• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.join函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.join函数的典型用法代码示例。如果您正苦于以下问题:Python join函数的具体用法?Python join怎么用?Python join使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了join函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: max_pool_switch_2d

def max_pool_switch_2d(input, ds, ignore_border=None, st=None, padding=(0, 0),
            index_type='flattened', index_scope='local'):

    if input.ndim < 2:
        raise NotImplementedError('max_pool_switched_2d requires a dimension >= 2')
    if ignore_border is None:
        ignore_border = False
    if input.ndim == 4:
        op = MaxPoolSwitch(ds, ignore_border, st=st, padding=padding,
                  index_type=index_type, index_scope=index_scope)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = MaxPoolSwitch(ds, ignore_border, st=st, padding=padding,
              index_type=index_type, index_scope=index_scope)
    output = op(input_4D)

    # restore to original shape
    outshp = T.join(0, input.shape[:-2], output.shape[-2:])
    return T.reshape(output, outshp, ndim=input.ndim)
开发者ID:bokorn,项目名称:Keras-and-Theano-layers-for-Switched-Pooling,代码行数:34,代码来源:theano_switched_pooling.py


示例2: test_gpujoin_gpualloc

def test_gpujoin_gpualloc():
    a = T.fmatrix('a')
    a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32')
    b = T.fmatrix('b')
    b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32')

    f = theano.function([a, b], T.join(0, T.zeros_like(a),T.ones_like(b)) + 4,
                        mode=mode_without_gpu)
    f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)),
                            mode=mode_with_gpu)
    f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a),
                                           T.ones_like(b)) + 4,
                             mode=mode_with_gpu)

    assert sum([node.op == T.alloc for node in f.maker.env.toposort()]) == 2
    assert sum([node.op == T.join for node in f.maker.env.toposort()]) == 1
    assert sum([node.op == B.gpu_alloc
                for node in f_gpu.maker.env.toposort()]) == 2
    assert sum([node.op == B.gpu_join
                for node in f_gpu.maker.env.toposort()]) == 1
    assert sum([node.op == B.gpu_alloc
                for node in f_gpu2.maker.env.toposort()]) == 2
    assert sum([node.op == B.gpu_join
                for node in f_gpu2.maker.env.toposort()]) == 1
    assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
开发者ID:gexarcha,项目名称:Theano,代码行数:25,代码来源:test_basic_ops.py


示例3: max_pool_2d

def max_pool_2d(input, ds, ignore_border=False, st=None, padding=(0, 0),
                mode='max'):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last
        dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    :type ignore_border: bool
    :param ignore_border: When True, (5,5) input with ds=(2,2)
        will generate a (2,2) output. (3,3) otherwise.
    :type st: tuple of lenght 2
    :param st: stride size, which is the number of shifts
        over rows/cols to get the the next pool region.
        if st is None, it is considered equal to ds
        (no overlap on pooling regions)
    :param padding: (pad_h, pad_w), pad zeros to extend beyond four borders
            of the images, pad_h is the size of the top and bottom margins,
            and pad_w is the size of the left and right margins.
    :type padding: tuple of two ints
    :param mode: 'max', 'average_inc_pad' or 'average_exc_pad'.
        Operation executed on each window.  `max` always excludes the padding
        in the computation. `average` gives you the choice to include or
        exclude it.
    :type mode: string
    """
    if input.ndim < 2:
        raise NotImplementedError('max_pool_2d requires a dimension >= 2')
    if input.ndim == 4:
        op = DownsampleFactorMax(ds, ignore_border, st=st, padding=padding,
                                 mode=mode)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size,
                                        tensor.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border, st=st, padding=padding,
                             mode=mode)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
开发者ID:jlombacher,项目名称:Theano,代码行数:60,代码来源:downsample.py


示例4: maxpool_3D

def maxpool_3D(input, ds, ignore_border=False):
   
    #input.dimshuffle (0, 2, 1, 3, 4)   # convert to make video in back. 
    # no need to reshuffle. 
    if input.ndim < 3:
        raise NotImplementedError('max_pool_3d requires a dimension >= 3')

    # extract nr dimensions
    vid_dim = input.ndim
    # max pool in two different steps, so we can use the 2d implementation of 
    # downsamplefactormax. First maxpool frames as usual. 
    # Then maxpool the time dimension. Shift the time dimension to the third 
    # position, so rows and cols are in the back


    # extract dimensions
    frame_shape = input.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        frame_shape), 'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of videos in rows and cols
    op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)          # so second and third dimensions of ds are for height and width
    output = op(input_4D)
    # restore to original shape                                     
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    # now maxpool time
    # output (time, rows, cols), reshape so that time is in the back
    shufl = (list(range(vid_dim-3)) + [vid_dim-2]+[vid_dim-1]+[vid_dim-3])
    input_time = out.dimshuffle(shufl)
    # reset dimensions
    vid_shape = input_time.shape[-2:]
    
    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size,1)
    
    # store as 4D tensor with shape: (batch_size,1,width,time)
    new_shape = T.cast(T.join(0, batch_size,
                                        T.as_tensor([1,]), 
                                        vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    # downsample mini-batch of videos in time
    op = DownsampleFactorMax((1,ds[0]), ignore_border)            # Here the time dimension is downsampled. 
    outtime = op(input_4D_time)
    # output 
    # restore to original shape (xxx, rows, cols, time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
    #rval = T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
开发者ID:kli-nlpr,项目名称:Convolutional-Neural-Networks,代码行数:60,代码来源:core.py


示例5: dynamic_kmaxPooling

    def dynamic_kmaxPooling(self, curConv_out, k):
        neighborsForPooling = TSN.images2neibs(ten4=curConv_out, neib_shape=(1,curConv_out.shape[3]), mode='ignore_borders')
        self.neighbors = neighborsForPooling

        neighborsArgSorted = T.argsort(neighborsForPooling, axis=1)
        kNeighborsArg = neighborsArgSorted[:,-k:]
        #self.bestK = kNeighborsArg
        kNeighborsArgSorted = T.sort(kNeighborsArg, axis=1)

        ii = T.repeat(T.arange(neighborsForPooling.shape[0]), k)
        jj = kNeighborsArgSorted.flatten()
        pooledkmaxTmp = neighborsForPooling[ii, jj]
        new_shape = T.cast(T.join(0, 
                           T.as_tensor([neighborsForPooling.shape[0]]),
                           T.as_tensor([k])),
                           'int64')
        pooledkmax_matrix = T.reshape(pooledkmaxTmp, new_shape, ndim=2)

        rightWidth=self.unifiedWidth-k            
        right_padding = T.zeros((neighborsForPooling.shape[0], rightWidth), dtype=theano.config.floatX)
        matrix_padded = T.concatenate([pooledkmax_matrix, right_padding], axis=1)      
        #recover tensor form
        new_shape = T.cast(T.join(0, curConv_out.shape[:-2],
                           T.as_tensor([curConv_out.shape[2]]),
                           T.as_tensor([self.unifiedWidth])),
                           'int64')

        curPooled_out = T.reshape(matrix_padded, new_shape, ndim=4)
                
        return curPooled_out
开发者ID:rgtjf,项目名称:DeepLearning,代码行数:30,代码来源:HKDefined.py


示例6: test_opt_gpujoin_onlyajoin

def test_opt_gpujoin_onlyajoin():
    # from a bug in normal sampling
    _a = numpy.asarray([[1, 2], [3, 4]], dtype='float32')
    _b = numpy.asarray([[5, 6, 7], [8, 9, 10]], dtype='float32')
    a = cuda.shared_constructor(_a)
    b = cuda.shared_constructor(_b)

    c = tensor.join(1, a, b)

    f = theano.function([], c, mode=mode_with_gpu)

    f()

    graph_nodes = f.maker.fgraph.toposort()

    assert isinstance(graph_nodes[-1].op, cuda.HostFromGpu)
    assert isinstance(graph_nodes[-2].op, cuda.GpuJoin)

    assert numpy.all(f() == numpy.concatenate([_a, _b], axis=1))

