本文整理汇总了Python中theano.tensor.matrices函数的典型用法代码示例。如果您正苦于以下问题:Python matrices函数的具体用法?Python matrices怎么用?Python matrices使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了matrices函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self,
gen_params, # dictionary of generative model parameters
GEN_MODEL, # class that inherits from GenerativeModel
rec_params, # dictionary of approximate posterior ("recognition model") parameters
REC_MODEL, # class that inherits from RecognitionModel
xDim=2, # dimensionality of latent state
yDim=2 # dimensionality of observations
):
# instantiate rng's
self.srng = RandomStreams(seed=234)
self.nrng = np.random.RandomState(124)
#---------------------------------------------------------
## actual model parameters
self.X, self.Y = T.matrices('X','Y') # symbolic variables for the data
self.xDim = xDim
self.yDim = yDim
# instantiate our prior & recognition models
self.mrec = REC_MODEL(rec_params, self.Y, self.xDim, self.yDim, self.srng, self.nrng)
self.mprior = GEN_MODEL(gen_params, self.xDim, self.yDim, srng=self.srng, nrng = self.nrng)
self.isTrainingRecognitionModel = True;
self.isTrainingGenerativeModel = True;
开发者ID:dhern,项目名称:vilds,代码行数:26,代码来源:SGVB.py
示例2: _gpu_matrix_dot
def _gpu_matrix_dot(matrix_a, matrix_b, matrix_c=None):
"""
Performs matrix multiplication.
Attempts to use the GPU if it's available. If the matrix multiplication
is too big to fit on the GPU, this falls back to the CPU after throwing
a warning.
Parameters
----------
matrix_a : WRITEME
matrix_b : WRITEME
matrix_c : WRITEME
"""
if not hasattr(ZCA._gpu_matrix_dot, 'theano_func'):
ma, mb = T.matrices('A', 'B')
mc = T.dot(ma, mb)
ZCA._gpu_matrix_dot.theano_func = \
theano.function([ma, mb], mc, allow_input_downcast=True)
theano_func = ZCA._gpu_matrix_dot.theano_func
try:
if matrix_c is None:
return theano_func(matrix_a, matrix_b)
else:
matrix_c[...] = theano_func(matrix_a, matrix_b)
return matrix_c
except MemoryError:
warnings.warn('Matrix multiplication too big to fit on GPU. '
'Re-doing with CPU. Consider using '
'THEANO_FLAGS="device=cpu" for your next '
'preprocessor run')
return np.dot(matrix_a, matrix_b, matrix_c)
开发者ID:ColaWithIce,项目名称:Mozi,代码行数:32,代码来源:preprocessor.py
示例3: sample_parallel
def sample_parallel():
print "並列"
x, y = T.matrices("a", "b")
diff = x - y
abs_diff = abs(diff)
diff_sq = diff**2
# 2つの行列を入力, 3つの行列のベクトルを出力
f = theano.function([x, y], [diff, abs_diff, diff_sq])
print f([[0,1],[2,3]], [[10,11],[12,13]])
print
开发者ID:norikinishida,项目名称:snippets,代码行数:10,代码来源:sample.py
示例4: test_grad
def test_grad(self, cls_ofg):
x, y, z = T.matrices('xyz')
e = x + y * z
op = cls_ofg([x, y, z], [e])
f = op(x, y, z)
f = f - T.grad(T.sum(f), y)
fn = function([x, y, z], f)
xv = np.ones((2, 2), dtype=config.floatX)
yv = np.ones((2, 2), dtype=config.floatX) * 3
zv = np.ones((2, 2), dtype=config.floatX) * 5
assert np.all(11.0 == fn(xv, yv, zv))
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:11,代码来源:test_builders.py
示例5: test_grad
def test_grad(self):
x, y, z = T.matrices('xyz')
e = x + y * z
op = OpFromGraph([x, y, z], [e], mode='FAST_RUN', grad_depth=2)
f = op(x, y, z)
f = f - T.grad(T.sum(f), y)
fn = function([x, y, z], f)
xv = numpy.ones((2, 2), dtype=config.floatX)
yv = numpy.ones((2, 2), dtype=config.floatX)*3
zv = numpy.ones((2, 2), dtype=config.floatX)*5
assert numpy.all(11.0 == fn(xv, yv, zv))
开发者ID:LixinZhang,项目名称:Theano,代码行数:11,代码来源:test_builders.py
示例6: test_connection_pattern
def test_connection_pattern(self, cls_ofg):
# Basic case
x, y, z = T.matrices('xyz')
out1 = x * y
out2 = y * z
op1 = cls_ofg([x, y, z], [out1, out2])
results = op1.connection_pattern(None)
expect_result = [[True, False],
[True, True],
[False, True]]
assert results == expect_result
# Graph with ops that don't have a 'full' connection pattern
# and with ops that have multiple outputs
m, n, p, q = T.matrices('mnpq')
o1, o2 = op1(m, n, p)
out1, out2 = op1(o1, q, o2)
op2 = cls_ofg([m, n, p, q], [out1, out2])
results = op2.connection_pattern(None)
expect_result = [[True, False],
[True, True],
[False, True],
[True, True]]
assert results == expect_result
# Inner graph where some computation doesn't rely on explicit inputs
srng = RandomStreams(seed=234)
rv_u = srng.uniform((2, 2))
x, y = T.matrices('xy')
out1 = x + rv_u
out2 = y + 3
out3 = 3 + rv_u
op3 = cls_ofg([x, y], [out1, out2, out3])
results = op3.connection_pattern(None)
expect_result = [[True, False, False],
[False, True, False],
[True, False, True]]
assert results == expect_result
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:41,代码来源:test_builders.py
示例7: test_grad_grad
def test_grad_grad(self):
x, y, z = T.matrices('xyz')
e = x + y * z
op = OpFromGraph([x, y, z], [e])
f = op(x, y, z)
f = f - T.grad(T.sum(f), y)
f = f - T.grad(T.sum(f), y)
fn = function([x, y, z], f)
xv = numpy.ones((2, 2), dtype=config.floatX)
yv = numpy.ones((2, 2), dtype=config.floatX) * 3
zv = numpy.ones((2, 2), dtype=config.floatX) * 5
assert numpy.allclose(6.0, fn(xv, yv, zv))
开发者ID:Azrael1,项目名称:Theano,代码行数:12,代码来源:test_builders.py
示例8: _build
def _build(self):
if self._debug:
theano.config.compute_test_value = 'warn'
X,W = T.matrices('X','W')
if self._debug:
X.tag.test_value = np.random.rand(3,1)
W.tag.test_value = np.random.rand(5,3)
Z = T.dot(W,X)
A = self._activation(Z)
self._fpropagate = function([X, W],A)
self._layers = []
self._generate_initial_weights()
开发者ID:throoze,项目名称:usbrain,代码行数:12,代码来源:usbrain.py
示例9: __init__
def __init__(self, shape):
self.in_size, self.out_size = shape
self.W = init_weights(shape)
self.b = init_bias(self.out_size)
self.gW = init_gradws(shape)
self.gb = init_bias(self.out_size)
D, X = T.matrices("D", "X")
def _active(X):
return T.nnet.sigmoid(T.dot(X, self.W) + self.b)
self.active = theano.function(inputs = [X], outputs = _active(X))
def _derive(D, X):
return D * ((1 - X) * X)
self.derive = theano.function(
inputs = [D, X],
outputs = _derive(D, X)
)
def _propagate(D):
return T.dot(D, self.W.T)
self.propagate = theano.function(inputs = [D], outputs = _propagate(D))
x, dy = T.rows("x","dy")
updates_grad = [(self.gW, self.gW + T.dot(x.T, dy)),
(self.gb, self.gb + dy)]
self.grad = theano.function(
inputs = [x, dy],
updates = updates_grad
)
updates_clear = [
(self.gW, self.gW * 0),
(self.gb, self.gb * 0)]
self.clear_grad = theano.function(
inputs = [],
updates = updates_clear
)
lr = T.scalar()
t = T.scalar()
updates_w = [
(self.W, self.W - self.gW * lr / t),
(self.b, self.b - self.gb * lr / t)]
self.update = theano.function(
inputs = [lr, t],
updates = updates_w
)
开发者ID:iamsile,项目名称:rnn-theano-cpu-run,代码行数:50,代码来源:logistic_layer.py
示例10: test_straightforward
def test_straightforward(self):
x, y, z = T.matrices('xyz')
e = x + y * z
op = OpFromGraph([x, y, z], [e], mode='FAST_RUN')
f = op(x, y, z) - op(y, z, x) # (1+3*5=array of 16) - (3+1*5=array of 8)
fn = function([x, y, z], f)
xv = numpy.ones((2, 2), dtype=config.floatX)
yv = numpy.ones((2, 2), dtype=config.floatX)*3
zv = numpy.ones((2, 2), dtype=config.floatX)*5
#print function, function.__module__
#print fn.maker.fgraph.toposort()
fn(xv, yv, zv)
assert numpy.all(8.0 == fn(xv, yv, zv))
assert numpy.all(8.0 == fn(xv, yv, zv))
开发者ID:LixinZhang,项目名称:Theano,代码行数:14,代码来源:test_builders.py
示例11: test_size_changes
def test_size_changes(self):
x, y, z = T.matrices('xyz')
e = T.dot(x, y)
op = OpFromGraph([x, y], [e], mode='FAST_RUN')
f = op(x, op(y, z))
fn = function([x, y, z], f)
xv = numpy.ones((2, 3), dtype=config.floatX)
yv = numpy.ones((3, 4), dtype=config.floatX)*3
zv = numpy.ones((4, 5), dtype=config.floatX)*5
res = fn(xv, yv, zv)
assert res.shape == (2, 5)
assert numpy.all(180.0 == res)
res = fn(xv, yv, zv)
assert res.shape == (2, 5)
assert numpy.all(180.0 == res)
开发者ID:LixinZhang,项目名称:Theano,代码行数:15,代码来源:test_builders.py
示例12: test_size_changes
def test_size_changes(self, cls_ofg):
x, y, z = T.matrices('xyz')
e = T.dot(x, y)
op = cls_ofg([x, y], [e])
f = op(x, op(y, z))
fn = function([x, y, z], f)
xv = np.ones((2, 3), dtype=config.floatX)
yv = np.ones((3, 4), dtype=config.floatX) * 3
zv = np.ones((4, 5), dtype=config.floatX) * 5
res = fn(xv, yv, zv)
assert res.shape == (2, 5)
assert np.all(180.0 == res)
res = fn(xv, yv, zv)
assert res.shape == (2, 5)
assert np.all(180.0 == res)
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:15,代码来源:test_builders.py
示例13: test_straightforward
def test_straightforward(self, cls_ofg):
x, y, z = T.matrices('xyz')
e = x + y * z
op = cls_ofg([x, y, z], [e])
# (1+3*5=array of 16) - (3+1*5=array of 8)
f = op(x, y, z) - op(y, z, x)
fn = function([x, y, z], f)
xv = np.ones((2, 2), dtype=config.floatX)
yv = np.ones((2, 2), dtype=config.floatX) * 3
zv = np.ones((2, 2), dtype=config.floatX) * 5
# print function, function.__module__
# print fn.maker.fgraph.toposort()
fn(xv, yv, zv)
assert np.all(8.0 == fn(xv, yv, zv))
assert np.all(8.0 == fn(xv, yv, zv))
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:16,代码来源:test_builders.py
示例14: test_shared
def test_shared(self, cls_ofg):
x, y, z = T.matrices('xyz')
s = shared(np.random.rand(2, 2).astype(config.floatX))
e = x + y * z + s
op = cls_ofg([x, y, z], [e])
# (1+3*5=array of 16) - (3+1*5=array of 8)
f = op(x, y, z) - op(y, z, x)
fn = function([x, y, z], f)
xv = np.ones((2, 2), dtype=config.floatX)
yv = np.ones((2, 2), dtype=config.floatX) * 3
zv = np.ones((2, 2), dtype=config.floatX) * 5
# print function, function.__module__
# print fn.maker.fgraph.toposort()
assert np.allclose(8.0, fn(xv, yv, zv))
assert np.allclose(8.0, fn(xv, yv, zv))
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:16,代码来源:test_builders.py
示例15: __init__
def __init__(self, shape, X):
prefix = "Softmax_"
self.in_size, self.out_size = shape
self.W = init_weights(shape, prefix + "W")
self.b = init_bias(self.out_size, prefix + "b")
self.gW = init_gradws(shape, prefix + "gW")
self.gb = init_bias(self.out_size, prefix + "gb")
D = T.matrices("D")
self.X = X
def _active(X):
return T.nnet.softmax(T.dot(X, self.W) + self.b)
self.active = theano.function(inputs = [self.X], outputs = _active(self.X))
def _propagate(D):
return T.dot(D, self.W.T)
self.propagate = theano.function(inputs = [D], outputs = _propagate(D))
x, dy = T.rows("x","dy")
updates_grad = [(self.gW, self.gW + T.dot(x.T, dy)),
(self.gb, self.gb + dy)]
self.grad = theano.function(
inputs = [x, dy],
updates = updates_grad
)
updates_clear = [
(self.gW, self.gW * 0),
(self.gb, self.gb * 0)]
self.clear_grad = theano.function(
inputs = [],
updates = updates_clear
)
lr = T.scalar()
t = T.scalar()
updates_w = [
(self.W, self.W - self.gW * lr / t),
(self.b, self.b - self.gb * lr / t)]
self.update = theano.function(
inputs = [lr, t],
updates = updates_w
)
self.params = [self.W, self.b]
开发者ID:iamsile,项目名称:rnn-theano-cpu-run,代码行数:46,代码来源:softmax_layer.py
示例16: test_shared_grad
def test_shared_grad(self, cls_ofg):
x, y, z = T.matrices('xyz')
s = shared(np.random.rand(2, 2).astype(config.floatX))
e = x + y * z + s
op = cls_ofg([x, y, z], [e])
f = op(x, y, z)
f = f - T.grad(T.sum(f), y)
fn = function([x, y, z], f)
xv = np.ones((2, 2), dtype=config.floatX)
yv = np.ones((2, 2), dtype=config.floatX) * 3
zv = np.ones((2, 2), dtype=config.floatX) * 5
assert np.allclose(11.0 + s.get_value(), fn(xv, yv, zv))
# grad again the shared variable
f = op(x, y, z)
f = f - T.grad(T.sum(f), s)
fn = function([x, y, z], f)
assert np.allclose(15.0 + s.get_value(),
fn(xv, yv, zv))
开发者ID:Faruk-Ahmed,项目名称:Theano,代码行数:19,代码来源:test_builders.py
示例17: test_shared_grad
def test_shared_grad(self):
x, y, z = T.matrices('xyz')
s = shared(numpy.random.rand(2, 2).astype(config.floatX))
e = x + y * z + s
op = OpFromGraph([x, y, z], [e], mode='FAST_RUN')
f = op(x, y, z)
f = f - T.grad(T.sum(f), y)
fn = function([x, y, z], f)
xv = numpy.ones((2, 2), dtype=config.floatX)
yv = numpy.ones((2, 2), dtype=config.floatX) * 3
zv = numpy.ones((2, 2), dtype=config.floatX) * 5
assert numpy.allclose(11.0 + s.get_value(), fn(xv, yv, zv))
# grad again the shared variable
f = op(x, y, z)
f = f - T.grad(T.sum(f), s)
fn = function([x, y, z], f)
assert numpy.allclose(15.0 + s.get_value(),
fn(xv, yv, zv))
开发者ID:ragavvenkatesan,项目名称:Theano,代码行数:19,代码来源:test_builders.py
示例18: test_4_conditionals
def test_4_conditionals():
a, b = T.scalars('a', 'b')
x, y = T.matrices('x', 'y')
f_switch = theano.function([a, b, x, y], T.switch(T.lt(a, b), T.mean(x), T.mean(y)))
f_lazy_ifelse = theano.function([a, b, x, y], ifelse(T.lt(a, b), T.mean(x), T.mean(y)))
x_val = np.ones((100, 100), dtype=theano.config.floatX)*1
y_val = np.ones((100, 100), dtype=theano.config.floatX)*2
# vectorized switch is going to evaluate both options
np.testing.assert_almost_equal(
f_switch(1, 2, x_val, y_val),
1
)
# lazy evaluation is going to evaluate only single option
np.testing.assert_almost_equal(
f_lazy_ifelse(2, 1, x_val, y_val),
2
)
开发者ID:consciousnesss,项目名称:learn_theano,代码行数:21,代码来源:test_4_conditionals.py
示例19: compile
def compile(self,X,n_negative_samples=None):
if n_negative_samples is None:
n_negative_samples = 1000
pos_samples = X.loc[:, self.column_ranges.keys()].values.astype(floatX)
pos_data, neg_data = T.matrices('SigData', 'BckData')
pos_w, neg_w, parameters = T.vectors('SigW', 'BckW', 'parameters')
neg_samples, neg_weight = self.generate_negative_samples(n_negative_samples=n_negative_samples,
strategy=self.sampling_strategy)
givens = {pos_data: pos_samples, neg_data: neg_samples, neg_w: neg_weight}
pdf = self.prepare_pdf()
pdfs, summands = pdf(pos_data, neg_data, neg_weights=neg_w, weights=parameters)
result = - T.mean(pos_w * T.log(pdfs))
self.Tfunction = theano.function([parameters,pos_w], result, givens=givens)
self.Tderivative = theano.function([parameters,pos_w], T.grad(result, parameters), givens=givens)
self.X=X
开发者ID:justheuristic,项目名称:throw_events_upon_storage,代码行数:21,代码来源:distfit.py
示例20: SGD
def SGD(eta, minibatch_size, n_minibatch, n_epochs):
# Testing and Validation data are the outputs of the last inputs.
print 'Calling SGD() ..'
index = T.iscalar('index')
x, y = T.matrices('x', 'y')
tree = TreeLSTM(x, n_in)
updates = [(param, param - eta * gparam) for param, gparam in zip(tree.params, T.grad(tree.loss(y), tree.params))]
train_fn = theano.function([index], tree.loss(y), updates=updates,
givens={x: train_x[:, minibatch_size * n_in * index: (minibatch_size + 1) * n_in * index],
y: train_y[:, minibatch_size * index: (minibatch_size + 1) * index]}
)
# Compilation over
#################
## TRAIN MODEL ##
#################
for epoch in n_epochs:
for idx in range(n_minibatch):
train_fn(idx)
开发者ID:Azrael1,项目名称:Seq-Gen,代码行数:21,代码来源:treelstmupdated.py
注:本文中的theano.tensor.matrices函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。 |
请发表评论