID:ilovecv,项目名称:vat,代码行数:32,代码来源:batch_normalization.py
示例12: AdadeltaUpdate
def AdadeltaUpdate(params,cost,stepSize=1.0,rho=0.95,epsilon=1e-6,norm_lim=9):
updates=OrderedDict({})
exp_sqr_grads=OrderedDict({})
exp_sqr_update=OrderedDict({})
g_params=[]
for param in params:
empty=np.zeros_like(param.get_value())
exp_sqr_grads[param]=theano.shared(value=as_floatX(empty),name='exp_grad_%s'%param.name)
exp_sqr_update[param]=theano.shared(value=as_floatX(empty),name='exp_grad_%s'%param.name)
gp=T.grad(cost,param)
g_params.append(gp)
for param,gp in zip(params,g_params):
exp_sg=exp_sqr_grads[param]
exp_su=exp_sqr_update[param]
update_exp_sg=rho*exp_sg+(1-rho)*T.sqr(gp)#????
updates[exp_sg]=update_exp_sg
step=-(T.sqrt(exp_su+epsilon)/T.sqrt(update_exp_sg+epsilon))*gp
stepped_param=param+step*stepSize
update_exp_su=rho*exp_su+(1-rho)*T.sqr(step)
updates[exp_su]=update_exp_su
if param.get_value(borrow=True).ndim==2 and param.name!='wordVec':
col_norms=T.sqrt(T.sum(T.sqr(stepped_param),axis=0))
desired_norms=T.clip(col_norms,0,T.sqrt(norm_lim))#???
scale=desired_norms/(1e-7+col_norms)
updates[param]=stepped_param*scale
else:
updates[param]=stepped_param
return updates
开发者ID:wolfhu,项目名称:RCNNSentence,代码行数:31,代码来源:dcnnModel.py
示例13: make_functions
def make_functions(inputs,outputs,params,grads,lr):
shapes = [ p.get_value().shape for p in params ]
acc_grads = [ theano.shared(np.zeros(s,dtype=np.float32)) for s in shapes ]
count = theano.shared(np.float32(0))
acc_update = [ (a,a+g) for a,g in zip(acc_grads,grads) ] + [ (count,count + 1.) ]
# deltas = acc_grads
deltas = [ ag / count for ag in acc_grads ]
grads_norms = [ T.sqrt(T.sum(g**2)) for g in deltas ]
deltas = [ T.switch(T.gt(n,1.),1.*g/n,g) for n,g in zip(grads_norms,deltas) ]
# param_update = [ (p, p - lr * g) for p,g in zip(params,deltas) ]
param_update = updates.adadelta(params,deltas,learning_rate=lr) # ,learning_rate=lr,rho=np.float32(0.95)
clear_update = [
(a,np.zeros(s,dtype=np.float32))
for a,s in zip(acc_grads,shapes)
] + [ (count,0) ]
acc = theano.function(
inputs = inputs,
outputs = [outputs,output_ans[ans_lbl]],
updates = acc_update,
on_unused_input='warn',
# mode=theano.compile.MonitorMode(post_func=detect_nan)
)
update = theano.function(
inputs=[lr],
updates = param_update + clear_update,
outputs = [ T.sqrt(T.sum(T.sqr(w))) for w in deltas ],
on_unused_input='warn',
# mode=theano.compile.MonitorMode(post_func=detect_nan)
)
return acc,update
开发者ID:wavelets,项目名称:neural-qa,代码行数:33,代码来源:train.py
示例14: __init__
def __init__(self, vocab_size, dim, lr=0.5):
W = np.asarray(np.random.rand(vocab_size, dim),
dtype=theano.config.floatX) / float(dim)
W1 = np.asarray((np.random.rand(vocab_size, dim)),
dtype=theano.config.floatX) / float(dim)
self.W = theano.shared(W, name='W', borrow=True)
self.W1 = theano.shared(W1, name='W1', borrow=True)
gW = np.asarray(np.ones((vocab_size, dim)), dtype=theano.config.floatX)
gW1 = np.asarray(
np.ones((vocab_size, dim)), dtype=theano.config.floatX)
self.gW = theano.shared(gW, name='gW', borrow=True)
self.gW1 = theano.shared(gW1, name='gW1', borrow=True)
X = T.vector()
fX = T.vector()
ind_W = T.ivector()
ind_W1 = T.ivector()
w = self.W[ind_W, :]
w1 = self.W1[ind_W1, :]
cost = T.sum(fX * ((T.sum(w * w1, axis=1) - X) ** 2))
grad = T.clip(T.grad(cost, [w, w1]), -5.0, 5.0)
updates1 = [(self.gW, T.inc_subtensor(self.gW[ind_W, :],
grad[0] ** 2))]
updates2 = [(self.gW1, T.inc_subtensor(self.gW1[ind_W1, :],
grad[1] ** 2))]
updates3 = [(self.W, T.inc_subtensor(self.W[ind_W, :],
- (lr / T.sqrt(self.gW[ind_W, :])) *
grad[0]))]
updates4 = [(self.W1, T.inc_subtensor(self.W1[ind_W1, :],
- (lr / T.sqrt(self.gW1[ind_W1, :])) *
grad[1]))]
updates = updates1 + updates2 + updates3 + updates4
self.cost_fn = theano.function(
inputs=[ind_W, ind_W1, X, fX], outputs=cost, updates=updates)
开发者ID:escherba,项目名称:glove-theano,代码行数:33,代码来源:glove.py
示例15: _get_model_updates
def _get_model_updates(self):
alpha = self.params['optimizer/learning_rate']
updates = dict()
for name, param in self.network.params.items():
gradient = self.params[name + '_gradient']
ms_gradient = self.params[name + '_mean_sqr_gradient']
ms_velocity = self.params[name + '_mean_sqr_velocity']
# rms_velocity quantity lags behind rms_gradient by 1 time step,
# due to the recurrence relationship for velocity.
rms_gradient = tensor.sqrt(ms_gradient + self._epsilon)
rms_velocity = tensor.sqrt(ms_velocity + self._epsilon)
velocity = -gradient * rms_velocity / rms_gradient
updates[name] = velocity
self._normalize(updates)
result = []
for name, param in self.network.params.items():
update = updates[name]
ms_velocity = self.params[name + '_mean_sqr_velocity']
ms_velocity_new = self._gamma * ms_velocity + \
(1.0 - self._gamma) * tensor.sqr(update)
param_new = param + alpha * update
result.append((ms_velocity, ms_velocity_new))
result.append((param, param_new))
return result
开发者ID:anirudh9119,项目名称:theanolm,代码行数:26,代码来源:adadeltaoptimizer.py
示例16: updates
def updates(self, cost, params, learning_rate = 0.1, momentum= 0.95, rescale=5.):
grads = T.grad(cost, params)
grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
grad_norm = T.sqrt(grad_norm)
scaling_num = rescale
scaling_den = T.maximum(rescale, grad_norm)
# Magic constants
combination_coeff = 0.9
minimum_grad = 1e-4
updates = []
for n, (param, grad) in enumerate(zip(params, grads)):
grad = T.switch(not_finite, 0.1 * param,
grad * (scaling_num / scaling_den))
old_square = self.running_square_[n]
new_square = combination_coeff * old_square + (
1. - combination_coeff) * T.sqr(grad)
old_avg = self.running_avg_[n]
new_avg = combination_coeff * old_avg + (
1. - combination_coeff) * grad
rms_grad = T.sqrt(new_square - new_avg ** 2)
rms_grad = T.maximum(rms_grad, minimum_grad)
memory = self.memory_[n]
update = momentum * memory - learning_rate * grad / rms_grad
update2 = momentum * momentum * memory - (
1 + momentum) * learning_rate * grad / rms_grad
updates.append((old_square, new_square))
updates.append((old_avg, new_avg))
updates.append((memory, update))
updates.append((param, param + update2))
return updates
开发者ID:cauchyturing,项目名称:DeepMONA,代码行数:31,代码来源:update_func.py
示例17: get_updates
def get_updates(self, cost, params):
grads = self.get_gradients(cost, params)
updates = []
if self.i is None:
self.i = sharedasarray(0)
updates.append((self.i, self.i+1))
t = self.i+1
lr_t = self.lr * T.sqrt(1-self.beta2**t) / (1-self.beta1**t)
eps_hat = self.eps * T.sqrt(1-self.beta2**t)
if self.ms is None:
self.ms = [sharedzeros(p.get_value().shape) for p in params]
if self.vs is None:
self.vs = [sharedzeros(p.get_value().shape) for p in params]
for p, g, m, v in zip(params, grads, self.ms, self.vs):
m_t = (self.beta1*m) + (1.-self.beta1)*g
v_t = (self.beta2*v) + (1.-self.beta2)*(g**2)
p_t = p - lr_t*m_t/(T.sqrt(v_t)+eps_hat)
updates.append((m, m_t))
updates.append((v, v_t))
updates.append((p, p_t))
return updates
开发者ID:neonnnnn,项目名称:ml,代码行数:25,代码来源:optimizers.py
示例18: sample_v_given_hs
def sample_v_given_hs(self, h_sample, s_sample, rng=None, size=None):
"""
Generates sample from p(v | h, s)
"""
v_mean = self.v_given_hs(h_sample, s_sample)
rng = self.theano_rng if rng is None else rng
size = size if size else self.batch_size
if self.flags['truncate_v']:
v_sample = truncated.truncated_normal(
size=(size, self.n_v),
avg = v_mean,
std = T.sqrt(1./self.lambd_prec),
lbound = -self.truncation_bound['v'],
ubound = self.truncation_bound['v'],
theano_rng = rng,
dtype=floatX)
else:
v_sample = rng.normal(
size=(size, self.n_v),
avg = v_mean,
std = T.sqrt(1./self.lambd_prec),
dtype=floatX)
return v_sample
开发者ID:gdesjardins,项目名称:hossrbm,代码行数:25,代码来源:implicit_hossrbm_v05_2.py
示例19: adadelta
def adadelta(parameters, gradients, rho=0.95, eps=1e-6):
"""
adadelta : training algorithm
"""
# create variables to store intermediate updates
gradients_sq = [theano.shared(numpy.zeros(p.get_value().shape,
dtype=theano.config.floatX))
for p in parameters]
deltas_sq = [theano.shared(numpy.zeros(p.get_value().shape,
dtype=theano.config.floatX))
for p in parameters]
# calculates the new "average" delta for the next iteration
gradients_sq_new = [rho*g_sq + (1-rho)*(g**2)
for g_sq,g in izip(gradients_sq, gradients)]
# calculates the step in direction. The square root is an approximation to getting the RMS for the average value
deltas = [(T.sqrt(d_sq+eps)/T.sqrt(g_sq+eps))*grad
for d_sq,g_sq,grad in izip(deltas_sq,gradients_sq_new,gradients)]
# calculates the new "average" deltas for the next step.
deltas_sq_new = [rho*d_sq + (1-rho)*(d**2) for d_sq,d in izip(deltas_sq,deltas)]
# Prepare it as a list f
gradient_sq_updates = zip(gradients_sq,gradients_sq_new)
deltas_sq_updates = zip(deltas_sq,deltas_sq_new)
parameters_updates = [(p,T.clip(p - d, -15,15)) for p,d in izip(parameters,deltas)]
return gradient_sq_updates + deltas_sq_updates + parameters_updates
开发者ID:gumaojie,项目名称:cws_theano,代码行数:29,代码来源:algorithm.py
示例20: dev_loss
def dev_loss(self, dev_types, dev_lams, ss_ratio, y):
su_mask = ss_ratio * T.neq(y, 0).reshape((y.shape[0], 1))
un_mask = T.eq(y, 0).reshape((y.shape[0], 1))
ss_mask = su_mask + un_mask
var_fun = lambda x1, x2: T.sum(((x1 - x2) * ss_mask)**2.0) / T.sum(ss_mask)
tanh_fun = lambda x1, x2: var_fun(T.tanh(x1), T.tanh(x2))
norm_fun = lambda x1, x2: var_fun( \
(x1 / T.sqrt(T.sum(x1**2.0,axis=1,keepdims=1) + 1e-6)), \
(x2 / T.sqrt(T.sum(x2**2.0,axis=1,keepdims=1) + 1e-6)))
sigm_fun = lambda x1, x2: var_fun(T.nnet.sigmoid(x1), T.nnet.sigmoid(x2))
cent_fun = lambda xt, xo: T.sum(T.nnet.binary_crossentropy( \
T.nnet.sigmoid(xo), T.nnet.sigmoid(xt))) / xt.shape[0]
L = 0.0
for i in xrange(self.layer_count):
if (i < (self.layer_count - 1)):
x1 = self.layers[i].output
x2 = self.drop_nets[0][i].output
else:
x1 = self.layers[i].linear_output
x2 = self.drop_nets[0][i].linear_output
if (dev_types[i] == 1):
L = L + (dev_lams[i] * norm_fun(x1, x2))
elif (dev_types[i] == 2):
L = L + (dev_lams[i] * tanh_fun(x1, x2))
elif (dev_types[i] == 3):
L = L + (dev_lams[i] * sigm_fun(x1, x2))
elif (dev_types[i] == 4):
L = L + (dev_lams[i] * cent_fun(x1, x2))
else:
L = L + (dev_lams[i] * var_fun(x1, x2))
return L
开发者ID:jianminsun,项目名称:NN-Dropout,代码行数:31,代码来源:LayerNetSS.py
注:本文中的theano.tensor.sqrt函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论