    # test mixed dtype
    _b = numpy.asarray([[5, 6, 7], [8, 9, 10]], dtype='float64')
    b = theano.tensor.constant(_b)

    c = tensor.join(1, a, b)

    f = theano.function([], c, mode=mode_with_gpu)

    f()

    graph_nodes = f.maker.fgraph.toposort()
    assert isinstance(graph_nodes[-1].op, theano.tensor.Join)

    assert numpy.all(f() == numpy.concatenate([_a, _b], axis=1))
开发者ID:Abioy,项目名称:Theano,代码行数:34,代码来源:test_opt.py


示例7: __init__

    def __init__(self, model, shrinkable=False, nb_neurons_to_add=1):
        super(GrowiRBM, self).__init__()
        self.model = model
        self.shrinkable = shrinkable
        self.nb_neurons_to_add = nb_neurons_to_add
        self.maxZ = theano.shared(np.array(0, dtype="int64"))
        self.grad_W_new_neurons = theano.shared(np.zeros((nb_neurons_to_add, model.input_size), dtype=theano.config.floatX))

        zmask_start = model.sample_zmask_given_v(model.CD.chain_start)
        zmask_end = model.sample_zmask_given_v(model.CD.chain_end)
        z_start = T.sum(zmask_start, axis=1)
        z_end = T.sum(zmask_end, axis=1)
        max_Zs = T.maximum(z_start, z_end)
        maxZ = max_Zs.max()

        W_bak = model.W
        b_bak = model.b
        model.W = T.join(0, model.W, T.zeros((nb_neurons_to_add, model.input_size), dtype=theano.config.floatX))
        model.b = T.join(0, model.b, T.zeros(nb_neurons_to_add, dtype=theano.config.floatX))
        cost = model.free_energy(model.CD.chain_start) - model.free_energy(model.CD.chain_end)
        grad_W_new_neurons = theano.grad(T.mean(cost), model.W)[-nb_neurons_to_add:]
        model.W = W_bak
        model.b = b_bak

        # Will be part of the updates passed to the Theano function `learn` of the trainer.
        # Notes: all updates are done simultanously, i.e. params haven't been updated yet.
        self.updates[self.maxZ] = T.cast(maxZ, "int64")
        self.updates[self.grad_W_new_neurons] = grad_W_new_neurons
开发者ID:MarcCote,项目名称:iRBM,代码行数:28,代码来源:irbm.py


示例8: max_pool_2d

def max_pool_2d(input, ds, ignore_border=False):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale. (2,2) will halve the image in each dimension.
    :param ignore_border: boolean value. When True, (5,5) input with ds=(2,2) will generate a
      (2,2) output. (3,3) otherwise.
    """
    if input.ndim < 2:
        raise NotImplementedError("max_pool_2d requires a dimension >= 2")

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size, tensor.as_tensor([1]), img_shape), "int64")
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
开发者ID:igul222,项目名称:Theano,代码行数:34,代码来源:downsample.py


示例9: unpool_switch_2d

def unpool_switch_2d(input, ds, st=None,
            index_type='flattened', index_scope='local',
            original_input_shape=None):

    if input.ndim < 3:
        raise NotImplementedError('unpool_switched_2d requires a dimension >= 3')
    if input.ndim == 4:
        op = UnpoolSwitch(ds, st=st,
                  index_type=index_type, index_scope=index_scope,
                  original_input_shape=original_input_shape)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-3:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = T.prod(input.shape[:-3])
    batch_size = T.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = T.cast(T.join(0, batch_size,
                                        img_shape), 'int64')
    input_4D = T.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = UnpoolSwitch(ds, st=st,
              index_type=index_type, index_scope=index_scope,
              original_input_shape=original_input_shape)
    output = op(input_4D)

    # restore to original shape
    outshp = T.join(0, input.shape[:-2], output.shape[-2:])
    return T.reshape(output, outshp, ndim=input.ndim)
开发者ID:bokorn,项目名称:Keras-and-Theano-layers-for-Switched-Pooling,代码行数:34,代码来源:theano_switched_pooling.py


示例10: apply

        def apply(self, application, *args, **kwargs):
            # extra_ndim is a mandatory parameter, but in order not to
            # confuse with positional inputs, it has to be extracted from
            # **kwargs
            extra_ndim = kwargs.get("extra_ndim", 0)

            inputs = dict(zip(application.inputs, args))
            inputs.update(dict_subset(kwargs, application.inputs, must_have=False))
            reshaped_inputs = inputs
            # To prevent pollution of the computation graph with no-ops
            if extra_ndim > 0:
                for name, input_ in inputs.items():
                    shape, ndim = input_.shape, input_.ndim
                    # Remember extra_dims for reshaping the outputs correctly.
                    # Does not matter from which input, since we assume
                    # extra dimension match for all inputs.
                    extra_dims = shape[:extra_ndim]
                    new_first_dim = tensor.prod(shape[: extra_ndim + 1])
                    new_shape = tensor.join(0, new_first_dim[None], shape[extra_ndim + 1 :])
                    reshaped_inputs[name] = input_.reshape(new_shape, ndim=ndim - extra_ndim)
            outputs = wrapped.__get__(self, None)(**reshaped_inputs)
            if extra_ndim == 0:
                return outputs
            reshaped_outputs = []
            for output in pack(outputs):
                shape, ndim = output.shape, output.ndim
                new_shape = tensor.join(0, extra_dims, (shape[0] // tensor.prod(extra_dims))[None], shape[1:])
                reshaped_outputs.append(output.reshape(new_shape, ndim=ndim + extra_ndim))
            return reshaped_outputs
开发者ID:EloiZ,项目名称:DeepCube,代码行数:29,代码来源:wrappers.py


示例11: pad_dims

def pad_dims(input, leftdims, rightdims):
    """Reshapes the input to a (leftdims + rightdims) tensor

    This helper function is used to convert pooling inputs with arbitrary
    non-pooling dimensions to the correct number of dimensions for the
    GPU pooling ops.

    This reduces or expands the number of dimensions of the input to
    exactly `leftdims`, by adding extra dimensions on the left or by
    combining some existing dimensions on the left of the input.

    Use `unpad_dims` to reshape back to the original dimensions.

    Examples
    --------
    Given input of shape (3, 5, 7), ``pad_dims(input, 2, 2)``
    adds a singleton dimension and reshapes to (1, 3, 5, 7).
    Given that output from pad_dims, ``unpad_dims(output, input, 2, 2)``
    reshapes back to (3, 5, 7).

    Given input of shape (3, 5, 7, 9), ``pad_dims(input, 2, 2)``
    does not reshape and returns output with shape (3, 5, 7, 9).

    Given input of shape (3, 5, 7, 9, 11), ``pad_dims(input, 2, 2)``
    combines the first two dimensions and reshapes to (15, 7, 9, 11).

    Given input of shape (3, 5, 7, 9), ``pad_dims(input, 2, 3)``
    adds a singleton dimension and reshapes to (1, 3, 5, 7, 9).
    """
    assert input.ndim >= rightdims

    if input.ndim == (leftdims + rightdims):
        return input

    # extract image dimensions
    img_shape = input.shape[-rightdims:]

    non_pool_ndim = input.ndim - rightdims
    if non_pool_ndim < leftdims:
        # too few dimensions, pad on the left
        dummy_dims = tensor.as_tensor([1] * (leftdims - non_pool_ndim))
        new_shape = tensor.join(0, dummy_dims,
                                input.shape[:non_pool_ndim],
                                img_shape)
    else:
        # too many dimensions, combine the leading dimensions
        batched_ndim = non_pool_ndim - leftdims + 1
        batch_size = tensor.prod(input.shape[:batched_ndim])
        # convert to a vector for tensor.join
        batch_size = tensor.shape_padright(batch_size, 1)
        new_shape = tensor.join(0, batch_size,
                                input.shape[batched_ndim:non_pool_ndim],
                                img_shape)

    # store in the required shape
    new_shape = tensor.cast(new_shape, 'int64')
    input_ND = GpuReshape(leftdims + rightdims)(input, new_shape)
    return input_ND
开发者ID:HapeMask,项目名称:Theano,代码行数:58,代码来源:opt_util.py


示例12: cost

 def cost(self,Y,Y_hat):
     w = T.fscalar()
     r = self.r
     w = 0.05
     i = T.le(Y,w)
     j = T.eq(i,0)
     z = T.join(0,Y[i]/r,Y[j])
     z_hat = T.join(0,Y_hat[i]/r,Y_hat[j])
     return super(linear_mlp_bayesian_cost,self).cost(z,z_hat)
开发者ID:leinxx,项目名称:pylearn2_cnn,代码行数:9,代码来源:cnn_pl_sar.py


示例13: max_pool_3d

def max_pool_3d(input, ds, ignore_border=False):
	"""
		Takes as input a N-D tensor, where N >= 3. It downscales the input video by
		the specified factor, by keeping only the maximum value of non-overlapping
		patches of size (ds[0],ds[1],ds[2]) (time, height, width)  
		
		:type input: N-D theano tensor of input images.
		:param input: input images. Max pooling will be done over the 3 last dimensions.
		:type ds: tuple of length 3
		:param ds: factor by which to downscale. (2,2,2) will halve the video in each dimension.
		:param ignore_border: boolean value. Example when True, (5,5,5) input with ds=(2,2,2) will generate a
		(2,2,2) output. (3,3,3) otherwise.
	"""
	if input.ndim < 3:
		raise NotImplementedError('max_pool_3d requires a dimension >= 3')
		
	vid_dim = input.ndim
	#Maxpool frame
	frame_shape = input.shape[-2:]

	# count the number of "leading" dimensions, store as dmatrix
	batch_size = T.prod(input.shape[:-2])
	batch_size = T.shape_padright(batch_size,1)
	new_shape = T.cast(T.join(0, batch_size,T.as_tensor([1,]),frame_shape), 'int32')
	
	input_4D = T.reshape(input, new_shape, ndim=4)
	# downsample mini-batch of videos in rows and cols
	op = DownsampleFactorMax((ds[1],ds[2]), ignore_border)
	output = op(input_4D)
	# restore to original shape
	outshape = T.join(0, input.shape[:-2], output.shape[-2:])
	out = T.reshape(output, outshape, ndim=input.ndim)
	
	#Maxpool time 
	# output (time, rows, cols), reshape so that time is in the back
	shufl = (list(range(vid_dim-4)) + list(range(vid_dim-3,vid_dim))+[vid_dim-4])
	input_time = out.dimshuffle(shufl)
	# reset dimensions
	vid_shape = input_time.shape[-2:]
	# count the number of "leading" dimensions, store as dmatrix
	batch_size = T.prod(input_time.shape[:-2])
	batch_size = T.shape_padright(batch_size,1)
	# store as 4D tensor with shape: (batch_size,1,width,time)
	new_shape = T.cast(T.join(0, batch_size,T.as_tensor([1,]),vid_shape), 'int32')
	input_4D_time = T.reshape(input_time, new_shape, ndim=4)
	# downsample mini-batch of videos in time
	op = DownsampleFactorMax((1,ds[0]), ignore_border)
	outtime = op(input_4D_time)
	# restore to original shape (xxx, rows, cols, time)
	outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
	shufl = (list(range(vid_dim-4)) + [vid_dim-1] + list(range(vid_dim-4,vid_dim-1)))
	#shufl = (list(range(vid_dim-3)) + [vid_dim-1]+[vid_dim-3]+[vid_dim-2])
	return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
开发者ID:IITM-DONLAB,项目名称:python-dnn,代码行数:53,代码来源:max_pool.py


示例14: max_pool_2d

def max_pool_2d(input, ds, ignore_border=False, st=None):
    """
    Takes as input a N-D tensor, where N >= 2. It downscales the input image by
    the specified factor, by keeping only the maximum value of non-overlapping
    patches of size (ds[0],ds[1])

    :type input: N-D theano tensor of input images.
    :param input: input images. Max pooling will be done over the 2 last
        dimensions.
    :type ds: tuple of length 2
    :param ds: factor by which to downscale (vertical ds, horizontal ds).
        (2,2) will halve the image in each dimension.
    :type ignore_border: bool
    :param ignore_border: When True, (5,5) input with ds=(2,2)
        will generate a (2,2) output. (3,3) otherwise.
    :type st: tuple of lenght 2
    :param st: stride size, which is the number of shifts
        over rows/cols to get the the next pool region.
        if st is None, it is considered equal to ds
        (no overlap on pooling regions)

    """
    if input.ndim < 2:
        raise NotImplementedError('max_pool_2d requires a dimension >= 2')
    if input.ndim == 4:
        op = DownsampleFactorMax(ds, ignore_border, st=st)
        output = op(input)
        return output

    # extract image dimensions
    img_shape = input.shape[-2:]

    # count the number of "leading" dimensions, store as dmatrix
    batch_size = tensor.prod(input.shape[:-2])
    batch_size = tensor.shape_padright(batch_size, 1)

    # store as 4D tensor with shape: (batch_size,1,height,width)
    new_shape = tensor.cast(tensor.join(0, batch_size,
                                        tensor.as_tensor([1]),
                                        img_shape), 'int64')
    input_4D = tensor.reshape(input, new_shape, ndim=4)

    # downsample mini-batch of images
    op = DownsampleFactorMax(ds, ignore_border, st=st)
    output = op(input_4D)

    # restore to original shape
    outshp = tensor.join(0, input.shape[:-2], output.shape[-2:])
    return tensor.reshape(output, outshp, ndim=input.ndim)
开发者ID:dwf,项目名称:Theano,代码行数:49,代码来源:downsample.py


示例15: one_lstm_step_wpd

        def one_lstm_step_wpd(x_t, extra_x_in, h_tm1, c_tm1, 
                            a01_tm1,
                            W_xi, W_hi, W_xf, W_hf, W_xc, W_hc, W_xo, W_ho, 
                            W01_inattend,att_b2):
            #########################################
            #  For Attention 
            #########################################
            # 0D - ch-time-freq
            #att0_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a0_tm1, x_t)), W0_inattend))
            #att0_a_tl = T.exp(att0_e_tl)/(T.exp(att0_e_tl)).sum(0,keepdims=True)
            #att_c_t = att0_a_tl*x_t

            # 0D2 - ch-time
            e = T.tanh(T.dot(T.join(0, extra_x_in, T.join(0, c_tm1, T.join(0, a01_tm1, x_t))), W01_inattend)+att_b2)
            att01_a_tl = T.exp(e)/(T.exp(e)).sum(0,keepdims=True)
            att01_c_t = T.extra_ops.repeat(att01_a_tl, 40, axis=0)*x_t # (7*5*40)*(7*5*40)
            att_c_t = att01_c_t
            if draw != None:
                att01_c_t = theano.printing.Print('att01_c_t')(att01_c_t)

            #e = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a02_tm1, att01_c_t)), W02_inattend))
            #att02_a_tl = T.exp(e)/(T.exp(e)).sum(0,keepdims=True) # 40*40
            #att_c_t = att02_a_tl*att01_c_t

            # 1D - timeframe
            #att1_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a1_tm1, x_t)), W1_inattend))
            #att1_a_tl = T.exp(att1_e_tl)/(T.exp(att1_e_tl)).sum(0,keepdims=True)
            #att1_c_t = T.dot(att1_a_tl, x_t.reshape((7,5*40))).flatten() # (1,7) * ((7,5*40)) => (5*40)

            # 2D - channel
            #att2_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a2_tm1, att1_c_t)), W2_inattend))
            #att2_a_tl = T.exp(att2_e_tl)/(T.exp(att2_e_tl)).sum(0,keepdims=True)
            #att2_c_t = T.dot(att2_a_tl, att1_c_t.reshape((5,40))).flatten() # (1,5) * ((5,40)) => (1,40)

            # 3D - frequency
            #att3_e_tl = T.tanh(T.dot(T.join(0, c_tm1, T.join(0, a3_tm1, att2_c_t)), W3_inattend))
            #att3_a_tl = T.exp(att3_e_tl)/(T.exp(att3_e_tl)).sum(0,keepdims=True) # 40*40
            #att_c_t = att3_a_tl*att2_c_t

            #########################################
            #  For LSTM
            #########################################
            x_t=att_c_t #rename
            i_t = T.nnet.sigmoid(theano.dot(x_t, W_xi) + theano.dot(h_tm1, W_hi))
            f_t = T.nnet.sigmoid(theano.dot(x_t, W_xf) + theano.dot(h_tm1, W_hf))
            c_t = f_t * c_tm1 + i_t * T.tanh(theano.dot(x_t, W_xc) + theano.dot(h_tm1, W_hc) ) 
            o_t = T.nnet.sigmoid(theano.dot(x_t, W_xo)+ theano.dot(h_tm1, W_ho)) 
            h_t = o_t * T.tanh(c_t)
            return [h_t, c_t, att01_a_tl]
开发者ID:synetkim,项目名称:multi_asr,代码行数:49,代码来源:attendlstm.py


示例16: max_pool_3d

def max_pool_3d(input, ds, ignore_border=False):
    # [n,c,x,y,z]以外の入力は受け付けない
    if input.ndim != 5:
        raise NotImplementedError(
            'max_pool_3d requires a input [n, c, x, y, z]')

    # 入力次元
    vid_dim = input.ndim

    # [y, z]フレームの次元数
    frame_shape = input.shape[-2:]

    # バッチサイズ
    # フレーム次元以外の全ての次元の要素数を掛け合わせる
    batch_size = T.prod(input.shape[:-2])
    # http://deeplearning.net/software/theano/library/tensor/basic.html#theano.tensor.shape_padright
    batch_size = T.shape_padright(batch_size, 1)


    new_shape = T.cast(T.join(0, batch_size, T.as_tensor([1, ]), frame_shape),
                       'int32')
    input_4D = T.reshape(input, new_shape, ndim=4)

    op = DownsampleFactorMax((ds[1], ds[2]), ignore_border)
    output = op(input_4D)
    outshape = T.join(0, input.shape[:-2], output.shape[-2:])
    out = T.reshape(output, outshape, ndim=input.ndim)

    shufl = (
        list(range(vid_dim - 3)) + [vid_dim - 2] + [vid_dim - 1] + [
            vid_dim - 3])
    input_time = out.dimshuffle(shufl)
    vid_shape = input_time.shape[-2:]

    batch_size = T.prod(input_time.shape[:-2])
    batch_size = T.shape_padright(batch_size, 1)

    new_shape = T.cast(T.join(0, batch_size,
                              T.as_tensor([1, ]),
                              vid_shape), 'int32')
    input_4D_time = T.reshape(input_time, new_shape, ndim=4)
    op = DownsampleFactorMax((1, ds[0]), ignore_border)
    outtime = op(input_4D_time)
    outshape = T.join(0, input_time.shape[:-2], outtime.shape[-2:])
    shufl = (
        list(range(vid_dim - 3)) + [vid_dim - 1] + [vid_dim - 3] + [
            vid_dim - 2])
    return T.reshape(outtime, outshape, ndim=input.ndim).dimshuffle(shufl)
开发者ID:kanairen,项目名称:CubicCNN,代码行数:48,代码来源:__pool.py


示例17: test_opt_gpujoin_joinvectors_elemwise_then_minusone

def test_opt_gpujoin_joinvectors_elemwise_then_minusone():
    # from a bug in gpu normal sampling
    _a = numpy.asarray([1, 2, 3, 4], dtype='float32')
    _b = numpy.asarray([5, 6, 7, 8], dtype='float32')
    a = cuda.shared_constructor(_a)
    b = cuda.shared_constructor(_b)

    a_prime = tensor.cos(a)
    b_prime = tensor.sin(b)

    c = tensor.join(0, a_prime, b_prime)

    d = c[:-1]

    f = theano.function([], d, mode=mode_with_gpu)

    graph_nodes = f.maker.fgraph.toposort()

    assert isinstance(graph_nodes[-1].op, cuda.HostFromGpu)
    assert isinstance(graph_nodes[-2].op, cuda.GpuSubtensor)
    assert isinstance(graph_nodes[-3].op, cuda.GpuJoin)

    concat = numpy.concatenate([numpy.cos(_a), numpy.sin(_b)], axis=0)
    concat = concat[:-1]

    assert numpy.allclose(numpy.asarray(f()), concat)
开发者ID:Abioy,项目名称:Theano,代码行数:26,代码来源:test_opt.py


示例18: test_gpujoin_gpualloc

def test_gpujoin_gpualloc():
    a = T.fmatrix("a")
    a_val = numpy.asarray(numpy.random.rand(4, 5), dtype="float32")
    b = T.fmatrix("b")
    b_val = numpy.asarray(numpy.random.rand(3, 5), dtype="float32")

    f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_without_gpu)
    f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)), mode=mode_with_gpu)
    f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_with_gpu)
    assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2
    assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1
    assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu.maker.fgraph.toposort()]) == 2
    assert sum([node.op == gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1
    assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()]) == 2
    assert sum([node.op == gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1
    assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
开发者ID:kelvinxu,项目名称:Theano,代码行数:16,代码来源:test_basic_ops.py


示例19: _lmul

 def _lmul(self, x, T):
     if T:
         if len(self.col_shape())>1:
             x2 = x.flatten(2)
         else:
             x2 = x
         n_rows = x2.shape[0]
         offset = 0
         xWlist = []
         assert len(self._col_sizes) == len(self._Wlist)
         for size, W in zip(self._col_sizes, self._Wlist):
             # split the output rows into pieces
             x_s = x2[:,offset:offset+size]
             # multiply each piece by one transform
             xWlist.append(
                     W.lmul(
                         x_s.reshape(
                             (n_rows,)+W.col_shape()),
                         T))
             offset += size
         # sum the results
         rval = tensor.add(*xWlist)
     else:
         # multiply the input by each transform
         xWlist = [W.lmul(x,T).flatten(2) for W in self._Wlist]
         # join the resuls
         rval = tensor.join(1, *xWlist)
     return rval
开发者ID:Alienfeel,项目名称:pylearn2,代码行数:28,代码来源:linear.py


示例20: link

    def link(self, input):
        self.input = input

        # select the lines where we apply k-max pooling
        neighbors_for_pooling = TSN.images2neibs(
            ten4=self.input,
            neib_shape=(self.input.shape[2], 1),  # we look the max on every dimension
            mode='valid'  # 'ignore_borders'
        )

        neighbors_arg_sorted = T.argsort(neighbors_for_pooling, axis=1)
        k_neighbors_arg = neighbors_arg_sorted[:, -self.k_max:]
        k_neighbors_arg_sorted = T.sort(k_neighbors_arg, axis=1)

        ii = T.repeat(T.arange(neighbors_for_pooling.shape[0]), self.k_max)
        jj = k_neighbors_arg_sorted.flatten()
        flattened_pooled_out = neighbors_for_pooling[ii, jj]

        pooled_out_pre_shape = T.join(
            0,
            self.input.shape[:-2],
            [self.input.shape[3]],
            [self.k_max]
        )
        self.output = flattened_pooled_out.reshape(
            pooled_out_pre_shape,
            ndim=self.input.ndim
        ).dimshuffle(0, 1, 3, 2)
        return self.output
开发者ID:geshiming,项目名称:UltraDeep,代码行数:29,代码来源:pooling.py



注:本文中的theano.tensor.join函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.le函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.jacobian函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap