• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

Python tensor.isnan函数代码示例

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

本文整理汇总了Python中theano.tensor.isnan函数的典型用法代码示例。如果您正苦于以下问题:Python isnan函数的具体用法?Python isnan怎么用?Python isnan使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。



在下文中一共展示了isnan函数的20个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: updates

    def updates(self, cost):
        grad = T.grad(cost, self.param)
        grad2 = hessian_diagonal(cost, self.param, grad=grad)
        # calculate memory constants
        tau_rec = 1.0 / self.tau
        tau_inv_rec = 1.0 - tau_rec

        # new moving average of gradient
        g_avg_new = tau_inv_rec * self.g_avg + tau_rec * grad
        # new moving average of squared gradient
        v_avg_new = tau_inv_rec * self.v_avg + tau_rec * grad**2
        # new moving average of hessian diagonal
        h_avg_new = tau_inv_rec * self.h_avg + tau_rec * T.abs_(grad2)

        rate_unsafe = (g_avg_new ** 2) / (v_avg_new * h_avg_new)
        rate = T.switch(T.isinf(rate_unsafe) | T.isnan(rate_unsafe), self.learning_rate, rate_unsafe)

        tau_unsafe = (1 - (g_avg_new ** 2) / v_avg_new) * self.tau + 1
        tau_new = T.switch(T.isnan(tau_unsafe) | T.isinf(tau_unsafe), self.tau, tau_unsafe)

        return [(self.g_avg, g_avg_new),
                (self.v_avg, v_avg_new),
                (self.h_avg, h_avg_new),
                (self.tau, tau_new),
                (self.last_grad, grad),
                (self.last_grad2, grad2),
                (self.last_rate, rate),
                (self.param, self.param - rate * grad)]
开发者ID:dpfried,项目名称:neural_language_model,代码行数:28,代码来源:policies.py


示例2: marginalize_over_v_z

    def marginalize_over_v_z(self, h):
        # energy = \sum_{i=1}^{|h|} h_i*b_i - \beta * ln(1 + e^{b_i})

        # In theory should use the following line
        # energy = (h * self.b).T
        # However, when there is broadcasting, the Theano element-wise multiplication between np.NaN and 0 is 0 instead of np.NaN!
        # so we use T.tensordot and T.diagonal instead as a workaround!
        # See Theano issue #3848 (https://github.com/Theano/Theano/issues/3848)
        energy = T.tensordot(h, self.b, axes=0)
        energy = T.diagonal(energy, axis1=1, axis2=2).T

        if self.penalty == "softplus_bi":
            energy = energy - self.beta * T.log(1 + T.exp(self.b))[:, None]

        elif self.penalty == "softplus0":
            energy = energy - self.beta * T.log(1 + T.exp(0))[:, None]

        else:
            raise NameError("Invalid penalty term")

        energy = T.set_subtensor(energy[(T.isnan(energy)).nonzero()], 0)  # Remove NaN
        energy = T.sum(energy, axis=0, keepdims=True).T

        ener = T.tensordot(h, self.W, axes=0)
        ener = T.diagonal(ener, axis1=1, axis2=2)
        ener = T.set_subtensor(ener[(T.isnan(ener)).nonzero()], 0)
        ener = T.sum(ener, axis=2) + self.c[None, :]
        ener = T.sum(T.log(1 + T.exp(ener)), axis=1, keepdims=True)

        return -(energy + ener)
开发者ID:MarcCote,项目名称:iRBM,代码行数:30,代码来源:orbm.py


示例3: scaled_cost

def scaled_cost(x, t):
    sq_error = (x - t) ** 2
    above_thresh_sq_error = sq_error[(t > THRESHOLD).nonzero()]
    below_thresh_sq_error = sq_error[(t <= THRESHOLD).nonzero()]
    above_thresh_mean = above_thresh_sq_error.mean()
    below_thresh_mean = below_thresh_sq_error.mean()
    above_thresh_mean = ifelse(T.isnan(above_thresh_mean), 0.0, above_thresh_mean)
    below_thresh_mean = ifelse(T.isnan(below_thresh_mean), 0.0, below_thresh_mean)
    return (above_thresh_mean + below_thresh_mean) / 2.0
开发者ID:mmottahedi,项目名称:neuralnilm_prototype,代码行数:9,代码来源:e177.py


示例4: predict_logK

 def predict_logK(self, x, z, params):
     if self.conditional:
         s_x = TT.switch(TT.isnan(x), self.n_idxs - 1, x)
         s_z = TT.switch(TT.isnan(z), self.n_idxs - 1, z)
     else:
         s_x = x
         s_z = z
     P_unit = self.unit(params)
     K = TT.dot(P_unit[s_x.flatten().astype('int32')],
                P_unit[s_x.flatten().astype('int32')].T)
     #K_reg = K + 1e-12 * TT.eye(x.shape[0])
     K_new = TT.dot(P_unit[s_x.flatten().astype('int32')],
                    P_unit[s_z.flatten().astype('int32')].T)
     return TT.log(K), TT.log(K_new)
开发者ID:gopal-m,项目名称:hyperopt-gpsmbo,代码行数:14,代码来源:kernels.py


示例5: minimize

 def minimize(self, loss, momentum, rescale):
     super(RMSPropOptimizer, self).minimize(loss)
     grads = self.gradparams
     grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
     not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
     grad_norm = T.sqrt(grad_norm)
     scaling_num = rescale
     scaling_den = T.maximum(rescale, grad_norm)
     # Magic constants
     combination_coeff = 0.9
     minimum_grad = 1E-4
     updates = []
     params = self.params
     for n, (param, grad) in enumerate(zip(params, grads)):
         grad = T.switch(not_finite, 0.1 * param,
                         grad * (scaling_num / scaling_den))
         old_square = self.running_square_[n]
         new_square = combination_coeff * old_square + (
             1. - combination_coeff) * T.sqr(grad)
         old_avg = self.running_avg_[n]
         new_avg = combination_coeff * old_avg + (
             1. - combination_coeff) * grad
         rms_grad = T.sqrt(new_square - new_avg ** 2)
         rms_grad = T.maximum(rms_grad, minimum_grad)
         memory = self.memory_[n]
         update = momentum * memory - self.lr * grad / rms_grad
         update2 = momentum * momentum * memory - (
             1 + momentum) * self.lr * grad / rms_grad
         updates.append((old_square, new_square))
         updates.append((old_avg, new_avg))
         updates.append((memory, update))
         updates.append((param, param + update2))
     
     return updates
开发者ID:tomokishii,项目名称:Qiita-posts,代码行数:34,代码来源:music_scale_classify_old.py


示例6: compute_updates

    def compute_updates(self, training_cost, params):
        updates = []
         
        grads = T.grad(training_cost, params)
        grads = OrderedDict(zip(params, grads))
        
        # Clip stuff
        c = numpy.float32(self.cutoff)
        clip_grads = []
        
        norm_gs = T.sqrt(sum(T.sum(g ** 2) for p, g in grads.items()))
        normalization = T.switch(T.ge(norm_gs, c), c / norm_gs, np.float32(1.))
        notfinite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
         
        for p, g in grads.items():
            clip_grads.append((p, T.switch(notfinite, numpy.float32(.1) * p, g * normalization)))
        
        grads = OrderedDict(clip_grads)

        if self.updater == 'adagrad':
            updates = Adagrad(grads, self.lr)  
        elif self.updater == 'sgd':
            raise Exception("Sgd not implemented!")
        elif self.updater == 'adadelta':
            updates = Adadelta(grads)
        elif self.updater == 'rmsprop':
            updates = RMSProp(grads, self.lr)
        elif self.updater == 'adam':
            updates = Adam(grads)
        else:
            raise Exception("Updater not understood!") 
        return updates
开发者ID:npow,项目名称:hed-dlg,代码行数:32,代码来源:dialog_encdec.py


示例7: adamgc

def adamgc(cost, params, lr=0.0002, b1=0.1, b2=0.001, e=1e-8, max_magnitude=5.0, infDecay=0.1):
    updates = []
    grads = T.grad(cost, params)
    
    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.)

    i = shared(floatX(0.))
    i_t = i + 1.
    fix1 = 1. - (1. - b1)**i_t
    fix2 = 1. - (1. - b2)**i_t
    lr_t = lr * (T.sqrt(fix2) / fix1)
    for p, g in zip(params, grads):
        g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        m = shared(p.get_value() * 0.)
        v = shared(p.get_value() * 0.)
        m_t = (b1 * g) + ((1. - b1) * m) 
        v_t = (b2 * T.sqr(g)) + ((1. - b2) * v)
        g_t = m_t / (T.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)
        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    return updates, norm
开发者ID:Weichern,项目名称:Theano-Lights,代码行数:27,代码来源:toolbox.py


示例8: graves_rmsprop_updates

 def graves_rmsprop_updates(self, params, grads, learning_rate=1e-4, alpha=0.9, epsilon=1e-4, chi=0.95):
     """
     Alex Graves' RMSProp [1]_.
     .. math ::
         n_{i} &= \chi * n_i-1 + (1 - \chi) * grad^{2}\\
         g_{i} &= \chi * g_i-1 + (1 - \chi) * grad\\
         \Delta_{i} &= \alpha * Delta_{i-1} - learning_rate * grad /
                 sqrt(n_{i} - g_{i}^{2} + \epsilon)\\
         w_{i} &= w_{i-1} + \Delta_{i}
     References
     ----------
     .. [1] Graves, Alex.
         "Generating Sequences With Recurrent Neural Networks", p.23
         arXiv:1308.0850
     """
     updates = []
     grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
     not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
     for n, (param, grad) in enumerate(zip(params, grads)):
         grad = T.switch(not_finite, 0.1 * param, grad)
         old_square = self.running_square_[n]
         old_avg = self.running_avg_[n]
         old_memory = self.memory_[n]
         new_square = chi * old_square + (1. - chi) * grad ** 2
         new_avg = chi * old_avg + (1. - chi) * grad
         new_memory = alpha * old_memory - learning_rate * grad / T.sqrt(new_square - \
                     new_avg ** 2 + epsilon)
         updates.append((old_square, new_square))
         updates.append((old_avg, new_avg))
         updates.append((old_memory, new_memory))
         updates.append((param, param + new_memory))
     return updates
开发者ID:chiggum,项目名称:Neural-Turing-Machines,代码行数:32,代码来源:rmsprop_orig.py


示例9: unet_crossentropy_loss_sampled

    def unet_crossentropy_loss_sampled(y_true, y_pred):
        epsilon = 1.0e-4
        y_pred_clipped = T.flatten(T.clip(y_pred, epsilon, 1.0-epsilon))
        y_true = T.flatten(y_true)
        # this seems to work
        # it is super ugly though and I am sure there is a better way to do it
        # but I am struggling with theano to cooperate
        # filter the right indices
        classPos = 1
        classNeg = 0
        indPos   = T.eq(y_true, classPos).nonzero()[0]
        indNeg   = T.eq(y_true, classNeg).nonzero()[0]
        #pos      = y_true[ indPos ]
        #neg      = y_true[ indNeg ]

        # shuffle
        n = indPos.shape[0]
        indPos = indPos[UNET.srng.permutation(n=n)]
        n = indNeg.shape[0]
        indNeg = indNeg[UNET.srng.permutation(n=n)]
        # take equal number of samples depending on which class has less
        n_samples = T.cast(T.min([ indPos.shape[0], indNeg.shape[0]]), dtype='int64')
        #n_samples = T.cast(T.min([T.sum(y_true), T.sum(1-y_true)]), dtype='int64')

        indPos = indPos[:n_samples]
        indNeg = indNeg[:n_samples]
        #loss_vector = -T.mean(T.log(y_pred_clipped[indPos])) - T.mean(T.log(1-y_pred_clipped[indNeg]))
        loss_vector = -T.mean(T.log(y_pred_clipped[indPos])) - T.mean(T.log(y_pred_clipped[indNeg]))
        loss_vector = T.clip(loss_vector, epsilon, 1.0-epsilon)
        average_loss = T.mean(loss_vector)
        if T.isnan(average_loss):
            average_loss = T.mean( y_pred_clipped[indPos])
        return average_loss
开发者ID:Rhoana,项目名称:icon,代码行数:33,代码来源:unet.py


示例10: compute_step

 def compute_step(self, parameter, previous_step):
     step_sum = tensor.sum(previous_step)
     not_finite = (tensor.isnan(step_sum) +
                   tensor.isinf(step_sum))
     step = tensor.switch(
         not_finite > 0, (1 - self.scaler) * parameter, previous_step)
     return step, []
开发者ID:SwordYork,项目名称:blocks,代码行数:7,代码来源:__init__.py


示例11: exe

    def exe(self, mainloop):
        """
        .. todo::

            WRITEME
        """
        grads = mainloop.grads
        g_norm = 0.

        for p, g in grads.items():
            g /= T.cast(self.batch_size, dtype=theano.config.floatX)
            grads[p] = g
            g_norm += (g**2).sum()

        if self.check_nan:
            not_finite = T.or_(T.isnan(g_norm), T.isinf(g_norm))

        g_norm = T.sqrt(g_norm)
        scaler = self.scaler / T.maximum(self.scaler, g_norm)

        if self.check_nan:
            for p, g in grads.items():
                grads[p] = T.switch(not_finite, 0.1 * p, g * scaler)
        else:
            for p, g in grads.items():
                grads[p] = g * scaler

        mainloop.grads = grads
开发者ID:Beronx86,项目名称:cle,代码行数:28,代码来源:ext.py


示例12: theano_digitize

def theano_digitize(x, bins):
    """
    Equivalent to numpy digitize.

    Parameters
    ----------
    x : Theano tensor or array_like
        The array or matrix to be digitized
    bins : array_like
        The bins with which x should be digitized

    Returns
    -------
    A Theano tensor
        The indices of the bins to which each value in input array belongs.
    """
    binned = T.zeros_like(x) + len(bins)
    for i in range(len(bins)):
        bin=bins[i]
        if i == 0:
            binned=T.switch(T.lt(x,bin),i,binned)
        else:
            ineq = T.and_(T.ge(x,bins[i-1]),T.lt(x,bin))
            binned=T.switch(ineq,i,binned)
    binned=T.switch(T.isnan(x), len(bins), binned)
    return binned
开发者ID:eglxiang,项目名称:xnn,代码行数:26,代码来源:utils.py


示例13: get_gradients

    def get_gradients(self, model, data, ** kwargs):

        cost = self.expr(model=model, data=data, **kwargs)

        params = list(model.get_params())

        grads = T.grad(cost, params, disconnected_inputs='ignore')

        gradients = OrderedDict(izip(params, grads))

        if self.gradient_clipping:
            norm_gs = 0.
            for grad in gradients.values():
                norm_gs += (grad ** 2).sum()
            not_finite = T.or_(T.isnan(norm_gs), T.isinf(norm_gs))
            norm_gs = T.sqrt(norm_gs)
            norm_gs = T.switch(T.ge(norm_gs, self.max_magnitude),
                               self.max_magnitude / norm_gs,
                               1.)

            for param, grad in gradients.items():
                gradients[param] = T.switch(not_finite,
                                            .1 * param,
                                            grad * norm_gs)

        updates = OrderedDict()

        return gradients, updates
开发者ID:Sandy4321,项目名称:librnn,代码行数:28,代码来源:rnn.py


示例14: get_updates

    def get_updates(self, loss, lr, max_norm=1, beta1=0.9, beta2=0.999,
                    epsilon=1e-8, grads=None):
        # Gradients
        if grads is None:
            grads = tensor.grad(loss, self.trainables)

        # Clipping
        norm  = tensor.sqrt(sum([tensor.sqr(g).sum() for g in grads]))
        m     = theanotools.clipping_multiplier(norm, max_norm)
        grads = [m*g for g in grads]

        # Safeguard against numerical instability
        new_cond = tensor.or_(tensor.or_(tensor.isnan(norm), tensor.isinf(norm)),
                              tensor.or_(norm < 0, norm > 1e10))
        grads = [tensor.switch(new_cond, np.float32(0), g) for g in grads]

        # Safeguard against numerical instability
        #cond  = tensor.or_(norm < 0, tensor.or_(tensor.isnan(norm), tensor.isinf(norm)))
        #grads = [tensor.switch(cond, np.float32(0), g) for g in grads]

        # New values
        t       = self.time + 1
        lr_t    = lr*tensor.sqrt(1. - beta2**t)/(1. - beta1**t)
        means_t = [beta1*m + (1. - beta1)*g for g, m in zip(grads, self.means)]
        vars_t  = [beta2*v + (1. - beta2)*tensor.sqr(g) for g, v in zip(grads, self.vars)]
        steps   = [lr_t*m_t/(tensor.sqrt(v_t) + epsilon)
                   for m_t, v_t in zip(means_t, vars_t)]

        # Updates
        updates  = [(x, x - step) for x, step in zip(self.trainables, steps)]
        updates += [(m, m_t) for m, m_t in zip(self.means, means_t)]
        updates += [(v, v_t) for v, v_t in zip(self.vars, vars_t)]
        updates += [(self.time, t)]

        return norm, grads, updates
开发者ID:frsong,项目名称:pyrl,代码行数:35,代码来源:sgd.py


示例15: __init__

    def __init__(self, n_comp=10, verbose=False):

        # Theano initialization
        self.T_weights = shared(np.eye(n_comp, dtype=np.float32))
        self.T_bias = shared(np.ones((n_comp, 1), dtype=np.float32))

        T_p_x_white = T.fmatrix()
        T_lrate = T.fscalar()
        T_block = T.fscalar()
        T_unmixed = T.dot(self.T_weights,T_p_x_white) + T.addbroadcast(self.T_bias,1)
        T_logit = 1 - 2 / (1 + T.exp(-T_unmixed))

        T_out =  self.T_weights +  T_lrate * T.dot(T_block * T.identity_like(self.T_weights) + T.dot(T_logit, T.transpose(T_unmixed)), self.T_weights)
        T_bias_out = self.T_bias + T_lrate * T.reshape(T_logit.sum(axis=1), (-1,1))
        T_max_w = T.max(self.T_weights)
        T_isnan = T.any(T.isnan(self.T_weights))

        self.w_up_fun = theano.function([T_p_x_white, T_lrate, T_block],
                                        [T_max_w, T_isnan],
                                        updates=[(self.T_weights, T_out),
                                                 (self.T_bias, T_bias_out)],
                                        allow_input_downcast=True)

        T_matrix = T.fmatrix()
        T_cov = T.dot(T_matrix,T.transpose(T_matrix))/T_block
        self.cov_fun = theano.function([T_matrix, T_block], T_cov, allow_input_downcast=True)
        
        self.loading = None
        self.sources = None
        self.weights = None
        self.n_comp = n_comp
        self.verbose = verbose
开发者ID:edamaraju,项目名称:ica,代码行数:32,代码来源:ica_gpu.py


示例16: exe

    def exe(self, mainloop):
        """
        .. todo::

            WRITEME
        """
        grads = mainloop.grads
        """
        for p, g in grads.items():
            grads[p] = g / self.batch_size
        g_norm = 0.
        for g in grads.values():
            g_norm += (g**2).sum()
        """
        g_norm = 0.
        for p, g in grads.items():
            g /= self.batch_size
            grads[p] = g
            g_norm += (g**2).sum()
        not_finite = T.or_(T.isnan(g_norm), T.isinf(g_norm))
        g_norm = T.sqrt(g_norm)
        scaler = self.scaler / T.maximum(self.scaler, g_norm)
        for p, g in grads.items():
            grads[p] = T.switch(not_finite, 0.1 * p, g * scaler)
        mainloop.grads = grads
开发者ID:anirudh9119,项目名称:cle,代码行数:25,代码来源:ext.py


示例17: updates

 def updates(self, cost, params, learning_rate = 0.1, momentum= 0.95, rescale=5.):
     grads = T.grad(cost, params)
     grad_norm = T.sqrt(sum(map(lambda x: T.sqr(x).sum(), grads)))
     not_finite = T.or_(T.isnan(grad_norm), T.isinf(grad_norm))
     grad_norm = T.sqrt(grad_norm)
     scaling_num = rescale
     scaling_den = T.maximum(rescale, grad_norm)
     # Magic constants
     combination_coeff = 0.9
     minimum_grad = 1e-4
     updates = []
     for n, (param, grad) in enumerate(zip(params, grads)):
         grad = T.switch(not_finite, 0.1 * param,
                         grad * (scaling_num / scaling_den))
         old_square = self.running_square_[n]
         new_square = combination_coeff * old_square + (
             1. - combination_coeff) * T.sqr(grad)
         old_avg = self.running_avg_[n]
         new_avg = combination_coeff * old_avg + (
             1. - combination_coeff) * grad
         rms_grad = T.sqrt(new_square - new_avg ** 2)
         rms_grad = T.maximum(rms_grad, minimum_grad)
         memory = self.memory_[n]
         update = momentum * memory - learning_rate * grad / rms_grad
         update2 = momentum * momentum * memory - (
             1 + momentum) * learning_rate * grad / rms_grad
         updates.append((old_square, new_square))
         updates.append((old_avg, new_avg))
         updates.append((memory, update))
         updates.append((param, param + update2))
     return updates
开发者ID:cauchyturing,项目名称:DeepMONA,代码行数:31,代码来源:update_func.py


示例18: adamgc_

def adamgc_(cost, params, lr=0.0002, b1=0.1, b2=0.01, e=1e-8, max_magnitude=5.0, infDecay=0.1):
    updates = []
    grads = T.grad(cost, params)

    norm = norm_gs(params, grads)
    sqrtnorm = T.sqrt(norm)
    not_finite = T.or_(T.isnan(sqrtnorm), T.isinf(sqrtnorm))
    adj_norm_gs = T.switch(T.ge(sqrtnorm, max_magnitude), max_magnitude / sqrtnorm, 1.0)

    i = shared(floatX(0.0))
    i_t = i + 1.0
    fix1 = 1.0 - (1.0 - b1) ** i_t
    fix2 = 1.0 - (1.0 - b2) ** i_t
    lr_t = lr * (T.sqrt(fix2) / fix1)
    for p, g in zip(params, grads):
        g = T.switch(not_finite, infDecay * p, g * adj_norm_gs)
        m = shared(p.get_value() * 0.0)
        v = shared(p.get_value() * 0.0)
        m_t = (b1 * g) + ((1.0 - b1) * m)
        v_t = (b2 * T.sqr(g)) + ((1.0 - b2) * v)
        g_t = m_t / (T.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)

        # e_t = shared(p.get_value() * 0.)
        # de_t = (srnd.normal(p.shape, std = 0.05, dtype=theano.config.floatX)*p_t - e_t)*0.05  #*p_t
        # p_t = p_t + de_t
        # updates.append((e_t, e_t + de_t))

        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    return updates, norm
开发者ID:ronvohra,项目名称:Theano-Lights,代码行数:33,代码来源:toolbox.py


示例19: nan_shield

def nan_shield(parameters, deltas, other_updates):
    delta_sum = sum(T.sum(d) for d in deltas)
    not_finite = T.isnan(delta_sum) | T.isinf(delta_sum)
    parameter_updates = [(p, T.switch(not_finite, 0.9 * p, p - d))
                         for p, d in izip(parameters, deltas)]
    other_updates = [(p, T.switch(not_finite, p, u))
                     for p, u in other_updates]
    return parameter_updates, other_updates
开发者ID:shawntan,项目名称:theano_toolkit,代码行数:8,代码来源:updates.py


示例20: clip

def clip(clip_size,parameters,gradients):
    grad_mag = T.sqrt(sum(T.sum(T.sqr(w)) for w in parameters))
    exploded = T.isnan(grad_mag) | T.isinf(grad_mag)
    scale = clip_size / T.maximum(clip_size,grad_mag)

    return [ T.switch(exploded,
                    0.1 * p,
                    scale * g
                ) for p,g in zip(parameters,gradients) ]
开发者ID:mohammadpz,项目名称:variational-autoencoders,代码行数:9,代码来源:train.py



注:本文中的theano.tensor.isnan函数示例由纯净天空整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。


鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
上一篇:
Python tensor.itensor3函数代码示例发布时间:2022-05-27
下一篇:
Python tensor.isinf函数代码示例发布时间:2022-05-27
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap